# ALIGN Working on behalf of HS2

# **Construction of Chiltern Tunnel Site Specific Groundwater Monitoring**

### Document no: 1MC05-ALJ-EV-REP-CS02\_CL04-000155

| Revision | Author | Reviewed by | Approved by | Date approved | Reason for<br>revision     |
|----------|--------|-------------|-------------|---------------|----------------------------|
| C01      | XXXX   | XXXX        | XXXX        | 14 April 2021 | First issue for acceptance |

Security classification: OFFICIAL

Handling Instructions: none

# Contents

| 1     | Introduction                                             | 2             |
|-------|----------------------------------------------------------|---------------|
| 2     | Baseline groundwater monitoring by HS2                   | 2             |
| 3     | Monitoring during construction<br>Groundwater monitoring | <b>3</b><br>4 |
| 4     | Monitoring during accidents or incidents                 | 46            |
| 5     | Post construction monitoring                             | 46            |
| 6     | Mitigation requirements                                  | 51            |
| 7     | Communication                                            | 51            |
| Appen | dix A Monitoring Locations                               | 54            |
| Appen | dix B Borehole logs                                      | 55            |

### List of Figures

| Figure 1: Monitoring borehole locations | 5 |
|-----------------------------------------|---|
|-----------------------------------------|---|

### List of Tables

| Table 1: Baseline monitoring borehole location and depths.                                 | 2     |
|--------------------------------------------------------------------------------------------|-------|
| Table 2: Monitoring borehole locations and depths.                                         | 6     |
| Table 3: Analytical suites                                                                 | 13    |
| Table 4: Monitoring frequency and determinands for site-specific pre-construction baseline |       |
| monitoring.                                                                                | 15    |
| Table 5: Monitoring frequency and determinands during TBM operation                        | 21    |
| Table 6: Monitoring frequency and determinands after both TBMs have passed monitoring loca | tion. |
|                                                                                            | 28    |
| Table 7: Monitoring frequency and determinands post tunnel construction.                   | 35    |
| Table 8: Monitoring frequency and determinands during cross passage construction.          | 39    |
| Table 9: Monitoring frequency and determinands post cross passage construction.            | 41    |
| Table 10: Surface water monitoring                                                         | 44    |
| Table 11: Monitoring frequency and determinands after construction.                        | 47    |
| Table 12: Contacts and authorisations during construction activities                       | 53    |

-

## **1** Introduction

- 1.1.1 This document has been prepared in order to provide details of the proposed groundwater monitoring required prior to, during and following construction of the Chiltern tunnel, including the cross passages. The report supports the Water Environment Assessments<sup>12</sup> prepared for the tunnel and cross passages construction consent applications and these documents should be read in conjunction with this report.
- 1.1.2 All monitoring locations referred to in this report are shown on the map in Figure 1 and Appendix A with borehole logs provided in Appendix B.

# 2 Baseline groundwater monitoring by HS2

2.1.1 Locations used for baseline monitoring prior to the start of construction works were agreed between the EA and HS2 in consultation with Affinity Water. Boreholes identified for this purpose are referred to as Priority Monitoring Boreholes. The baseline monitoring prior to start of construction works has been undertaken by HS2, and latterly Align, at a series of Priority Monitoring Boreholes. There are 26 Priority locations along the line of the tunnel with a summary of the available data provided in Table 1 and their positions are shown in Appendix A:

| Location     | Ground<br>Level | Easting Northing |        | Response<br>Zone Top         | Response<br>Zone Base | Data available<br>from |          |
|--------------|-----------------|------------------|--------|------------------------------|-----------------------|------------------------|----------|
|              | m AOD           | m                | m      |                              | m bgl                 | mbgl                   | Date     |
| ML031-CR003  | 84              | 501962           | 191764 | Chalk                        | 25.00                 | 45.00                  | Oct 2016 |
| ML035-CR003  | 72              | 499036           | 193721 | Chalk                        | 14.00                 | 34.00                  | Nov 2016 |
| ML035-CR004  | 72              | 498914           | 193850 | River<br>Terrace<br>deposits | 0.50                  | 6.00                   | Nov 2016 |
|              |                 |                  |        | Chalk                        | 18.00                 | 28.00                  | Nov 2016 |
| ML035-RC013  | 86              | 498602           | 194084 | Chalk                        | 15.00                 | 60.00                  | Jan 2017 |
| ML035-RO001  | 77              | 498654           | 194212 | Chalk                        | 5.00                  | 50.00                  | Jan 2017 |
| ML035-RO002a | 71              | 499179           | 193641 | Chalk                        | 6.00                  | 16.00                  | Feb 2017 |

Table 1: Baseline monitoring borehole location and depths.

<sup>1</sup> Align, 2021, Chiltern Tunnel Construction Water Environment Assessment, Document no: 1MC05-ALJ-EV-REP-CS02\_CL04-000142

<sup>2</sup> Align, 2021, Chiltern Tunnel Cross Passages Construction Water Environment Assessment, Document No. TBC

| Location     | Easting Northing |        | Response<br>Zone Top | Response<br>Zone Base        | Data available<br>from |                |                      |
|--------------|------------------|--------|----------------------|------------------------------|------------------------|----------------|----------------------|
|              | m AOD            | m      | m                    |                              | m bgl                  | mbgl           | Date                 |
| ML035-RO003a | 71               | 499197 | 193634               | River<br>Terrace<br>deposits | 3.00                   | 6.00           | Jan 2017             |
| ML036-RC006  | 113              | 498095 | 194328               | Chalk                        | 55.50                  | 68.00          | Nov 2016             |
| ML037-RC001  | 103              | 497551 | 194607               | Chalk                        | 30.00                  | 46.00          | Oct 2016             |
| ML037-RC014  | 118              | 497018 | 195002               | Chalk                        | 38.00                  | 65.00          | Mar 2017             |
| ML039-RC002  | 159              | 496039 | 195935               | Chalk<br>Chalk               | 54.00<br>83.50         | 72.50<br>93.50 | Oct 2016<br>Oct 2016 |
| ML039-RC015  | 102              | 495355 | 196595               | Chalk                        | 31.50                  | 41.50          | Oct 2016             |
| ML039-RO002  | 103              | 495888 | 196905               | Chalk                        | 28.00                  | 67.00          | Jan 2017             |
| ML040-RC002  | 105              | 495314 | 196630               | Chalk                        | 27.00                  | 67.00          | Jan 2018             |
| ML040-RO007  | 105              | 494962 | 197481               | Chalk                        | 10.00                  | 50.00          | Dec 2016             |
| ML041-RC012  | 104              | 494061 | 197997               | Chalk                        | 5.00                   | 25.00          | Aug 2016             |
| ML041-RO001  | 97               | 494478 | 197792               | Chalk                        | 6.50                   | 30.00          | Jan 2017             |
| ML042-CR001a | 101              | 493836 | 198222               | Alluvium<br>Chalk            | 1.00<br>20.50          | 5.00<br>30.50  | Oct 2016<br>Oct 2016 |
| ML042-CR003  | 101              | 493822 | 198374               | Chalk                        | 15.00                  | 35.00          | Nov 2016             |
| ML042-RC002  | 101              | 493938 | 198118               | Chalk                        | 20.00                  | 30.00          | Aug 2016             |
| ML042-RC014  | 112              | 493449 | 198740               | Chalk                        | 22.00                  | 23.00          | Dec 2016             |
| ML042-RC021  | 117              | 493329 | 198800               | Chalk                        | 50.00                  | 65.00          | Jan 2017             |
| ML042-RO004  | 101              | 493865 | 198351               | River<br>Terrace<br>deposits | 1.00                   | 3.00           | Nov 2016             |
| ML043-RC009  | 136              | 492896 | 199301               | Chalk                        | 32.00                  | 42.00          | Dec 2016             |
| ML044-RC007  | 165              | 492280 | 200018               | White<br>Chalk               | 45.00                  | 75.00          | Jan 2017             |
| ML046-RC026  | 182              | 491201 | 201185               | White<br>Chalk               | 24.00                  | 60.00          | Jan 2017             |

2.1.2 Monitoring data has been provided by HS2 in a series of baseline reports which include data up to March 2020. Align took over the monitoring in September 2020 and this Priority Borehole monitoring data is now shared by Align with HS2, Affinity Water and the Environment Agency on a monthly basis. The next update planned for February 2021.

## **3** Monitoring during construction

<sup>3.1.1</sup> Construction monitoring along the line of the tunnel will be undertaken by Align and will commence in April 2021, prior to the start of tunnelling activities which are programmed

for May 2021. Monitoring is linked to active tunnel construction and so is closely linked to the locations of the tunnel boring machines (TBMs) and as such will vary both in time and space along the line of the tunnel, tracking the progress of tunnel excavation. Monitoring will only be undertaken in the areas where the tunnel will be at or below the water table.

## **Groundwater monitoring**

### Tunnel

- 3.1.2 The boreholes to be monitored, their locations and depth of response zones are listed in Table 2, whilst the frequency and type of monitoring is listed in Tables 3 to 9, with the locations shown on the map in Figure 1 with more detailed figures presented in Appendix A.
- 3.1.3 A number of Priority boreholes have been selected for tunnel monitoring (Table 2), although it is important to point out that monitoring of the Priority boreholes (both water level and water quality) as required by the APA will continue on a monthly basis irrespective of the progress of tunnel construction.
- 3.1.4 The monitoring frequency and determinands are those currently anticipated to be required, but these may be amended to accommodate any changes to programme. In addition, the monitoring frequency would increase after an event such as a spill or if data suggested threshold exceedances occurred or mitigation was required. Any changes to monitoring frequency or determinands will be agreed between Align, HS2, Affinity Water and the Environment Agency. Where practical all monitoring boreholes will be retained for the duration of the monitoring but if boreholes are lost or damaged beyond use then Align, HS2, Affinity Water and the Environment Agency will discuss the need for a replacement borehole and its location. No boreholes will be decommissioned without prior agreement.
- 3.1.5 Proximity to the TBM will be the principal driver for monitoring frequency with the dates stated in the following tables based upon the current programme and therefore subject to change. Programme will be reviewed every 3 months to check on the proposed monitoring vs actual TBM progress at which time any necessary amendments to monitoring timings would be implemented.

