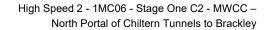


High Speed 2 - 1MC06 - Stage One C2 - MWCC - North Portal of Chiltern Tunnels to Brackley

Schedule 17 CDC P1 South Heath Drainage Mitigation Report

1MC06-CEK-TP-REP-CS03_CL05-000006


Rev	Date	Author	Checked by	Approved by	Revision Details	EKFB Reviewer
C01	01/02/2022	R.Hallado	L.Ramos	A.Barbour	First Issue	David Jones

Stakeholder review required (SRR)	Purpose of SRR
☐ County / District / London Borough Council	□ Acceptance
□ LOV	□ Approval
□ LUL	□ No Objection
□ NRL	□ Consent
□ TFL	
☐ Utilities Company	
☐ Other (please specify)	

Contents

1	INTRODUCTION	3
1.1	HS2 Project	3
1.2	Scope of this report	4
1.3	Location	4
2	DRAINAGE	5
2.1	Drainage catchments	5
2.1.1	C2.L.2 – Land drainage catchment	5
2.1.2	Havenfield Wood Footpath GMI/2 Accommodation Overbridge (highway drainage)	5
2.1.3	C2.L.6 – Land drainage catchment	5
2.1.4	C2.T.1 – Track drainage catchment	6
2.2	Outfall	6
2.3	Pond design	6
2.3.1	Greenfield runoff rates	7
2.3.2	Infiltration rates	7
2.3.3	Attenuation volumes	7
2.3.4	Drawings	9
Ta	ables	
Table	1: Outfall Types	6
Table	2: Greenfield run-off rates (QBAR)	7
Table	3: Infiltration rate data (m/hr)	7
Table	4: Attenuation volumes	8
Table	5: Reference Drawings	9

Appendices

APPENDIX A

APPENDIX B

1 Introduction

1.1 HS2 Project

High Speed 2 (HS2) is a high-speed railway linking London, Birmingham, the East Midlands, Leeds and Manchester. This document covers Phase 1 of the project between London and Birmingham as shown in Figure 1:

Figure 1: HS2 location.

1.2 Scope of this report

This drainage report has been developed to accompany the Schedule 17 application package CDC P1 (Document number: 1MC06-CEK-TP-CRO-CS03_CL05-000003) and provides supporting drainage documentation that has been requested by the Lead Local Flood Authority which in this package is Buckinghamshire Council.

1.3 Location

Schedule 17 application package CDC P1 is located within South Heath Cutting (part) between chainage 47+100 to 48+700. It is noted that the area from Chainage 48+700 to 49+000 is currently excluded from this application.

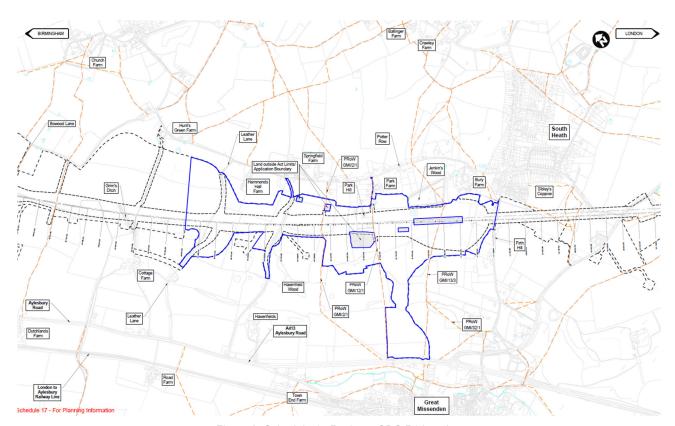


Figure 2: Schedule 17 Package CDC P1 location.

2 Drainage

2.1 Drainage catchments

There is 1 no. Highway, 2no. Land and 1 no. Track drainage models within this Schedule 17 application package, these being:

- C2.L.2 Land drainage catchment;
- Havenfield Wood Accommodation Overbridge (eastern catchment)
- C2.L.6 Land drainage catchment; and
- C2.T.1 Track drainage catchment.

2.1.1 C2.L.2 – Land drainage catchment

This land drainage catchment takes overland flow and side slope run-off from the HS2 landscape bund between chainage 47+180 and chainage 48+270, as well as run-off from the landscape bund around the Chiltern North Tunnel Portal. The run-off is intercepted by a combination of open ditches and filter drains which ultimately discharge to land drainage infiltration pond "C2.L.2-PND-0472" (Labelled drainage pond 3 on the drawings). The post development run-off is attenuated in land drainage infiltration pond "C2.L.2-PND-0472" with the overland flow passing through. A review of the pre-and post-development run-off has been undertaken to ensure the existing downstream flow rate is maintained.