Figure 1: Monitoring borehole locations



| Location               | Ground<br>Level | Easting | Northing | Geology | Stand<br>pipe<br>dia. | Response<br>Zone Top | Response<br>Zone<br>Base | Approximate<br>Tunnel invert<br>level |
|------------------------|-----------------|---------|----------|---------|-----------------------|----------------------|--------------------------|---------------------------------------|
|                        | m AOD           | m       | m        |         | mm                    | m bgl                | mbgl                     | mAOD                                  |
| ML031-CR013            | 75.80           | 502246  | 191442   | CHALK   | 50                    | 15                   | 35                       | 55                                    |
| ML032-RC001            | 87.16           | 501761  | 191929   | CHALK   | 50                    | 23.50                | 64                       | 50                                    |
| ML032-RC004            | 94.27           | 501609  | 191986   | CHALK   | 50                    | 28                   | 64                       | 50                                    |
| ML032-RC014            | 98.58           | 501569  | 192113   | CHALK   | 50                    | 37.80                | 57.80                    | 50                                    |
| ML032-RC006            | 99.44           | 501451  | 192155   | CHALK   | 50                    | 33.50                | 54                       | 50                                    |
| ML032-RC009            | 99.99           | 501328  | 192333   | CHALK   | 50                    | 49.50                | 64                       | 45                                    |
| ML033-RC423            | 99.5            | 500424  | 192953   | CHALK   | 50                    | 47.50                | 64.50                    | 40                                    |
| ML034-CR001            | 102.38          | 500115  | 193167   | CHALK   | 50                    | 55                   | 75                       | 40                                    |
| ML034-RC007            | 100.79          | 499891  | 193226   | CHALK   | 50                    | 52                   | 63                       | 40                                    |
| ML034-RO407            | 101.57          | 500046  | 193191   | CHALK   | 50                    | 42                   | 62.40                    | 40                                    |
| ML034-RO408            | 101.12          | 500035  | 193139   | CHALK   | 50                    | 42                   | 67                       | 40                                    |
| ML034-RD400<br>deep    | 101.23          | 500037  | 193135   | CHALK   | 50                    | 76.55                | 86.55                    | 40                                    |
| ML034-RD401<br>shallow | 100.29          | 500015  | 193106   | CHALK   | 50                    | 43.96                | 49.96                    | 40                                    |
| ML034-RD401<br>deep    | 100.29          | 500015  | 193106   | CHALK   | 50                    | 74.11                | 85.11                    | 40                                    |
| ML035-RC016            | 72.86           | 499288  | 193572   | CHALK   | 50                    | 21                   | 31.50                    | 40                                    |

#### Table 2: Monitoring borehole locations and depths.

| Location             | Ground<br>Level | Easting | Northing | Geology                               | Stand<br>pipe<br>dia. | Response<br>Zone Top | Response<br>Zone<br>Base | Approximate<br>Tunnel invert<br>level |
|----------------------|-----------------|---------|----------|---------------------------------------|-----------------------|----------------------|--------------------------|---------------------------------------|
|                      | m AOD           | m       | m        |                                       | mm                    | m bgl                | mbgl                     | mAOD                                  |
| ML035-RO002a         | 70.95           | 499179  | 193641   | CHALK                                 | 50                    | 6                    | 16                       | 45                                    |
| ML035-RO003a         | 70.69           | 499197  | 193634   | River<br>terrace<br>deposits<br>(RTD) | 50                    | 3                    | 6                        | 45                                    |
| ML035-CR003          | 71.34           | 499036  | 193721   | CHALK                                 | 50                    | 13.50                | 34.50                    | 45                                    |
| ML035-CR004<br>(CHK) | 72.15           | 498914  | 193850   | CHALK                                 | 50                    | 18                   | 28                       | 45                                    |
| ML035-CR004<br>(RTD) | 72.15           | 498914  | 193850   | River<br>terrace<br>deposits<br>(RTD) | 50                    | 0.5                  | 6                        | 45                                    |
| ML035-RC012          | 79.45           | 498739  | 193951   | CHALK                                 | 50                    | 19                   | 40.25                    | 45                                    |
| ML035-RO001          | 76              | 498654  | 194212   | CHALK                                 | 50                    | 4.50                 | 50                       | 45                                    |
| ML035-RC013          | 85.82           | 498602  | 194084   | CHALK                                 | 50                    | 14.50                | 61.50                    | 45                                    |
| ML036-RC004          | 108.68          | 498268  | 194250   | CHALK                                 | 50                    | 43                   | 63                       | 50                                    |
| ML037-RC001          | 103.63          | 497551  | 194607   | CHALK                                 | 50                    | 30                   | 40                       | 60                                    |
| ML037-RC003          | 100.4           | 497375  | 194688   | CHALK                                 | 50                    | 28                   | 39                       | 60                                    |
| ML037-RC019          | 94.15           | 497336  | 194775   | CHALK                                 | 50                    | 17.5                 | 37.5                     | 60                                    |
| ML037-RO439          | 99.36           | 497209  | 194852   | CHALK                                 | 50                    | 46.69                | 56.69                    | 65                                    |

| Location     | Ground<br>Level | Easting | Northing | Geology | Stand<br>pipe<br>dia. | Response<br>Zone Top | Response<br>Zone<br>Base | Approximate<br>Tunnel invert<br>level |
|--------------|-----------------|---------|----------|---------|-----------------------|----------------------|--------------------------|---------------------------------------|
|              | m AOD           | m       | m        |         | mm                    | m bgl                | mbgl                     | mAOD                                  |
| ML037-RC014  | 118.24          | 497018  | 195002   | CHALK   | 50                    | 37.5                 | 65                       | 65                                    |
| ML037-CR433  | 95.35           | 497266  | 194785   | CHALK   | 50                    | 25.40                | 43.40                    | 65                                    |
| ML037-RC012  | 97.32           | 497195  | 194794   | CHALK   | 50                    | 23                   | 37                       | 65                                    |
| ML037-RC009  | 99.59           | 497265  | 194830   | CHALK   | 50                    | 22                   | 43                       | 65                                    |
| ML037-RO440  | 99.84           | 497224  | 194872   | CHALK   | 50                    | 48.36                | 58.36                    | 65                                    |
| ML038-RC004  | 120.86          | 496560  | 195405   | CHALK   | 50                    | 43                   | 53.50                    | 70                                    |
| ML039-RC010  | 136.07          | 495476  | 196452   | CHALK   | 50                    | 71.07                | 61.07                    | 60                                    |
| ML039-RC015  | 101.44          | 495355  | 196595   | CHALK   | 50                    | 31                   | 41                       | 60                                    |
| ML040-RC004c | 101.36          | 495314  | 196630   | CHALK   | 50                    | 27                   | 47                       | 60                                    |
| ML040-RC434  | 105.26          | 495309  | 196686   | CHALK   | 50                    | 37.5                 | 55.5                     | 60                                    |
| ML039-RO002  | 103.09          | 495888  | 196905   | CHALK   | 50                    | 27                   | 70                       | 60                                    |
| ML040-RO409  | 111.07          | 495795  | 196856   | CHALK   | 50                    | 15.99                | 30.99                    | 60                                    |
| ML040-RO406  | 100.31          | 495353  | 196685   | CHALK   | 50                    | 53.24                | 63.24                    | 60                                    |
| ML040-RO001  | 99.83           | 495359  | 196674   | CHALK   | 50                    | 54.70                | 64.70                    | 60                                    |
| ML040-RC435  | 101.78          | 495370  | 196612   | CHALK   | 50                    | 23                   | 46                       | 60                                    |
| ML040-RO007  | 104.83          | 494962  | 197481   | CHALK   | 50                    | 10                   | 50                       | 65                                    |
| ML040-RC012  | 131.21          | 494940  | 197247   | CHALK   | 50                    | 54.50                | 75.50                    | 65                                    |
| ML041-RO001  | 103.04          | 494478  | 197792   | CHALK   | 50                    | 5                    | 30.20                    | 65                                    |
| ML041-RC007  | 116.93          | 494281  | 197734   | CHALK   | 50                    | 5                    | 60                       | 70                                    |
| ML041-RC010  | 107.69          | 494226  | 197892   | CHALK   | 50                    | 27                   | 39                       | 70                                    |

| Location                  | Ground<br>Level | Easting | Northing | Geology                               | Stand<br>pipe<br>dia. | Response<br>Zone Top | Response<br>Zone<br>Base | Approximate<br>Tunnel invert<br>level |
|---------------------------|-----------------|---------|----------|---------------------------------------|-----------------------|----------------------|--------------------------|---------------------------------------|
|                           | m AOD           | m       | m        |                                       | mm                    | m bgl                | mbgl                     | mAOD                                  |
| ML041-RC012               | 106.37          | 494061  | 197997   | CHALK                                 | 50                    | 5                    | 25                       | 70                                    |
| ML042-RC002               | 101.11          | 493938  | 198118   | CHALK                                 | 50                    | 20                   | 30                       | 70                                    |
| ML042-CR001a<br>(shallow) | 100.64          | 493836  | 198222   | Alluvium                              | 50                    | 1                    | 5                        | 70                                    |
| ML042-CR001a<br>(deep)    | 100.64          | 493836  | 198222   | CHALK                                 | 50                    | 20                   | 31                       | 70                                    |
| ML042-RO004               | 100.81          | 493865  | 198351   | River<br>terrace<br>deposits<br>(RTD) | 50                    | 1                    | 3                        | 70                                    |
| ML042-CR003               | 100.22          | 493822  | 198374   | CHALK                                 | 50                    | 14.90                | 35.10                    | 70                                    |
| ML042-RC010               | 104.65          | 493635  | 198499   | CHALK                                 | 50                    | 23                   | 33                       | 75                                    |
| ML042-RC013               | 106.28          | 493522  | 198543   | CHALK                                 | 50                    | 17                   | 37                       | 75                                    |
| ML042-RC014               | 111.37          | 493449  | 198740   | CHALK                                 | 50                    | 22.5                 | 33                       | 80                                    |
| ML042-CR439               | 112.81          | 493397  | 198760   | CHALK                                 | 50                    | 26                   | 44                       | 80                                    |
| ML042-RC021               | 116.72          | 493329  | 198800   | CHALK                                 | 50                    | 50                   | 65                       | 80                                    |
| ML043-CR438               | 119.16          | 493336  | 198829   | CHALK                                 | 50                    | 31                   | 41                       | 80                                    |
| ML043-RO404               | 121.78          | 493302  | 198857   | CHALK                                 | 50                    | 51.7                 | 61.7                     | 80                                    |
| ML042-RC020               | 117.26          | 493393  | 198809   | CHALK                                 | 50                    | 23                   | 55                       | 80                                    |
| ML042-RC001               | 117.82          | 493399  | 198815   | CHALK                                 | 50                    | 21.5                 | 42                       | 80                                    |

| Location            | Ground<br>Level | Easting | Northing | Geology | Stand<br>pipe<br>dia. | Response<br>Zone Top | Response<br>Zone<br>Base | Approximate<br>Tunnel invert<br>level |
|---------------------|-----------------|---------|----------|---------|-----------------------|----------------------|--------------------------|---------------------------------------|
|                     | m AOD           | m       | m        |         | mm                    | m bgl                | mbgl                     | mAOD                                  |
| ML043-RO405         | 120.19          | 493356  | 198838   | CHALK   | 50                    | 50.4                 | 60.4                     | 80                                    |
| ML043-RO403<br>Deep | 120.39          | 493320  | 198838   | CHALK   | 50                    | 50                   | 60                       | 80                                    |
| ML043-RC004         | 131.41          | 493221  | 198983   | CHALK   | 50                    | 30                   | 40                       | 85                                    |
| ML043-RC007         | 130.68          | 493129  | 199048   | CHALK   | 50                    | 32.50                | 43                       | 85                                    |

Note: Priority boreholes in bold

- 3.1.6 As the key concerns along the tunnel are the potential to increase turbidity the monitoring is focussed on field measurements of turbidity using portable equipment. In addition, monitoring of pH, electrical conductivity, temperature, redox and dissolved oxygen would be undertaken at the monitoring boreholes using hand held equipment. The pH and conductivity data would provide an indication of any grout contamination. If significant changes (compared to baseline) in these parameters are identified, then further monitoring and laboratory analysis for major ions would be undertaken to determine if contaminant migration is taking place and if any mitigation is required. Samples would also be collected and analysed for the presence of TBM greases (Table 3). Groundwater level monitoring would also be undertaken at the same time as water quality monitoring to determine what, if any, changes to the hydraulic gradients in the vicinity of the tunnel occur during construction.
- 3.1.7 Monitoring would begin on a monthly basis starting approximately 3 months in advance of TBM arrival, with the first position to be monitored from March 2021 (Table 4). Monitoring frequency would then increase to daily (Mon-Fri) when the TBM is within circa 150m of a monitoring borehole, to determine if there are significant effects as a result of tunnel construction, with the anticipated timings of this set out in Table 5. If no significant effects are encountered then monitoring will decrease to weekly once the TBM has moved beyond 300m from the monitoring borehole. These distances are based upon proximity of the TBM. 150m is assumed to be approximately 7 days until TBM arrival (assuming a 20m/day rate of progress), with 300m being 2 weeks until TBM arrival.
- 3.1.8 Monitoring frequency would increase to daily (Mon-Fri) as the second TBM approaches in close proximity to the monitoring location (circa 150m) and would continue until the TBM had moved more than 300m from the monitoring borehole, with indicative dates set out in Table 6.
- 3.1.9 After this period the monitoring would reduce to weekly for one month and then reduce further to monthly at only the Priority boreholes (Table 7). If significant changes in water quality are detected then discussions would be held with the Environment Agency, Affinity Water and HS2 before any change in monitoring frequency is implemented.
- 3.1.10 Groundwater level monitoring would be undertaken by manual dipping using a portable dip meter. Twenty-one of the boreholes would be installed with data loggers set to monitor water levels at hourly intervals and which would be downloaded on a monthly basis. If there are activities of significant concern the recording frequency for the loggers and download frequency can be increased.

- 3.1.11 Trigger levels have been provided in column 11 of Tables 4 to 7 for the parameters being monitored. These levels have been set based on professional judgement and are designed to provide an indication when additional action may be required by Align. In the event of a trigger level being exceeded the Align shaft environment manager would contact the EA, HS2 and Affinity Water to notify them, to make them aware of the exceedance and to discuss if additional monitoring is required. The notification procedure is discussed further in section 7.
- 3.1.12 The groundwater quality samples would be collected following purging. The method of purging and sampling may vary between boreholes but will likely include the following:
  - Purging using a small electric or compressed air pump or check valve system with monitoring of well head parameters pH, electrical conductivity, temperature, turbidity, redox and dissolved oxygen to determine when static borehole water has been purged. Purging will be deemed complete when well head parameters have stabilised. Purged water would be discharged to ground unless there is evidence of contamination.
  - Samples would be collected using the pump, check valve system or bailer following purging and depending upon the analysis to be performed. Pumping systems would not be used for sampling where analysis for volatile compounds is required. Low flow purging/sampling using bladder pumps will also be considered along with no purge sampling using sample bags such as hydrasleeves<sup>3</sup> in some circumstances. Where a pressure transducer is present in a borehole to be sampled care will be taken to ensure that the logger is always set to the same elevation in the borehole after sampling has been completed as it was prior to sampling.
  - Analysis would be completed for pH, electrical conductivity, temperature, turbidity, redox and dissolved oxygen on site using portable equipment. For any other analyses (Table 3) water samples would be collected in bottles provided by the laboratory and stored in chilled cool boxes prior to dispatch to the laboratory.
- 3.1.13 As part of the preparation of this monitoring plan an audit has been commenced to confirm those boreholes that are available for monitoring. Due to land access constraints only a small number of boreholes have been visited to date, with the remainder to be checked as soon as access is allowed. Once the audit is complete the available boreholes will be assessed and any replacements will be made.

<sup>&</sup>lt;sup>3</sup> https://waterra.com/hydrasleeve-for-groundwater-sampling

### Table 3: Analytical suites

| Group     Suit       Physical (field)     (a       Physical (lab)     (b | electrical conductivity<br>pH                                                                                                                                                                     | Detection 1 0.1 1 1 0.1 0.1 1 0.1 1 1 0.1 1 1 1 0.1 1 1 1       | µS/cm<br>pH unit<br>NTU<br>MV<br>Mg/I<br>⁰C<br>µS/cm<br>pH unit<br>NTU<br>mg/I | Drinking<br>Water<br>Standard#<br>2500<br>6.5 <ph<9.5<br>4 / 1*<br/>n/a<br/>n/a<br/>n/a<br/>2500<br/>6.5<ph<9.5<br>4 / 1*</ph<9.5<br></ph<9.5<br> | Quality<br>Standard<br>n/a<br>6 <ph<9<br>n/a<br/>n/a<br/>60-75%<br/>n/a<br/>n/a<br/>6<ph,9<br>n/a</ph,9<br></ph<9<br> |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                                                                          | pH<br>turbidity<br>redox potential<br>dissolved oxygen<br>temperature<br>electrical conductivity<br>pH<br>turbidity<br>total dissolved solids<br>chemical oxygen demand<br>total suspended solids | 1<br>0.1<br>1<br>0.1<br>0.1<br>0.1<br>1<br>0.1<br>1<br>10<br>10 | pH unit<br>NTU<br>MV<br>Mg/I<br>≌C<br>μS/cm<br>pH unit<br>NTU                  | Standard#<br>2500<br>6.5 <ph<9.5<br>4 / 1*<br/>n/a<br/>n/a<br/>n/a<br/>2500<br/>6.5<ph<9.5<br>4 / 1*</ph<9.5<br></ph<9.5<br>                      | Standard<br>n/a<br>6 <ph<9<br>n/a<br/>60-75%<br/>n/a<br/>n/a<br/>6<ph,9< th=""></ph,9<></ph<9<br>                     |
|                                                                          | pH<br>turbidity<br>redox potential<br>dissolved oxygen<br>temperature<br>electrical conductivity<br>pH<br>turbidity<br>total dissolved solids<br>chemical oxygen demand<br>total suspended solids | 0.1<br>1<br>0.1<br>0.1<br>1<br>0.1<br>1<br>10<br>10             | pH unit<br>NTU<br>MV<br>Mg/I<br>≌C<br>μS/cm<br>pH unit<br>NTU                  | 2500<br>6.5 <ph<9.5<br>4 / 1*<br/>n/a<br/>n/a<br/>2500<br/>6.5<ph<9.5<br>4 / 1*</ph<9.5<br></ph<9.5<br>                                           | n/a<br>6 <ph<9<br>n/a<br/>n/a<br/>60-75%<br/>n/a<br/>n/a<br/>6<ph,9< th=""></ph,9<></ph<9<br>                         |
|                                                                          | pH<br>turbidity<br>redox potential<br>dissolved oxygen<br>temperature<br>electrical conductivity<br>pH<br>turbidity<br>total dissolved solids<br>chemical oxygen demand<br>total suspended solids | 0.1<br>1<br>0.1<br>0.1<br>1<br>0.1<br>1<br>10<br>10             | pH unit<br>NTU<br>MV<br>Mg/I<br>≌C<br>μS/cm<br>pH unit<br>NTU                  | 6.5 <ph<9.5<br>4 / 1*<br/>n/a<br/>n/a<br/>2500<br/>6.5<ph<9.5<br>4 / 1*</ph<9.5<br></ph<9.5<br>                                                   | 6 <ph<9<br>n/a<br/>n/a<br/>60-75%<br/>n/a<br/>n/a<br/>6<ph,9< td=""></ph,9<></ph<9<br>                                |
|                                                                          | turbidity<br>redox potential<br>dissolved oxygen<br>temperature<br>electrical conductivity<br>pH<br>turbidity<br>total dissolved solids<br>chemical oxygen demand<br>total suspended solids       | 1<br>0.1<br>0.1<br>1<br>0.1<br>1<br>10<br>10                    | NTU<br>mV<br>Mg/l<br>⁰C<br>μS/cm<br>pH unit<br>NTU                             | 4 / 1*<br>n/a<br>n/a<br>2500<br>6.5 <ph<9.5<br>4 / 1*</ph<9.5<br>                                                                                 | n/a<br>n/a<br>60-75%<br>n/a<br>n/a<br>6 <ph,9< td=""></ph,9<>                                                         |
|                                                                          | redox potential<br>dissolved oxygen<br>temperature<br>electrical conductivity<br>pH<br>turbidity<br>total dissolved solids<br>chemical oxygen demand<br>total suspended solids                    | 1<br>0.1<br>0.1<br>1<br>0.1<br>1<br>10<br>10                    | mV<br>Mg/l<br>ΩC<br>μS/cm<br>pH unit<br>NTU                                    | n/a<br>n/a<br>2500<br>6.5 <ph<9.5<br>4 / 1*</ph<9.5<br>                                                                                           | n/a<br>60-75%<br>n/a<br>n/a<br>6 <ph,9< td=""></ph,9<>                                                                |
| Physical (lab) (b                                                        | dissolved oxygen<br>temperature<br>electrical conductivity<br>pH<br>turbidity<br>total dissolved solids<br>chemical oxygen demand<br>total suspended solids                                       | 0.1<br>1<br>0.1<br>1<br>10<br>10                                | ≌C<br>μS/cm<br>pH unit<br>NTU                                                  | n/a<br>2500<br>6.5 <ph<9.5<br>4 / 1*</ph<9.5<br>                                                                                                  | n/a<br>n/a<br>6 <ph,9< td=""></ph,9<>                                                                                 |
| Physical (lab) (b                                                        | electrical conductivity<br>pH<br>turbidity<br>total dissolved solids<br>chemical oxygen demand<br>total suspended solids                                                                          | 1<br>0.1<br>1<br>10<br>10                                       | μS/cm<br>pH unit<br>NTU                                                        | 2500<br>6.5 <ph<9.5<br>4 / 1*</ph<9.5<br>                                                                                                         | n/a<br>6 <ph,9< td=""></ph,9<>                                                                                        |
| Physical (lab) (b                                                        | pH<br>turbidity<br>total dissolved solids<br>chemical oxygen demand<br>total suspended solids                                                                                                     | 0.1<br>1<br>10<br>10                                            | pH unit<br>NTU                                                                 | 6.5 <ph<9.5<br>4 / 1*</ph<9.5<br>                                                                                                                 | 6 <ph,9< td=""></ph,9<>                                                                                               |
| Physical (lab) (b                                                        | turbidity<br>total dissolved solids<br>chemical oxygen demand<br>total suspended solids                                                                                                           | 1<br>10<br>10                                                   | NTU                                                                            | 4/1*                                                                                                                                              |                                                                                                                       |
| Physical (lab) (b                                                        | total dissolved solids<br>chemical oxygen demand<br>total suspended solids                                                                                                                        | 10<br>10                                                        |                                                                                |                                                                                                                                                   | n/a                                                                                                                   |
|                                                                          | chemical oxygen demand<br>total suspended solids                                                                                                                                                  | 10                                                              | mg/l                                                                           |                                                                                                                                                   |                                                                                                                       |
|                                                                          | total suspended solids                                                                                                                                                                            |                                                                 |                                                                                | n/a                                                                                                                                               | n/a                                                                                                                   |
|                                                                          |                                                                                                                                                                                                   |                                                                 | mg/l                                                                           | n/a                                                                                                                                               | n/a                                                                                                                   |
|                                                                          | Calcium                                                                                                                                                                                           | 5                                                               | mg/l                                                                           | n/a                                                                                                                                               | n/a                                                                                                                   |
|                                                                          |                                                                                                                                                                                                   | 1                                                               | mg/l                                                                           | n/a                                                                                                                                               | n/a                                                                                                                   |
|                                                                          | magnesium                                                                                                                                                                                         | 1                                                               | mg/l                                                                           | n/a                                                                                                                                               | n/a                                                                                                                   |
|                                                                          | sodium                                                                                                                                                                                            | 1                                                               | mg/l                                                                           | 200                                                                                                                                               | n/a                                                                                                                   |
| Major ions (c                                                            | potassium                                                                                                                                                                                         | 1                                                               | mg/l                                                                           | n/a                                                                                                                                               | n/a                                                                                                                   |
|                                                                          | chloride                                                                                                                                                                                          | 1                                                               | mg/l                                                                           | 250                                                                                                                                               | 250                                                                                                                   |
|                                                                          | sulphate                                                                                                                                                                                          | 1                                                               | mg/l                                                                           | 250                                                                                                                                               | 400                                                                                                                   |
|                                                                          | bicarbonate/carbonate                                                                                                                                                                             | 1                                                               | mg/l                                                                           | n/a                                                                                                                                               | n/a                                                                                                                   |
|                                                                          | fluoride                                                                                                                                                                                          | 1                                                               | mg/l                                                                           | 1.5                                                                                                                                               | n/a                                                                                                                   |
|                                                                          | iron                                                                                                                                                                                              | 0.11                                                            | mg/l                                                                           | 0.2                                                                                                                                               | 1                                                                                                                     |
| Minor ions/                                                              | manganese                                                                                                                                                                                         | 0.01                                                            | mg/l                                                                           | 0.05                                                                                                                                              | 0.1 (bio)                                                                                                             |
| organics (d                                                              | dissolved organic                                                                                                                                                                                 | 5                                                               | mg/l                                                                           | n/a                                                                                                                                               | n/a                                                                                                                   |
| organics                                                                 | carbon (DOC)                                                                                                                                                                                      |                                                                 |                                                                                |                                                                                                                                                   |                                                                                                                       |
|                                                                          | total organic carbon                                                                                                                                                                              | 5                                                               | mg/l                                                                           | n/a~                                                                                                                                              | n/a                                                                                                                   |
|                                                                          | (TOC)                                                                                                                                                                                             |                                                                 |                                                                                |                                                                                                                                                   |                                                                                                                       |
|                                                                          | total nitrogen                                                                                                                                                                                    | 1                                                               | mg/l                                                                           | n/a                                                                                                                                               | n/a                                                                                                                   |
|                                                                          | nitrate (NO₃)                                                                                                                                                                                     | 0.1                                                             | mg/l                                                                           | 50                                                                                                                                                | n/a                                                                                                                   |
| Nitrogen species                                                         | nitrite (NO <sub>2</sub> )                                                                                                                                                                        | 0.1                                                             | mg/l                                                                           | 0.5 / 0.1*                                                                                                                                        | 0.01-0.03                                                                                                             |
| and nutrients (e                                                         | ammoniacal nitrogen                                                                                                                                                                               | 0.1                                                             | mg/l                                                                           | 0.5 (NH <sub>4</sub> )                                                                                                                            | 0.3-0.6 (TN)                                                                                                          |
| and nutrients                                                            | (N)                                                                                                                                                                                               |                                                                 |                                                                                |                                                                                                                                                   |                                                                                                                       |
|                                                                          | total phosphorous                                                                                                                                                                                 | 0.1                                                             | mg/l                                                                           | n/a                                                                                                                                               | Various                                                                                                               |
|                                                                          | ortho phosphate                                                                                                                                                                                   | 0.1                                                             | mg/l                                                                           | n/a                                                                                                                                               | n/a                                                                                                                   |
|                                                                          | aluminium                                                                                                                                                                                         | 10                                                              | µg/l                                                                           | 200                                                                                                                                               | n/a                                                                                                                   |
|                                                                          | arsenic                                                                                                                                                                                           | 1                                                               | µg/l                                                                           | 10                                                                                                                                                | 50                                                                                                                    |
|                                                                          | barium                                                                                                                                                                                            | 1                                                               | µg/l                                                                           | n/a                                                                                                                                               | n/a                                                                                                                   |
|                                                                          | cadmium                                                                                                                                                                                           | 0.1                                                             | µg/l                                                                           | 5                                                                                                                                                 | 0.08-0.25                                                                                                             |
|                                                                          | chromium                                                                                                                                                                                          | 5                                                               | µg/l                                                                           | 50                                                                                                                                                | n/a                                                                                                                   |
| T                                                                        | chromium III                                                                                                                                                                                      |                                                                 | µg/l                                                                           | n/a                                                                                                                                               | 4.7                                                                                                                   |
| Trace metals (f)                                                         | chromium VI                                                                                                                                                                                       | 3                                                               | µg/l                                                                           | n/a                                                                                                                                               | 3.4                                                                                                                   |
|                                                                          | copper                                                                                                                                                                                            | 1                                                               | µg/l                                                                           | 2000                                                                                                                                              | 1 (bio)                                                                                                               |
|                                                                          | mercury                                                                                                                                                                                           | 0.05                                                            | μg/l                                                                           | 1                                                                                                                                                 | 0.07                                                                                                                  |
|                                                                          | nickel                                                                                                                                                                                            | 1                                                               | μg/l                                                                           | 20                                                                                                                                                | 4 (bio)                                                                                                               |
|                                                                          | lead                                                                                                                                                                                              | 1                                                               | µg/l                                                                           | 10                                                                                                                                                | 1.2                                                                                                                   |
|                                                                          | zinc                                                                                                                                                                                              | 5                                                               | μg/l                                                                           | n/a                                                                                                                                               | 11 (bio)                                                                                                              |