2.1.2 Havenfield Wood Footpath GMI/2 Accommodation Overbridge (highway drainage)

2.1.2.1 (Eastern catchment)

This highway drainage catchment takes highway run-off from the east of HS2 and any overland flow which drains to the existing highway. The existing highway has no formal drainage, with surface water run-off discharging east to west. The proposed highway (eastern catchment) is drained via a filter drain system to ensure all surface water is intercepted prior to the proposed overbridge. The filter drain system discharges into land drainage attenuation pond "C2.L.6-PND-0485" (labelled drainage pond 4 on the drawings).

2.1.2.2 (Western catchment)

The overbridge is drained via a bridge deck drainage system, which outfalls into a filter drain system to the west of HS2. This filter drain system discharges into the land ditch network, which utilise check dams for storage before discharging into a flow spreader. The flow spreader discharges surface water run-off back onto the existing highway thereby replicating the existing situation.

2.1.3 C2.L.6 – Land drainage catchment

This land drainage catchment takes overland flow and side slope run-off from the HS2 landscape bund between chainage 48+259 and chainage 48+750. The run-off is intercepted by a combination of open ditches and filter drains which ultimately discharge to attenuation pond "C2.L.6-PND-0485" (Labelled drainage pond 4 on the drawings). Attenuation pond "C2.L.6-PND-0485" has been designed to attenuate the highway and land drainage post development catchment, with overland flow passing through the pond. The pond discharges into Havenfield Wood Drop Inlet Culvert which outfalls to the western side of HS2 into a land drainage ditch. The land drainage ditches ultimately discharge into the same flow spreader as the western highway catchment. A review of the pre-and post-development run-off has been undertaken to ensure the existing downstream flow rate is maintained.

2.1.4 C2.T.1 – Track drainage catchment

This track drainage catchment takes surface water run-off from the railway line and the cutting side slopes between chainage 47+405 and chainage 48+519m. The track drainage network utilises filter drains which discharges into an infiltration pond "C2.T.1-PND 0476" (Labelled ponds 1 & 2 on the drawings).

South Heath Cutting is classified as a dry cutting as the existing groundwater level is below the formation of the cutting.

2.2 Outfall

The outfalls for the highway, land and track drainage catchments follow the order of priority below:

- Into the ground (soakaways / infiltration);
- To a surface water body (watercourses);
- To a canal;
- To a surface water sewer; and
- To Combined sewer

The outfalls have been determined based on the location and the following outfall is being provided

Catchment ()	Outfall type ()
C2.L.2 – Land drainage catchment	Infiltration to ground
C2.L.6 – Land drainage catchment + Havenfield Wood Accommodation Overbridge	Eastern catchment – to land drainage culvert Western catchment to existing highway – to surface
C2.T.1 – Track drainage catchment	Infiltration to ground

Table 1: Outfall Types.

2.3 Pond design

The infiltration ponds have been designed to accommodate the 1 in 100 year storm event with a 40% climate change allowance with a factor of safety of 10. The discharge rate from the infiltration ponds is based on the ground investigation infiltration data.

The attenuation ponds have been designed to accommodate the 1 in 100 year storm event with a 40% climate change allowance. The discharge rate from the attenuation pond will be based on the calculated Q_{BAR} greenfield run-off rate.

2.3.1 Greenfield runoff rates

Greenfield run-off rates have been calculated for each catchment and are given in Table 2.

Catchment ()	Calculated Greenfield run-off rate (QBAR - L/S/Ha)
C2.L.2 – Land drainage catchment	Not applicable – discharge to ground
C2.L.6 – Land drainage catchment	227 (QBAR) (Greenfield run-off rate = 23.97 l/s)
C2.T.1 – Track drainage catchment	Not applicable – discharge to ground

Table 2: Greenfield run-off rates (QBAR).

Refer to Appendix A for greenfield run-off calculations.

2.3.2 Infiltration rates

Infiltration rates have been determined from site investigation infiltration testing and are given in Table 3.

Catchment ()	Infiltration rate (m/hr)
C2.L.2 – Land drainage catchment	0.126
C2.L.6 – Land drainage catchment	Not applicable
C2.T.1 – Track drainage catchment	0.138

Table 3: Infiltration rate data (m/hr)

2.3.3 Attenuation volumes

The required attenuation volume has been calculated for each pond and the volumes are given in Table 4.

Catchment ()	Pond Reference ()	Attenuation volume required (m³)	Attenuation volume provided (m³)
HS2 "C2.L.2" – Land drainage catchment	3	578	579
HS2 "C2.L.6" – Land drainage catchment	4	219.58	220
HS2 "C2.T.1" – Track drainage catchment	1 + 2	10,457	3138 + 7320 = 10,458 (total)

Table 4: Attenuation volumes

Refer to Appendix B for MicroDrainage calculations.

The ponds have been designed with a freeboard and exceedance weir as per CIRIA C753 "The SUDs Manual" as illustrated in Figure 10:

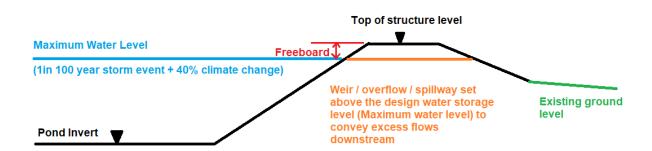


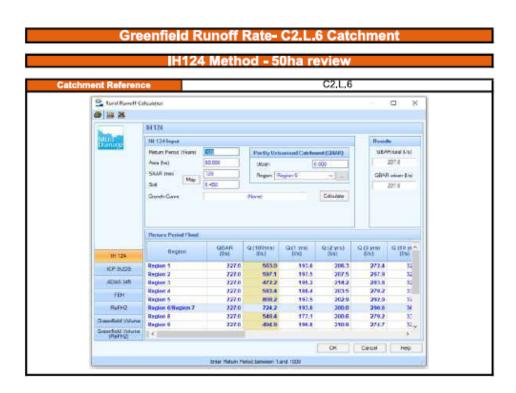
Figure 3: Pond freeboard and exceedance weir layout

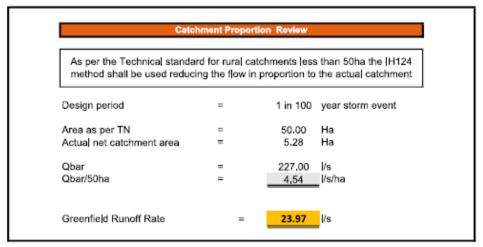
2.3.4 Drawings

For drawings refer to Schedule 17 package CDC P1.

MIDP Document number	MIDP Document title
1MC06-CEK-TP-DLO-CS03_CL05-000004	South Heath Cutting Site Location Plan
1MC06-CEK-TP-DPL-CS03_CL05-000089	South Heath Cutting Drainage Plan Sheet 1
1MC06-CEK-TP-DPL-CS03_CL05-000090	South Heath Cutting Drainage Plan Sheet 2
1MC06-CEK-TP-DDE-CS03_CL05-000032	South Heath Cutting Pond Details and Sections Sheet 1 of 2
1MC06-CEK-TP-DDE-CS03_CL05-000033	South Heath Cutting Pond Details and Sections Sheet 2 of 2