| Group           | Suite | Parameters                                                                                                                                                                                                                                                                                     | Limit of<br>Detection | Units     | Drinking<br>Water<br>Standard# | Environmental<br>Quality<br>Standard |
|-----------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|--------------------------------|--------------------------------------|
| Hydrocarbons    | (g)   | Gasoline Range<br>Organics/Extractable<br>Petroleum<br>Hydrocarbons Organics<br>as a screening for light<br>$(C_4-C_{10})$ and heavy $(C_{10}-C_{40})$ hydrocarbons                                                                                                                            | 100                   | µg/l      | n/a                            | n/a                                  |
| Microbiological | (h)   | Faecal coliforms; total<br>coliforms; e coli;<br>clostridium; enterococci.                                                                                                                                                                                                                     | 1                     | no./100ml | 0                              | n/a                                  |
| Greases         | (i)   | Specific analytical suite to<br>detect bespoke greases<br>used in the TBM (see<br>Groundwater Assessment<br>for Construction Tasks –<br>Tunnel and Cross<br>Passages, Document no:<br>1MC05-ALJ-EV-NOT-<br>CS02_CL04-400048). Likely<br>to be long chained<br>hydrocarbons as per suite<br>(g) | 10                    | µg/l      | n/a                            | n/a                                  |

Notes: #The Water Supply (Water Quality) Regulations 2016, UK Statutory Instruments 2016, No. 614, Schedule 1. \* prescribed at consumers taps/limit at treatment works, ~no abnormal change. Bio - bioavailable

#### Table 4: Monitoring frequency and determinands for site-specific pre-construction baseline monitoring.

| Location               | Well Screen<br>(mbgl) | Purpose            | Start Date  | End Date          | Water Level | Water Quality<br>sample suites (as<br>per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method<br>of<br>Sampling<br>and<br>analysis | Trigger<br>Level for<br>notification |
|------------------------|-----------------------|--------------------|-------------|-------------------|-------------|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------------------|--------------------------------------|
| ML031-CR013            | 15 - 35               | M25                | March 2021  | June 2021         | Manual dip  | Suite (a)                                          | Monthly                 | 20                             |                                             |                                      |
| ML032-RC001            | 23.5 - 64.02          | West Hyde SPZ<br>1 | June 2021   | September<br>2021 | Logger      | Suite (a)                                          | Monthly                 | 35                             |                                             |                                      |
| ML032-RC004            | 28 - 64.01            | West Hyde SPZ<br>1 | June 2021   | September<br>2021 | Manual dip  | Suite (a)                                          | Monthly                 | 45                             |                                             |                                      |
| ML032-RC014            | 37.8 - 57.8           | West Hyde SPZ<br>1 | June 2021   | September<br>2021 | Manual dip  | Suite (a)                                          | Monthly                 | 45                             | Purging                                     |                                      |
| ML032-RC006            | 33.5 - 54             | West Hyde SPZ<br>1 | July 2021   | October 2021      | Manual dip  | Suite (a)                                          | Monthly                 | 50                             | with<br>direct                              |                                      |
| ML032-RC009            | 49.5 - 64.03          | West Hyde SPZ<br>1 | July 2021   | October 2021      | Manual dip  | Suite (a)                                          | Monthly                 | 55                             | analysis<br>of purged                       | n/a -<br>baseline                    |
| ML033-RC423            | 47.5 - 64.5           | CSP shaft          | July 2020   | February 2022     | Logger      | Suite (a)                                          | Monthly                 | 55                             | water                                       |                                      |
| ML034-CR001            | 55 - 75               | CSP shaft          | July 2020   | February 2022     | Manual dip  | Suite (a)                                          | Monthly                 | 60                             | quality                                     |                                      |
| ML034-RC007            | 52 - 63               | CSP shaft          | July 2020   | February 2022     | Manual dip  | Suite (a)                                          | Monthly                 | 55                             | using a                                     |                                      |
| ML034-RO407            | 42 - 62.4             | CSP shaft          | August 2020 | February 2022     | Logger      | Suite (a)                                          | Monthly                 | 55                             | portable                                    |                                      |
| ML034-RO408            | 42 - 67               | CSP shaft          | July 2020   | February 2022     | Logger      | Suite (a)                                          | Monthly                 | 55                             | turbidity                                   |                                      |
| ML034-RD400<br>deep    | 76.55 -<br>86.55      | CSP shaft          | July 2020   | February 2022     | Manual dip  | Suite (a)                                          | Monthly                 | 80                             | meter                                       |                                      |
| ML034-RD401<br>shallow | 43.96 -<br>49.96      | CSP shaft          | July 2020   | February 2022     | Manual dip  | Suite (a)                                          | Monthly                 | 45                             |                                             |                                      |
| ML034-RD401<br>deep    | 74.11 -<br>85.11      | CSP shaft          | July 2020   | February 2022     | Logger      | Suite (a)                                          | Monthly                 | 75                             |                                             |                                      |

| Location              | Well Screen<br>(mbgl) | Purpose                        | Start Date    | End Date    | Water Level | Water Quality<br>sample suites (as<br>per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method<br>of<br>Sampling<br>and<br>analysis | Trigger<br>Level for<br>notification |
|-----------------------|-----------------------|--------------------------------|---------------|-------------|-------------|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------------------|--------------------------------------|
| ML035-RC016           | 21 - 31.5             | River Misbourne<br>Crossing #1 | December 2021 | March 2022  | Manual dip  | Suite (a)                                          | Monthly                 | 25                             |                                             |                                      |
| ML035-<br>RO002a      | 6 - 16                | River Misbourne<br>Crossing #1 | December 2021 | March 2022  | Manual dip  | Suite (a)                                          | Monthly                 | 10                             |                                             |                                      |
| ML035-<br>RO003a      | 3 - 6                 | River Misbourne<br>Crossing #1 | January 2022  | April 2022  | Manual dip  | Suite (a)                                          | Monthly                 | 4                              |                                             |                                      |
| ML035-<br>CR003       | 13.5 - 34.5           | River Misbourne<br>Crossing #1 | January 2021  | May 2022    | Logger      | Logger<br>Suite (a) and (d)                        | Monthly                 | 25                             | Purging<br>with                             |                                      |
| ML035-<br>CR004 (CHK) | 18 - 28               | River Misbourne<br>Crossing #1 | February 2022 | May 2022    | Manual dip  | Suite (a) and (d)                                  | Monthly                 | 25                             | direct<br>analysis                          |                                      |
| ML035-<br>CR004 (RTD) | 0.5 - 6               | River Misbourne<br>crossing #1 | January 2021  | May 2022    | Logger      | Logger<br>Suite (a) and (d)                        | Monthly                 | 3                              | of purged<br>water                          | n/a -<br>baseline                    |
| ML035-RC012           | 19 - 40.25            | CSG PWS                        | February 2022 | May 2022    | Logger      | Suite (a)                                          | Monthly                 | 35                             | quality                                     |                                      |
| ML035-<br>RO001       | 4.5 - 50              | CSG PWS                        | February 2022 | May 2022    | Manual dip  | Suite (a)                                          | Monthly                 | 30                             | using a<br>portable                         |                                      |
| ML035-<br>RC013       | 14.5 - 61.5           | CSG PWS                        | January 2021  | May 2022    | Manual dip  | Suite (a)                                          | Monthly                 | 40                             | turbidity<br>meter                          |                                      |
| ML036-RC004           | 43 - 63               | CSG PWS                        | March 2022    | June 2022   | Manual dip  | Suite (a)                                          | Monthly                 | 55                             | ]                                           |                                      |
| ML037-<br>RC001       | 30 - 40               | CSG shaft                      | October 2020  | August 2022 | Logger      | Suite (a)                                          | Monthly                 | 35                             |                                             |                                      |
| ML037-RC003           | 28 - 39               | CSG shaft                      | October 2020  | August 2022 | Manual dip  | Suite (a)                                          | Monthly                 | 30                             |                                             |                                      |
| ML037-RC019           | 17.5 - 37.5           | CSG shaft                      | October 2020  | August 2022 | Logger      | Suite (a)                                          | Monthly                 | 30                             |                                             |                                      |
| ML037-RO439           | 46.69 -<br>56.69      | CSG shaft                      | October 2020  | August 2022 | Manual dip  | Suite (a)                                          | Monthly                 | 50                             | Purging<br>with                             | n/a -<br>baseline                    |