Table 5: Reference Drawings

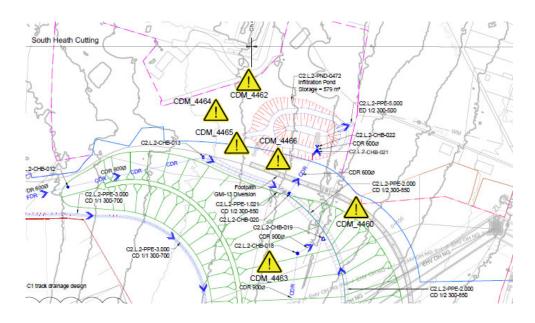



APPENDIX A

Greenfield run-off rate calculations

Number of Pages: 1

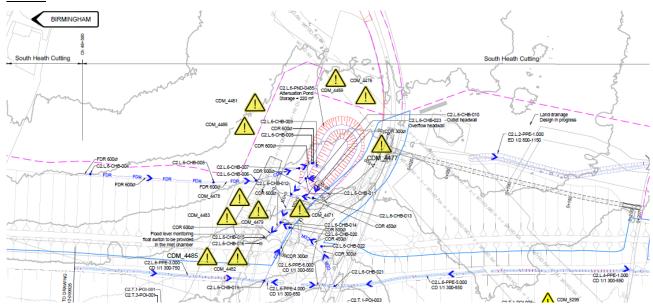
<u>Catchment C2.L.6</u>



APPENDIX B

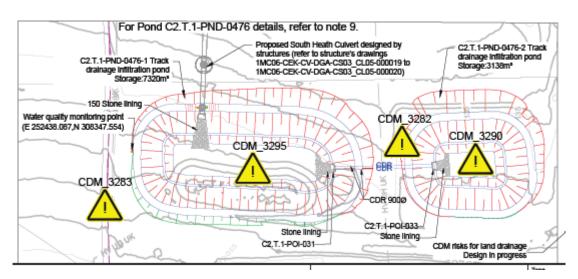
MicroDrainage calculations

Number of Pages: 3


C2.L.2

		dle East Limited									Page 18	
1 5 To	wer 6789			HS2 Detailed Design								
a Aven	ue Brgy. Bel	-Air		C2.L.2	Catchm	ent						
ti, 12											Mici	
ate 27/1/2022 5:54 pm					ed by R	yan Fortur	10				Drainage	
C2.L.	2_Pond Check	_lin100+40CC.MDX				liet Sarti	illo				niai	ııayı
vyze				Networ	k 2019.	1						
	100 year Ret	urn Period Summary	of Critic	al Resu	alts by	Maximum L	evel (R	ank 1)	for C2.	L.2_lin	100+40%	
	US /ME			TO (OT	Water Level	Surcharged			0	w/	Maximum Velocity	
PN	Name	Event		(m)	(m)							
				•				_				
		15 minute 100 year Wi 120 minute 100 year Su									2.8	
1 026	CO T O CUB 000	120	T. 405	101 607	101 200	0.000	0.000	0.01		1 227	1.0	
1.027 0	2.L.2-PND-0472	120 minute 100 year %1	mmer I+40%	181.687	181.350	1.513	0.000	0.00	224.2	578.043	0.0	0.0
				US/								
			PN	Na	me	Status						
					CHB-020							
						SURCHARGED						
						SURCHARGED* SURCHARGED						
			1.027	C2.L.2-E	MD-04/2	SURCHARGED						
				B1982-2								

C2.L.6


Arcadis Consulting Middle East Limited		Page 15
Level 5 Tower 6789	HS2 Detailed Design	
Ayala Avenue Brgy. Bel-Air	C2.L.6 Catchment	
Makati, 1209		Micro
Date 1/3/2021	Designed by Esperanza Lagman	Drainage
File C2.L6_Microdrainage Model Q100+40CC_Pond.MDX	Checked by Juliet Sartillo	Dialitage
Innovyze	Network 2019.1	•

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for C2.L.6 Microdrainage Model Q100+40CC