| Location         | Well Screen<br>(mbgl) | Purpose             | Start Date    | End Date          | Water Level | Water Quality<br>sample suites (as<br>per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method<br>of<br>Sampling<br>and<br>analysis | Trigger<br>Level for<br>notification |
|------------------|-----------------------|---------------------|---------------|-------------------|-------------|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------------------|--------------------------------------|
| ML037-<br>RC014  | 37.5 - 65             | CSG shaft           | October 2020  | August 2022       | Manual dip  | Suite (a)                                          | Monthly                 | 50                             | direct<br>analysis                          |                                      |
| ML037-CR433      | 25.4 - 43.4           | CSG shaft           | October 2020  | August 2022       | Logger      | Suite (a)                                          | Monthly                 | 30                             | of purged                                   |                                      |
| ML037-RC012      | 23 - 37               | CSG shaft           | October 2020  | August 2022       | Logger      | Suite (a)                                          | Monthly                 | 30                             | water                                       |                                      |
| ML037-RC009      | 22 - 43               | CSG shaft           | October 2020  | August 2022       | Manual dip  | Suite (a)                                          | Monthly                 | 30                             | quality                                     |                                      |
| ML037-RO440      | 48.36 -<br>58.36      | CSG shaft           | October 2020  | August 2022       | Manual dip  | Suite (a)                                          | Monthly                 | 50                             | using a<br>portable                         |                                      |
| ML038-RC004      | 43 - 53.5             | Tunnel<br>alignment | June 2022     | September<br>2022 | Manual dip  | Suite (a)                                          | Monthly                 | 45                             | turbidity<br>meter                          |                                      |
| ML039-RC010      | 71.07 -<br>61.07      | Amersham shaft      | December 2020 | January 2023      | Manual dip  | Suite (a)                                          | Monthly                 | 65                             |                                             |                                      |
| ML039-<br>RC015  | 31 - 41               | Amersham shaft      | January 2021  | January 2023      | Logger      | Suite (a)                                          | Monthly                 | 35                             |                                             |                                      |
| ML040-<br>RC004c | 27 - 47               | Amersham shaft      | January 2021  | January 2023      | Manual dip  | Suite (a)                                          | Monthly                 | 40                             |                                             |                                      |
| ML040-RC434      | 37.5 - 55.5           | Amersham shaft      | December 2020 | January 2023      | Logger      | Suite (a)                                          | Monthly                 | 45                             |                                             |                                      |
| ML039-<br>RO002  | 27 - 70               | Amersham shaft      | January 2021  | January 2023      | Logger      | Suite (a)                                          | Monthly                 | 45                             |                                             |                                      |
| ML040-RO409      | 15.89 -<br>30.89      | Amersham shaft      | December 2020 | January 2023      | Manual dip  | Suite (a)                                          | Monthly                 | 25                             |                                             |                                      |
| ML040-RO406      | 53.24 –<br>63.24      | Amersham shaft      | January 2021  | January 2023      | Manual dip  | Suite (a)                                          | Monthly                 | 55                             | Purging<br>with                             | n/a -                                |
| ML040-RO001      | 54.70 -<br>64.70      | Amersham shaft      | December 2020 | January 2023      | Manual dip  | Suite (a)                                          | Monthly                 | 55                             | direct<br>analysis                          | baseline                             |

| Location                      | Well Screen<br>(mbgl) | Purpose                        | Start Date       | End Date      | Water Level | Water Quality<br>sample suites (as<br>per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method<br>of<br>Sampling<br>and<br>analysis | Trigger<br>Level for<br>notification |
|-------------------------------|-----------------------|--------------------------------|------------------|---------------|-------------|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------------------|--------------------------------------|
| ML040-<br>RO007               | 10 - 50               | River Misbourne<br>crossing #2 | November<br>2022 | February 2023 | Manual dip  | Suite (a)                                          | Monthly                 | 40                             | of purged<br>water                          |                                      |
| ML040-RC012                   | 54.50 -<br>75.50      | River Misbourne<br>crossing #2 | November<br>2022 | February 2023 | Manual dip  | Suite (a)                                          | Monthly                 | 65                             | quality<br>using a                          |                                      |
| ML041-<br>RO001               | 5 - 30.20             | River Misbourne<br>crossing #2 | January 2021     | March 2023    | Manual dip  | Suite (a)                                          | Monthly                 | 25                             | portable<br>turbidity                       |                                      |
| ML041-RC007                   | 5 - 60                | River Misbourne<br>crossing #2 | January 2023     | April 2023    | Manual dip  | Suite (a)                                          | Monthly                 | 45                             | meter                                       |                                      |
| ML041-RC010                   | 27 - 39               | River Misbourne<br>crossing #2 | January 2023     | April 2023    | Manual dip  | Suite (a)                                          | Monthly                 | 30                             |                                             |                                      |
| ML041-<br>RC012               | 5 - 25                | River Misbourne<br>crossing #2 | January 2021     | April 2023    | Manual dip  | Suite (a)                                          | Monthly                 | 20                             |                                             |                                      |
| ML042-<br>RC002               | 20 - 30               | River Misbourne<br>crossing #2 | January 2021     | April 2023    | Logger      | Logger<br>Suite (a)                                | Monthly                 | 25                             |                                             |                                      |
| ML042-<br>CR001a<br>(shallow) | 0.8 – 6               | Shardeloes Lake                | May 2023         | May 2023      | Manual dip  | Suite (a) and (d)                                  | Monthly                 | 3                              |                                             |                                      |
| ML042-<br>CR001a<br>(deep)    | 20 - 31               | River Misbourne<br>crossing #2 | January 2021     | May 2023      | Logger      | Logger<br>Suite (a) and (d)                        | Monthly                 | 25                             |                                             |                                      |
| ML042-<br>RO004               | 1 - 3                 | River Misbourne<br>crossing #2 | January 2021     | May 2023      | Logger      | Logger<br>Suite (a)                                | Monthly                 | 2                              |                                             |                                      |
| ML042-<br>CR003               | 14.90 -<br>35.10      | River Misbourne<br>crossing #2 | January 2021     | May 2023      | Logger      | Logger<br>Suite (a) and (d)                        | Monthly                 | 30                             |                                             |                                      |

| Location        | Well Screen<br>(mbgl) | Purpose                            | Start Date    | End Date  | Water Level | Water Quality<br>sample suites (as<br>per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method<br>of<br>Sampling<br>and<br>analysis | Trigger<br>Level for<br>notification |
|-----------------|-----------------------|------------------------------------|---------------|-----------|-------------|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------------------|--------------------------------------|
| ML042-RC010     | 23 - 33               | River Misbourne<br>crossing #2     | February 2023 | May 2023  | Manual dip  | Suite (a)                                          | Monthly                 | 25                             |                                             |                                      |
| ML042-RC013     | 17 - 37               | River Misbourne<br>crossing #2     | February 2023 | May 2023  | Manual dip  | Suite (a)                                          | Monthly                 | 30                             |                                             |                                      |
| ML042-<br>RC014 | 22.5 - 33             | Little Missenden<br>shaft          | January 2021  | June 2023 | Manual dip  | Suite (a)                                          | Monthly                 | 25                             |                                             |                                      |
| ML042-CR439     | 26 - 44               | Little Missenden<br>shaft          | March 2023    | June 2023 | Manual dip  | Suite (a)                                          | Monthly                 | 30                             | Purging                                     |                                      |
| ML042-<br>RC021 | 50 - 65               | Little Missenden<br>shaft          | January 2021  | June 2023 | Logger      | Suite (a)                                          | Monthly                 | 55                             | with<br>direct                              |                                      |
| ML043-CR438     | 31 - 41               | Little Missenden<br>shaft          | March 2023    | June 2023 | Logger      | Suite (a)                                          | Monthly                 | 35                             | analysis<br>of purged                       | n/a -<br>baseline                    |
| ML043-RO404     | 51.70 –<br>61.70      | Little Missenden<br>shaft          | March 2023    | June 2023 | Manual dip  | Suite (a)                                          | Monthly                 | 55                             | water<br>quality                            | baseline                             |
| ML042-RC020     | 23 - 55               | Little Missenden<br>shaft          | March 2023    | June 2023 | Logger      | Suite (a)                                          | Monthly                 | 35                             | using a<br>portable<br>turbidity            |                                      |
| ML042-RC001     | 21.5 - 42             | Little Missenden<br>shaft          | March 2023    | June 2023 | Manual dip  | Suite (a)                                          | Monthly                 | 35                             | meter                                       |                                      |
| ML043-RO405     | 50.40 –<br>60.40      | Little Missenden<br>shaft          | March 2023    | June 2023 | Manual dip  | Suite (a)                                          | Monthly                 | 55                             |                                             |                                      |
| ML043-RO403     | 50 - 60               | Little Missenden<br>shaft          | March 2023    | June 2023 | Manual dip  | Suite (a)                                          | Monthly                 | 55                             |                                             |                                      |
| ML043-RC004     | 30 - 40               | Dry valley from<br>tunnel route to | March 2023    | June 2023 | Manual dip  | Suite (a)                                          | Monthly                 | 35                             |                                             |                                      |

| Location    | Well Screen<br>(mbgl) | Purpose                                                   | Start Date | End Date  | Water Level | Water Quality<br>sample suites (as<br>per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method<br>of<br>Sampling<br>and<br>analysis                                                                         | Trigger<br>Level for<br>notification |
|-------------|-----------------------|-----------------------------------------------------------|------------|-----------|-------------|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|             |                       | Misbourne<br>valley                                       |            |           |             |                                                    |                         |                                |                                                                                                                     |                                      |
| ML043-RC007 | 32.5 - 43             | Dry valley from<br>tunnel route to<br>Misbourne<br>valley | April 2023 | July 2023 | Manual dip  | Suite (a)                                          | Monthly                 | 35                             | Purging<br>with<br>direct<br>analysis<br>of purged<br>water<br>quality<br>using a<br>portable<br>turbidity<br>meter | n/a -<br>baseline                    |

Notes: Priority monitoring boreholes in bold.

Hydrocarbon analysis to be conducted to establish baseline.

Monitoring positions at CSP, CSG and Amersham shafts (as indicated in Column 3) are already being monitoring as part of shaft construction (refer to CSP shaft SSMP (1MC05-ALJ-EV-REP-CS02\_CL04-000059) and Amersham shaft SSMP (1MC05-ALJ-EV-REP-CS02\_CL04-000067) for further details.

The inclusion of suite (d) was derived from the listed requirement for monitoring of Iron and Manganese from four Priority boreholes near the river crossings. This is solely because of their status as priority holes and is not driven by a technical requirement associated with the tunnel crossing of the Misbourne.