PN	US/MH Name	Event	US/CL	Water Level (m)	Surcharged Depth (m)		Flow / Cap.			Maximum Velocity (m/s)	Flow	Status
1.003	C2.L.6-CHB-004	15 minute 100 year Winter I+40%	198.000	196.738	-0.285	0.000	0.53		5.780	1.5	217.5	OK
1.004	C2.L.6-CHB-005	15 minute 100 year Winter I+40%	197.193	196.195	-0.278	0.000	0.56		2.912	1.4	217.2	OK
1.005	C2.L.6-CHB-006	15 minute 100 year Winter I+40%	197.001	195.939	-0.350	0.000	0.36		2.248	1.9	216.9	OK
1.006	C2.L.6-CHB-007	15 minute 100 year Winter I+40%	196.804	195.563	-0.336	0.000	0.40		1.418	1.8	217.2	OK
1.007	C2.L.6-CHB-008	15 minute 100 year Winter I+40%	196.500	195.470	-0.139	0.000	0.95		1.995	0.9	216.9	OK
1.008	C2.L.6-CHB-009	15 minute 100 year Winter I+40%	195.600	195.227	-0.373	0.000	0.31		0.350	2.2	216.5	OK*
1.009	C2.L.6-PND-0485	120 minute 100 year Summer I+40%	196.000	195.036	-0.064	0.000	0.12	147.2	219.580	0.4	14.4	OK
1.010	C2.L.6-CHB-010	480 minute 100 year Summer I+40%	195.091	194.569	-0.522	0.000	0.04		0.168	0.7	14.3	OK*
1.011	C2.L.6-CHB-011	480 minute 100 year Winter I+40%	196.500	194.485	-0.566	0.000	0.01		0.048	2.0	14.3	OK
2.000	C2.L.6-CHB-013	360 minute 100 year Summer I+40%	196.115	194.584	-0.296	0.000	0.23		0.129	3.2	145.0	
1.012	C2.L.6-CHB-012	240 minute 100 year Winter I+40%	196.389	193.183	-0.460	0.000	0.12		0.191	3.3	155.3	
3.000		15 minute 100 year Winter I+40%			-0.435	0.000	0.13		0.260		158.1	
3.001		15 minute 100 year Winter I+40%			-0.470	0.000	0.13		0.766		155.4	
3.002		15 minute 100 year Winter I+40%			-0.414	0.000	0.16		1.421		156.2	
3.003	J17	15 minute 100 year Winter I+40%	195.861	195.362	-0.418	0.000	0.13		2.288	1.0	154.7	OK
3.004	J18	15 minute 100 year Winter I+40%			-0.415	0.000	0.13		0.726		151.9	
3.005	J19	15 minute 100 year Winter I+40%			-0.424	0.000	0.17		4.363		150.2	
3.006	J20	15 minute 100 year Winter I+40%	195.753	195.247	-0.429	0.000	0.16		1.325	1.0	149.1	OK
3.007	J21	15 minute 100 year Winter I+40%			-0.434	0.000	0.16		1.255		147.3	
3.008	J22	15 minute 100 year Winter I+40%			-0.443	0.000	0.16		1.196		148.8	OK
3.009	J23	15 minute 100 year Winter I+40%			-0.570	0.000	0.12		0.384		149.2	
3.010	J24	15 minute 100 year Winter I+40%			-0.561	0.000	0.08		0.340		149.1	
3.011	J25	15 minute 100 year Winter I+40%			-0.539	0.000	0.12		0.509		148.3	
3.012	J26	15 minute 100 year Winter I+40%			-0.478	0.000	0.12		1.289		148.0	
3.013	J27	15 minute 100 year Winter I+40%	194.614	194.016	-0.593	0.000	0.09		0.392	3.2	148.9	OK
			©1982	2-2019	Innovyze							

C2.T.1

Arcadis										Page 52
Karle Premium			HS2							
Old Airport Road			Trac	k Drai	inage_	Section	C2			
Bangalore 560017 C2.T.1 Catchment									Micco	
Date 16-12-2021			Desi	gned h	oy Arj	un K R				Desipage
File C2.T.1-PND-0476.SRCX			Chec	ked by	y Nous	had Nada	af			Drainage
XP Solutions			Sour	ce Cor	ntrol	2019.1				
	Summary	of Res	ults f	or 100	year	Return	Period	(+40%)		
	Storm		Max	Max		Max	Max		St. t	
	Storm Event	Max Level				Max Control Σ		Max Volume	Status	
	Dvono	(m)	(m)	(1/:		(1/s)	(1/s)	(m³)		
	000	122 200	2 127		17.0	0.4	10.0	10015 1	0.17	
	960 min Winter 1440 min Winter				17.9 18.0			10215.1		
	2160 min Winter				18.0			104457.1		
	2880 min Winter				18.0		18.3	10351.7	O K	
	4320 min Winter				17.7			10045.0		
	5760 min Winter 7200 min Winter				17.5			9712.1		
	8640 min Winter				17.4 17.3			9547.8 9434.4		
	10080 min Winter				17.3			9346.7		
		Storm Event		m/hr)			(mins			
					(1111)	(m³)				
	9.6	O min Wi	nter	7 262			4 (954		
		0 min Win 0 min Win			0.0	2780.		954 422		
	144 216	0 min Wi: 0 min Wi:	nter nter	5.113 3.581	0.0	2780. 2701. 5421.	2 14 1 2	422 120		
	144 216 288	0 min Wi 0 min Wi 0 min Wi	nter nter nter	5.113 3.581 2.787	0.0 0.0 0.0	2780. 2701. 5421. 5302.	2 1: 1 2: 3 2:	422 120 796		
	144 216 288 432	0 min Win 0 min Win 0 min Win 0 min Win	nter nter nter nter	5.113 3.581 2.787 1.973	0.0 0.0 0.0	2780. 2701. 5421. 5302. 4992.	2 14 1 23 3 27 6 43	422 120 796 108		
	144 216 288 432 576	0 min Wi 0 min Wi 0 min Wi	nter nter nter nter nter	5.113 3.581 2.787 1.973 1.558	0.0 0.0 0.0	2780. 2701. 5421. 5302. 4992. 9967.	2 14 1 2: 3 2: 6 4: 3 5:	422 120 796		
	144 216 288 432 576 720 864	0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win	nter nter nter nter nter nter nter	5.113 3.581 2.787 1.973 1.558 1.310 1.145	0.0 0.0 0.0 0.0 0.0	2780. 2701. 5421. 5302. 4992. 9967. 9815. 9602.	2 14 1 2: 3 2' 6 4: 3 5: 8 5: 3 6:	422 120 796 108 240 624 576		
	144 216 288 432 576 720 864	0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win	nter nter nter nter nter nter nter	5.113 3.581 2.787 1.973 1.558 1.310 1.145	0.0 0.0 0.0 0.0 0.0	2780. 2701. 5421. 5302. 4992. 9967. 9815.	2 14 1 2: 3 2' 6 4: 3 5: 8 5: 3 6:	422 120 796 108 240 624		
	144 216 288 432 576 720 864	0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win	nter nter nter nter nter nter nter	5.113 3.581 2.787 1.973 1.558 1.310 1.145	0.0 0.0 0.0 0.0 0.0	2780. 2701. 5421. 5302. 4992. 9967. 9815. 9602.	2 14 1 2: 3 2' 6 4: 3 5: 8 5: 3 6:	422 120 796 108 240 624 576		
	144 216 288 432 576 720 864	0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win	nter nter nter nter nter nter nter	5.113 3.581 2.787 1.973 1.558 1.310 1.145	0.0 0.0 0.0 0.0 0.0	2780. 2701. 5421. 5302. 4992. 9967. 9815. 9602.	2 14 1 2: 3 2' 6 4: 3 5: 8 5: 3 6:	422 120 796 108 240 624 576		
	144 216 288 432 576 720 864	0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win	nter nter nter nter nter nter nter	5.113 3.581 2.787 1.973 1.558 1.310 1.145	0.0 0.0 0.0 0.0 0.0	2780. 2701. 5421. 5302. 4992. 9967. 9815. 9602.	2 14 1 2: 3 2' 6 4: 3 5: 8 5: 3 6:	422 120 796 108 240 624 576		
	144 216 288 432 576 720 864	0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win	nter nter nter nter nter nter nter	5.113 3.581 2.787 1.973 1.558 1.310 1.145	0.0 0.0 0.0 0.0 0.0	2780. 2701. 5421. 5302. 4992. 9967. 9815. 9602.	2 14 1 2: 3 2' 6 4: 3 5: 8 5: 3 6:	422 120 796 108 240 624 576		
	144 216 288 432 576 720 864	0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win	nter nter nter nter nter nter nter	5.113 3.581 2.787 1.973 1.558 1.310 1.145	0.0 0.0 0.0 0.0 0.0	2780. 2701. 5421. 5302. 4992. 9967. 9815. 9602.	2 14 1 2: 3 2' 6 4: 3 5: 8 5: 3 6:	422 120 796 108 240 624 576		
	144 216 288 432 576 720 864	0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win	nter nter nter nter nter nter nter	5.113 3.581 2.787 1.973 1.558 1.310 1.145	0.0 0.0 0.0 0.0 0.0	2780. 2701. 5421. 5302. 4992. 9967. 9815. 9602.	2 14 1 2: 3 2' 6 4: 3 5: 8 5: 3 6:	422 120 796 108 240 624 576		
	144 216 288 432 576 720 864	0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win	nter nter nter nter nter nter nter	5.113 3.581 2.787 1.973 1.558 1.310 1.145	0.0 0.0 0.0 0.0 0.0	2780. 2701. 5421. 5302. 4992. 9967. 9815. 9602.	2 14 1 2: 3 2' 6 4: 3 5: 8 5: 3 6:	422 120 796 108 240 624 576		
	144 216 288 432 576 720 864	0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win	nter nter nter nter nter nter nter	5.113 3.581 2.787 1.973 1.558 1.310 1.145	0.0 0.0 0.0 0.0 0.0	2780. 2701. 5421. 5302. 4992. 9967. 9815. 9602.	2 14 1 2: 3 2' 6 4: 3 5: 8 5: 3 6:	422 120 796 108 240 624 576		
	144 216 288 432 576 720 864	0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win 0 min Win	nter nter nter nter nter nter nter	5.113 3.581 2.787 1.973 1.558 1.310 1.145	0.0 0.0 0.0 0.0 0.0	2780. 2701. 5421. 5302. 4992. 9967. 9815. 9602.	2 14 1 2: 3 2' 6 4: 3 5: 8 5: 3 6:	422 120 796 108 240 624 576		