#### Table 5: Monitoring frequency and determinands during TBM operation

| Location               | Well<br>Screen<br>mbgl | Purpose            | Start Date        | End Date         | Water Level | Water Quality sample<br>suites (as per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling<br>and analysis | Trigger Level<br>for<br>notification |
|------------------------|------------------------|--------------------|-------------------|------------------|-------------|-------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|--------------------------------------|
| ML031-CR013            | 15 - 35                | M25                | June 2021         | July 2021        | Manual dip  | Suite (a) and Suite (i)*                        | Monthly                 | 20                             |                                       |                                      |
| ML032-RC001            | 23.5 -<br>64.02        | West Hyde SPZ<br>1 | September<br>2021 | October<br>2021  | Logger      | Suite (a) and Suite (i)*                        | Daily                   | 35                             |                                       |                                      |
| ML032-RC004            | 28 - 64.01             | West Hyde SPZ<br>1 | September<br>2021 | October<br>2021  | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 45                             |                                       |                                      |
| ML032-RC014            | 37.8 - 57.8            | West Hyde SPZ<br>1 | September<br>2021 | October<br>2021  | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 45                             | Purging<br>with direct                |                                      |
| ML032-RC006            | 33.5 - 54              | West Hyde SPZ<br>1 | October<br>2021   | November<br>2021 | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 50                             | analysis of<br>purged                 |                                      |
| ML032-RC009            | 49.5 -<br>64.03        | West Hyde SPZ<br>1 | October<br>2021   | November<br>2021 | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 55                             | water<br>quality                      | 500 NTU<br>pH <5 or > 9              |
| ML033-RC423            | 47.5 - 64.5            | CSP shaft          | February<br>2022  | March 2022       | Logger      | Suite (a) and Suite (i)*                        | Monthly                 | 55                             | using a portable                      | EC >1000                             |
| ML034-CR001            | 55 - 75                | CSP shaft          | February<br>2022  | March 2022       | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 60                             | turbidity<br>meter                    |                                      |
| ML034-RC007            | 52 - 63                | CSP shaft          | February<br>2022  | March 2022       | Manual dip  | Suite (a) and Suite (i)*                        | Monthly                 | 55                             |                                       |                                      |
| ML034-RO407            | 42 - 62.4              | CSP shaft          | February<br>2022  | March 2022       | Logger      | Suite (a) and Suite (i)*                        | Daily                   | 55                             |                                       |                                      |
| ML034-RO408            | 42 - 67                | CSP shaft          | February<br>2022  | March 2022       | Logger      | Suite (a) and Suite (i)*                        | Daily                   | 55                             |                                       |                                      |
| ML034-RD400<br>deep    | 76.55 -<br>86.55       | CSP shaft          | February<br>2022  | March 2022       | Manual dip  | Suite (a) and Suite (i)*                        | Quarterly               | 80                             |                                       |                                      |
| ML034-RD401<br>shallow | 43.96 -<br>49.96       | CSP shaft          | February<br>2022  | March 2022       | Manual dip  | Suite (a) and Suite (i)*                        | Monthly                 | 45                             | Purging<br>with direct                | 500 NTU                              |

| Location             | Well<br>Screen<br>mbgl | Purpose                           | Start Date       | End Date          | Water Level | Water Quality sample<br>suites (as per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling<br>and analysis | Trigger Level<br>for<br>notification |
|----------------------|------------------------|-----------------------------------|------------------|-------------------|-------------|-------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|--------------------------------------|
| ML034-RD401<br>deep  | 74.11 -<br>85.11       | CSP shaft                         | February<br>2022 | March 2022        | Logger      | Suite (a) and Suite (i)*                        | Monthly                 | 75                             | analysis of<br>purged                 | pH <5 or > 9<br>EC >1000             |
| ML035-RC016          | 21 - 31.5              | River<br>Misbourne<br>Crossing #1 | March<br>2022    | April 2022        | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 25                             | water<br>quality<br>using a           |                                      |
| ML035-<br>RO002a     | 6 - 16                 | River<br>Misbourne<br>Crossing #1 | March<br>2022    | April 2022        | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 10                             | portable<br>turbidity<br>meter        |                                      |
| ML035-<br>RO003a     | 3 - 6                  | River<br>Misbourne<br>Crossing #1 | March<br>2022    | April 2022        | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 4                              |                                       |                                      |
| ML035-CR003          | 13.5 - 34.5            | River<br>Misbourne<br>Crossing #1 | April 2022       | May 2022          | Logger      | Logger<br>Suite (a), (d)∞ and (ï)*              | Daily                   | 25                             |                                       |                                      |
| ML035-CR004<br>(CHK) | 18 - 28                | River<br>Misbourne<br>Crossing #1 | May 2022         | May 2022          | Manual dip  | Suite (a), (d)∞ and (i)*                        | Daily                   | 25                             |                                       |                                      |
| ML035-CR004<br>(RTD) | 0.5 - 6                | River<br>Misbourne<br>crossing #1 | May 2022         | May 2022          | Logger      | Logger<br>Suite (a), (d)∞ and (i)*              | Daily                   | 3                              |                                       |                                      |
| ML035-RC012          | 19 - 40.25             | CSG PWS                           | May 2022         | May 2022          | Logger      | Suite (a) and Suite (i)*                        | Daily                   | 35                             |                                       |                                      |
| ML035-RO001          | 4.5 - 50               | CSG PWS                           | May 2022         | May 2022          | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 30                             |                                       |                                      |
| ML035-RC013          | 14.5 - 61.5            | CSG PWS                           | May 2022         | May 2022          | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 40                             | -                                     |                                      |
| ML036-RC004          | 43 - 63                | CSG PWS                           | Jun 2022         | Jun 2022          | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 55                             |                                       |                                      |
| ML037-RC001          | 30 - 40                | CSG shaft                         | July 2022        | September<br>2022 | Logger      | Suite (a) and Suite (i)*                        | Monthly                 | 35                             | Purging<br>with direct                | 500 NTU                              |

| Location         | Well<br>Screen<br>mbgl | Purpose             | Start Date        | End Date          | Water Level | Water Quality sample<br>suites (as per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling<br>and analysis | Trigger Level<br>for<br>notification |
|------------------|------------------------|---------------------|-------------------|-------------------|-------------|-------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|--------------------------------------|
| ML037-RC003      | 28 - 39                | CSG shaft           | August<br>2022    | September<br>2022 | Manual dip  | Suite (a) and Suite (i)*                        | Weekly                  | 30                             | analysis of<br>purged                 | pH <5 or > 9<br>EC >1000             |
| ML037-RC019      | 17.5 - 37.5            | CSG shaft           | August<br>2022    | September<br>2022 | Logger      | Suite (a) and Suite (i)*                        | Monthly                 | 30                             | water<br>quality                      |                                      |
| ML037-RO439      | 46.69 -<br>56.69       | CSG shaft           | August<br>2022    | September<br>2022 | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 50                             | using a portable                      |                                      |
| ML037-RC014      | 37.5 - 65              | CSG shaft           | August<br>2022    | September<br>2022 | Manual dip  | Suite (a) and Suite (i)*                        | Monthly                 | 50                             | turbidity<br>meter                    |                                      |
| ML037-CR433      | 25.4 - 43.4            | CSG shaft           | August<br>2022    | September<br>2022 | Logger      | Suite (a) and Suite (i)*                        | Daily                   | 30                             |                                       |                                      |
| ML037-RC012      | 23 - 37                | CSG shaft           | August<br>2022    | September<br>2022 | Logger      | Suite (a) and Suite (i)*                        | Daily                   | 30                             |                                       |                                      |
| ML037-RC009      | 22 - 43                | CSG shaft           | August<br>2022    | September<br>2022 | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 30                             |                                       |                                      |
| ML037-RO440      | 48.36 -<br>58.36       | CSG shaft           | August<br>2022    | September<br>2022 | Manual dip  | Suite (a) and Suite (i)*                        | Monthly                 | 50                             |                                       |                                      |
| ML038-RC004      | 43 - 53.5              | Tunnel<br>alignment | September<br>2022 | October<br>2022   | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 45                             |                                       |                                      |
| ML039-RC010      | 71.07 -<br>61.07       | Amersham<br>shaft   | January<br>2023   | February<br>2023  | Manual dip  | Suite (a) and Suite (i)*                        | Monthly                 | 65                             |                                       |                                      |
| ML039-RC015      | 31 - 41                | Amersham<br>shaft   | January<br>2023   | February<br>2023  | Logger      | Suite (a) and Suite (i)*                        | Monthly                 | 35                             | ]                                     |                                      |
| ML040-<br>RC004c | 27 - 47                | Amersham<br>shaft   | January<br>2023   | February<br>2023  | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 40                             | 1                                     |                                      |
| ML040-RC434      | 37.5 - 55.5            | Amersham<br>shaft   | January<br>2023   | February<br>2023  | Logger      | Suite (a) and Suite (i)*                        | Daily                   | 45                             | Purging<br>with direct                | 500 NTU                              |

| Location    | Well<br>Screen<br>mbgl | Purpose                           | Start Date       | End Date         | Water Level | Water Quality sample<br>suites (as per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling<br>and analysis | Trigger Level<br>for<br>notification |
|-------------|------------------------|-----------------------------------|------------------|------------------|-------------|-------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|--------------------------------------|
| ML039-RO002 | 27 - 70                | Amersham<br>shaft                 | January<br>2023  | February<br>2023 | Logger      | Suite (a) and Suite (i)*                        | Weekly                  | 45                             | analysis of<br>purged                 | pH <5 or > 9<br>EC >1000             |
| ML040-RO409 | 15.89 -<br>30.89       | Amersham<br>shaft                 | January<br>2023  | February<br>2023 | Manual dip  | Suite (a) and Suite (i)*                        | Weekly                  | 25                             | water<br>quality                      |                                      |
| ML040-RO406 | 53.24 -<br>63.24       | Amersham<br>shaft                 | January<br>2023  | February<br>2023 | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 55                             | using a portable                      |                                      |
| ML040-RO001 | 54.7 - 64.7            | Amersham<br>shaft                 | January<br>2023  | February<br>2023 | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 55                             | turbidity<br>meter                    |                                      |
| ML040-RO007 | 10 - 50                | River<br>Misbourne<br>crossing #2 | February<br>2023 | March 2023       | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 40                             |                                       |                                      |
| ML040-RC012 | 54.5 - 75.5            | River<br>Misbourne<br>crossing #2 | February<br>2023 | March 2023       | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 65                             |                                       |                                      |
| ML041-RO001 | 5 - 30.2               | River<br>Misbourne<br>crossing #2 | March<br>2023    | April 2023       | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 25                             |                                       |                                      |
| ML041-RC007 | 5 - 60                 | River<br>Misbourne<br>crossing #2 | April 2023       | April 2023       | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 45                             |                                       |                                      |
| ML041-RC010 | 27 - 39                | River<br>Misbourne<br>crossing #2 | April 2023       | April 2023       | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 30                             |                                       |                                      |
| ML041-RC012 | 5 - 25                 | River<br>Misbourne<br>crossing #2 | April 2023       | May 2023         | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 20                             |                                       |                                      |

| Location                      | Well<br>Screen<br>mbgl | Purpose                           | Start Date | End Date  | Water Level | Water Quality sample<br>suites (as per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling<br>and analysis | Trigger Level<br>for<br>notification |
|-------------------------------|------------------------|-----------------------------------|------------|-----------|-------------|-------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|--------------------------------------|
| ML042-RC002                   | 20 - 30                | River<br>Misbourne<br>crossing #2 | April 2023 | May 2023  | Logger      | Logger<br>Suite (a) and Suite (i)*              | Daily                   | 25                             |                                       |                                      |
| ML042-<br>CR001a<br>(shallow) | 0.8 – 6                | Shardeloes<br>Lake                | May 2023   | May 2023  | Manual dip  | Suite (a), (d)∞ and (i)*                        | Daily                   | 3                              |                                       |                                      |
| ML042-<br>CR001a (deep)       | 20 - 31                | River<br>Misbourne<br>crossing #2 | May 2023   | May 2023  | Logger      | Logger<br>Suite (a), (d)∞ and (i)*              | Daily                   | 25                             | Purging<br>with direct                |                                      |
| ML042-RO004                   | 1 - 3                  | River<br>Misbourne<br>crossing #2 | May 2023   | May 2023  | Logger      | Logger<br>Suite (a) and Suite (i)*              | Daily                   | 2                              | analysis of<br>purged<br>water        | 500 NTU                              |
| ML042-CR003                   | 14.90 -<br>35.10       | River<br>Misbourne<br>crossing #2 | May 2023   | May 2023  | Logger      | Logger<br>Suite (a), (d)∞ and (i)*              | Daily                   | 30                             | quality<br>using a<br>portable        | pH <5 or > 9<br>EC >1000             |
| ML042-RC010                   | 23 - 33                | River<br>Misbourne<br>crossing #2 | May 2023   | June 2023 | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 25                             | turbidity<br>meter                    |                                      |
| ML042-RC013                   | 17 - 37                | River<br>Misbourne<br>crossing #2 | May 2023   | June 2023 | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 30                             |                                       |                                      |
| ML042-RC014                   | 22.5 - 33              | Little<br>Missenden<br>shaft      | June 2023  | July 2023 | Manual dip  | Suite (a) and Suite (i)*                        | Monthly                 | 25                             |                                       |                                      |

| Location    | Well<br>Screen<br>mbgl | Purpose                         | Start Date | End Date  | Water Level | Water Quality sample<br>suites (as per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling<br>and analysis | Trigger Level<br>for<br>notification |
|-------------|------------------------|---------------------------------|------------|-----------|-------------|-------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|--------------------------------------|
| ML042-CR439 | 26 - 44                | Little<br>Missenden<br>shaft    | June 2023  | July 2023 | Manual dip  | Suite (a) and Suite (i)*                        | Weekly                  | 30                             |                                       |                                      |
| ML042-RC021 | 50 - 65                | Little<br>Missenden<br>shaft    | June 2023  | July 2023 | Logger      | Suite (a) and Suite (i)*                        | Daily                   | 55                             |                                       |                                      |
| ML043-CR438 | 31 - 41                | Little<br>Missenden<br>shaft    | June 2023  | July 2023 | Logger      | Suite (a) and Suite (i)*                        | Daily                   | 35                             |                                       |                                      |
| ML043-RO404 | 51.70 -<br>61.70       | Little<br>Missenden<br>shaft    | June 2023  | July 2023 | Manual dip  | Suite (a) and Suite (i)*                        | Weekly                  | 55                             |                                       |                                      |
| ML042-RC020 | 23 - 55                | Little<br>Missenden<br>shaft    | June 2023  | July 2023 | Logger      | Suite (a) and Suite (i)*                        | Weekly                  | 35                             |                                       |                                      |
| ML042-RC001 | 21.5 - 42              | Little<br>Missenden<br>shaft    | June 2023  | July 2023 | Manual dip  | Suite (a) and Suite (i)*                        | Weekly                  | 35                             |                                       |                                      |
| ML043-RO405 | 50.40 -<br>60.40       | Little<br>Missenden<br>shaft    | June 2023  | July 2023 | Manual dip  | Suite (a) and Suite (i)*                        | Weekly                  | 55                             |                                       |                                      |
| ML043-RO403 | 50 - 60                | Little<br>Missenden<br>shaft    | June 2023  | July 2023 | Manual dip  | Suite (a) and Suite (i)*                        | Weekly                  | 55                             | Purging<br>with direct<br>analysis of | 500 NTU<br>pH <5 or > 9              |
| ML043-RC004 | 30 - 40                | Dry valley from tunnel route to | June 2023  | July 2023 | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 35                             | purged<br>water                       | EC >1000                             |

| Location    | Well<br>Screen<br>mbgl | Purpose                                                   | Start Date | End Date  | Water Level | Water Quality sample<br>suites (as per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling<br>and analysis | Trigger Level<br>for<br>notification |
|-------------|------------------------|-----------------------------------------------------------|------------|-----------|-------------|-------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|--------------------------------------|
|             |                        | Misbourne<br>valley                                       |            |           |             |                                                 |                         |                                | quality<br>using a                    |                                      |
| ML043-RC007 | 32.5 - 43              | Dry valley from<br>tunnel route to<br>Misbourne<br>valley | June 2023  | July 2023 | Manual dip  | Suite (a) and Suite (i)*                        | Daily                   | 35                             | portable<br>turbidity<br>meter        |                                      |

Notes: Priority monitoring boreholes in bold.

 $\infty$ Suite (d) to be monitored on a weekly basis at the river crossings.

\* Analysis for TBM greases to be undertaken on a daily basis with frequency reducing if no detections / borehole not close to alignment.

Monitoring to be reduced to maximum frequency of weekly during period when TBM1 is >150m up gradient AND TBM2 is >300m downgradient

Trigger levels set (based on professional judgement) as values that merit further investigation by Align and are not indicative of an impact at an Affinity PWS.

Monitoring positions at CSP, CSG and Amersham shafts (as indicated in Column 3) are already being monitoring as part of shaft construction (refer to CSP shaft SSMP (1MC05-AL)-EV-REP-CS02\_CL04-000059) and Amersham shaft SSMP (1MC05-AL)-EV-REP-CS02\_CL04-000067) for further details.

The inclusion of suite (d) was derived from the listed requirement for monitoring of Iron and Manganese from four Priority boreholes near the river crossings. This is solely because of their status as priority holes and is not driven by a technical requirement associated with the tunnel crossing of the Misbourne.

#### Table 6: Monitoring frequency and determinands after both TBMs have passed monitoring location.

| Location               | Well Screen<br>mbgl | Purpose            | Start Date       | End Date          | Water Level | Water Quality<br>sample suites<br>(as per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling and<br>analysis | Trigger Level<br>for notification |
|------------------------|---------------------|--------------------|------------------|-------------------|-------------|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|-----------------------------------|
| ML031-CR013            | 15 - 35             | M25                | August<br>2021   | September<br>2021 | Manual dip  | Suite (a)                                          | Monthly                 | 20                             |                                       |                                   |
| ML032-RC001            | 23.5 - 64.02        | West Hyde SPZ<br>1 | November<br>2021 | December<br>2021  | Logger      | Suite (a)                                          | Weekly                  | 35                             |                                       |                                   |
| ML032-RC004            | 28 - 64.01          | West Hyde SPZ<br>1 | November<br>2021 | December<br>2021  | Manual dip  | Suite (a)                                          | Weekly                  | 45                             |                                       |                                   |
| ML032-RC014            | 37.8 - 57.8         | West Hyde SPZ<br>1 | November<br>2021 | December<br>2021  | Manual dip  | Suite (a)                                          | Weekly                  | 45                             | Purging with direct analysis          |                                   |
| ML032-RC006            | 33.5 - 54           | West Hyde SPZ<br>1 | December<br>2021 | January<br>2022   | Manual dip  | Suite (a)                                          | Weekly                  | 50                             | of purged<br>water quality            | 500 NTU<br>pH <5 or > 9           |
| ML032-RC009            | 49.5 - 64.03        | West Hyde SPZ<br>1 | December<br>2021 | January<br>2022   | Manual dip  | Suite (a)                                          | Weekly                  | 55                             | using a<br>portable                   | EC >1000                          |
| ML033-RC423            | 47.5 - 64.5         | CSP shaft          | April 2022       | May 2022          | Logger      | Suite (a)                                          | Monthly                 | 55                             | turbidity                             |                                   |
| ML034-CR001            | 55 - 75             | CSP shaft          | April 2022       | May 2022          | Manual dip  | Suite (a)                                          | Weekly                  | 60                             | meter                                 |                                   |
| ML034-RC007            | 52 - 63             | CSP shaft          | April 2022       | May 2022          | Manual dip  | Suite (a)                                          | Monthly                 | 55                             |                                       |                                   |
| ML034-RO407            | 42 - 62.4           | CSP shaft          | April 2022       | May 2022          | Logger      | Suite (a)                                          | Weekly                  | 55                             |                                       |                                   |
| ML034-RO408            | 42 - 67             | CSP shaft          | April 2022       | May 2022          | Logger      | Suite (a)                                          | Weekly                  | 55                             |                                       |                                   |
| ML034-RD400<br>deep    | 76.55 -<br>86.55    | CSP shaft          | April 2022       | May 2022          | Manual dip  | Suite (a)                                          | Quarterly               | 80                             |                                       |                                   |
| ML034-RD401<br>shallow | 43.96 -<br>49.96    | CSP shaft          | April 2022       | May 2022          | Manual dip  | Suite (a)                                          | Monthly                 | 45                             |                                       |                                   |
| ML034-RD401<br>deep    | 74.11 -<br>85.11    | CSP shaft          | April 2022       | May 2022          | Logger      | Suite (a)                                          | Monthly                 | 75                             | 1                                     |                                   |

| Location              | Well Screen<br>mbgl | Purpose                           | Start Date | End Date       | Water Level | Water Quality<br>sample suites<br>(as per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling and<br>analysis         | Trigger Level for notification |
|-----------------------|---------------------|-----------------------------------|------------|----------------|-------------|----------------------------------------------------|-------------------------|--------------------------------|-----------------------------------------------|--------------------------------|
| ML035-RC016           | 21 - 31.5           | River<br>Misbourne<br>Crossing #1 | May 2022   | June 2022      | Manual dip  | Suite (a)                                          | Weekly                  | 25                             |                                               |                                |
| ML035-<br>RO002a      | 6 - 16              | River<br>Misbourne<br>Crossing #1 | May 2022   | June 2022      | Manual dip  | Suite (a)                                          | Weekly                  | 10                             |                                               |                                |
| ML035-<br>RO003a      | 3 - 6               | River<br>Misbourne<br>Crossing #1 | May 2022   | June 2022      | Manual dip  | Suite (a)                                          | Weekly                  | 4                              | Purging with                                  |                                |
| ML035-<br>CR003       | 13.5 - 34.5         | River<br>Misbourne<br>Crossing #1 | June 2022  | July 2022      | Logger      | Logger<br>Suite (a) and (d)                        | Weekly                  | 25                             | direct analysis<br>of purged<br>water quality | 500 NTU                        |
| ML035-<br>CR004 (CHK) | 18 - 28             | River<br>Misbourne<br>Crossing #1 | June 2022  | July 2022      | Manual dip  | Suite (a) and (d)                                  | Weekly                  | 25                             | using a<br>portable<br>turbidity              | pH <5 or > 9<br>EC >1000       |
| ML035-<br>CR004 (RTD) | 0.5 - 6             | River<br>Misbourne<br>crossing #1 | June 2022  | July 2022      | Logger      | Logger<br>Suite (a) and (d)                        | Weekly                  | 3                              | meter                                         |                                |
| ML035-RC012           | 19 - 40.25          | CSG PWS                           | June 2022  | July 2022      | Logger      | Suite (a)                                          | Weekly                  | 35                             | -                                             |                                |
| ML035-<br>RO001       | 4.5 - 50            | CSG PWS                           | June 2022  | July 2022      | Manual dip  | Suite (a)                                          | Weekly                  | 30                             |                                               |                                |
| ML035-<br>RC013       | 14.5 - 61.5         | CSG PWS                           | June 2022  | July 2022      | Manual dip  | Suite (a)                                          | Weekly                  | 40                             |                                               |                                |
| ML036-RC004           | 43 - 63             | CSG PWS                           | July 2022  | August<br>2022 | Manual dip  | Suite (a)                                          | Weekly                  | 55                             |                                               |                                |

| Location         | Well Screen<br>mbgl | Purpose             | Start Date       | End Date         | Water Level | Water Quality<br>sample suites<br>(as per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling and<br>analysis | Trigger Level<br>for notification |
|------------------|---------------------|---------------------|------------------|------------------|-------------|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|-----------------------------------|
| ML037-<br>RC001  | 30 - 40             | CSG shaft           | October<br>2023  | November<br>2023 | Logger      | Suite (a)                                          | Monthly                 | 35                             |                                       |                                   |
| ML037-RC003      | 28 - 39             | CSG shaft           | October<br>2023  | November<br>2023 | Manual dip  | Suite (a)                                          | Monthly                 | 30                             |                                       |                                   |
| ML037-RC019      | 17.5 - 37.5         | CSG shaft           | October<br>2023  | November<br>2023 | Logger      | Suite (a)                                          | Monthly                 | 30                             |                                       |                                   |
| ML037-RO439      | 46.69 -<br>56.69    | CSG shaft           | October<br>2023  | November<br>2023 | Manual dip  | Suite (a)                                          | Weekly                  | 50                             |                                       |                                   |
| ML037-<br>RC014  | 37.5 - 65           | CSG shaft           | October<br>2023  | November<br>2023 | Manual dip  | Suite (a)                                          | Monthly                 | 50                             |                                       |                                   |
| ML037-CR433      | 25.4 - 43.4         | CSG shaft           | October<br>2023  | November<br>2023 | Logger      | Suite (a)                                          | Weekly                  | 30                             |                                       |                                   |
| ML037-RC012      | 23 - 37             | CSG shaft           | October<br>2023  | November<br>2023 | Logger      | Suite (a)                                          | Weekly                  | 30                             | Purging with direct analysis          |                                   |
| ML037-RC009      | 22 - 43             | CSG shaft           | October<br>2023  | November<br>2023 | Manual dip  | Suite (a)                                          | Weekly                  | 30                             | of purged<br>water quality            | 500 NTU                           |
| ML037-RO440      | 48.36 -<br>58.36    | CSG shaft           | October<br>2023  | November<br>2023 | Manual dip  | Suite (a)                                          | Weekly                  | 50                             | using a portable                      | pH <5 or > 9<br>EC >1000          |
| ML038-RC004      | 43 - 53.5           | Tunnel<br>alignment | November<br>2022 | December<br>2022 | Manual dip  | Suite (a)                                          | Weekly                  | 45                             | turbidity<br>meter                    |                                   |
| ML039-RC010      | 71.07 -<br>61.07    | Amersham shaft      | March<br>2023    | April 2023       | Manual dip  | Suite (a)                                          | Monthly                 | 65                             | ]                                     |                                   |
| ML039-<br>RC015  | 31 - 41             | Amersham shaft      | March<br>2023    | April 2023       | Logger      | Suite (a)                                          | Monthly                 | 35                             | ]                                     |                                   |
| ML040-<br>RC004c | 27 - 47             | Amersham shaft      | March<br>2023    | April 2023       | Manual dip  | Suite (a)                                          | Weekly                  | 40                             | ]                                     |                                   |

| Location        | Well Screen<br>mbgl | Purpose                           | Start Date    | End Date   | Water Level | Water Quality<br>sample suites<br>(as per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling and<br>analysis | Trigger Level<br>for notification |
|-----------------|---------------------|-----------------------------------|---------------|------------|-------------|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|-----------------------------------|
| ML040-RC434     | 37.5 - 55.5         | Amersham shaft                    | March<br>2023 | April 2023 | Logger      | Suite (a)                                          | Weekly                  | 45                             |                                       |                                   |
| ML039-<br>RO002 | 27 - 70             | Amersham shaft                    | March<br>2023 | April 2023 | Logger      | Suite (a)                                          | Weekly                  | 45                             |                                       |                                   |
| ML040-RO409     | 15.89 -<br>30.89    | Amersham shaft                    | March<br>2023 | April 2023 | Manual dip  | Suite (a)                                          | Weekly                  | 25                             |                                       |                                   |
| ML040-RO406     | 53.24 –<br>63.24    | Amersham shaft                    | March<br>2023 | April 2023 | Manual dip  | Suite (a)                                          | Weekly                  | 55                             | -                                     |                                   |
| ML040-RO001     | 54.7 - 64.7         | Amersham shaft                    | March<br>2023 | April 2023 | Manual dip  | Suite (a)                                          | Weekly                  | 55                             | -                                     |                                   |
| ML040-<br>RO007 | 10 - 50             | River<br>Misbourne<br>crossing #2 | April 2023    | May 2023   | Manual dip  | Suite (a)                                          | Weekly                  | 40                             |                                       |                                   |
| ML040-RC012     | 54.5 - 75.5         | River<br>Misbourne<br>crossing #2 | April 2023    | May 2023   | Manual dip  | Suite (a)                                          | Weekly                  | 65                             |                                       |                                   |
| ML041-<br>RO001 | 5 - 30.2            | River<br>Misbourne<br>crossing #2 | May 2023      | June 2023  | Manual dip  | Suite (a)                                          | Weekly                  | 25                             |                                       |                                   |
| ML041-RC007     | 5 - 60              | River<br>Misbourne<br>crossing #2 | May 2023      | June 2023  | Manual dip  | Suite (a)                                          | Weekly                  | 45                             | Purging with direct analysis          | 500 NTU<br>pH <5 or > 9           |
| ML041-RC010     | 27 - 39             | River<br>Misbourne<br>crossing #2 | May 2023      | June 2023  | Manual dip  | Suite (a)                                          | Weekly                  | 30                             | of purged<br>water quality<br>using a | EC >1000                          |

| Location                      | Well Screen<br>mbgl | Purpose                           | Start Date     | End Date          | Water Level | Water Quality<br>sample suites<br>(as per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling and<br>analysis | Trigger Level for notification |
|-------------------------------|---------------------|-----------------------------------|----------------|-------------------|-------------|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|--------------------------------|
| ML041-<br>RC012               | 5 - 25              | River<br>Misbourne<br>crossing #2 | June 2023      | July 2023         | Manual dip  | Suite (a)                                          | Weekly                  | 20                             | portable<br>turbidity<br>meter        |                                |
| ML042-<br>RC002               | 20 - 30             | River<br>Misbourne<br>crossing #2 | June 2023      | July 2023         | Logger      | Logger<br>Suite (a)                                | Weekly                  | 25                             |                                       |                                |
| ML042-<br>CR001a<br>(shallow) | 0.8 – 6             | Shardeloes Lake                   | June 2023      | July 2023         | Manual dip  | Suite (a) and (d)                                  | Weekly                  | 3                              |                                       |                                |
| ML042-<br>CR001a<br>(deep)    | 20 - 31             | River<br>Misbourne<br>crossing #2 | June 2023      | July 2023         | Logger      | Logger<br>Suite (a) and (d)                        | Weekly                  | 25                             |                                       |                                |
| ML042-<br>RO004               | 1 - 3               | River<br>Misbourne<br>crossing #2 | June 2023      | July 2023         | Logger      | Logger<br>Suite (a)                                | Weekly                  | 2                              |                                       |                                |
| ML042-<br>CR003               | 14.9 - 35.1         | River<br>Misbourne<br>crossing #2 | July 2023      | August<br>2023    | Logger      | Logger<br>Suite (a) and (d)                        | Weekly                  | 30                             |                                       |                                |
| ML042-RC010                   | 23 - 33             | River<br>Misbourne<br>crossing #2 | July 2023      | August<br>2023    | Manual dip  | Suite (a)                                          | Weekly                  | 25                             |                                       |                                |
| ML042-RC013                   | 17 - 37             | River<br>Misbourne<br>crossing #2 | July 2023      | August<br>2023    | Manual dip  | Suite (a)                                          | Weekly                  | 30                             |                                       |                                |
| ML042-<br>RC014               | 22.5 - 33           | Little Missenden<br>shaft         | August<br>2023 | September<br>2023 | Manual dip  | Suite (a)                                          | Monthly                 | 25                             |                                       |                                |

| Location        | Well Screen<br>mbgl | Purpose                                                   | Start Date     | End Date          | Water Level | Water Quality<br>sample suites<br>(as per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling and<br>analysis | Trigger Level for notification |
|-----------------|---------------------|-----------------------------------------------------------|----------------|-------------------|-------------|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|--------------------------------|
| ML042-CR439     | 26 - 44             | Little Missenden<br>shaft                                 | August<br>2023 | September<br>2023 | Manual dip  | Suite (a)                                          | Weekly                  | 30                             |                                       |                                |
| ML042-<br>RC021 | 50 - 65             | Little Missenden<br>shaft                                 | August<br>2023 | September<br>2023 | Logger      | Suite (a)                                          | Weekly                  | 55                             |                                       |                                |
| ML043-CR438     | 31 - 41             | Little Missenden<br>shaft                                 | August<br>2023 | September<br>2023 | Logger      | Suite (a)                                          | Weekly                  | 35                             |                                       |                                |
| ML043-RO404     | 51.70 –<br>61.70    | Little Missenden<br>shaft                                 | August<br>2023 | September<br>2023 | Manual dip  | Suite (a)                                          | Weekly                  | 55                             |                                       |                                |
| ML042-RC020     | 23 - 55             | Little Missenden<br>shaft                                 | August<br>2023 | September<br>2023 | Logger      | Suite (a)                                          | Weekly                  | 35                             |                                       |                                |
| ML042-RC001     | 21.5 - 42           | Little Missenden<br>shaft                                 | August<br>2023 | September<br>2023 | Manual dip  | Suite (a)                                          | Weekly                  | 35                             | Purging with direct analysis          |                                |
| ML043-RO405     | 50.40 –<br>60.40    | Little Missenden<br>shaft                                 | August<br>2023 | September<br>2023 | Manual dip  | Suite (a)                                          | Weekly                  | 55                             | of purged<br>water quality            | 500 NTU                        |
| ML043-RO403     | 50 - 60             | Little Missenden<br>shaft                                 | August<br>2023 | September<br>2023 | Manual dip  | Suite (a)                                          | Weekly                  | 55                             | using a portable                      | pH <5 or > 9<br>EC >1000       |
| ML043-RC004     | 30 - 40             | Dry valley from<br>tunnel route to<br>Misbourne<br>valley | August<br>2023 | September<br>2023 | Manual dip  | Suite (a)                                          | Weekly                  | 35                             | turbidity<br>meter                    |                                |
| ML043-RC007     | 32.5 - 43           | Dry valley from<br>tunnel route to<br>Misbourne<br>valley | August<br>2023 | September<br>2023 | Manual dip  | Suite (a)                                          | Weekly                  | 35                             |                                       |                                |

Notes: Priority monitoring boreholes in bold.

Nominal 4 weeks of weekly monitoring before frequency is reduced to monthly.

Trigger levels set (based on professional judgement) as values that merit further investigation by Align and are not indicative of an impact at an Affinity PWS. Monitoring positions at CSP, CSG and Amersham shafts (as indicated in Column 3) are already being monitoring as part of shaft construction (refer to CSP shaft SSMP (1MC05-ALJ-EV-REP-CS02\_CL04-000059) and Amersham shaft SSMP (1MC05-ALJ-EV-REP-CS02\_CL04-000059) and Amersham shaft SSMP (1MC05-ALJ-EV-REP-CS02\_CL04-000059) for further details.

The inclusion of suite (d) was derived from the listed requirement for monitoring of Iron and Manganese from four Priority boreholes near the river crossings. This is solely because of their status as priority holes and is not driven by a technical requirement associated with the tunnel crossing of the Misbourne.

#### Table 7: Monitoring frequency and determinands post tunnel construction.

| Location              | Well<br>Screen<br>mbgl | Purpose                           | Start Date      | End Date        | Water Level | Water Quality<br>sample suites (as<br>per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling and<br>analysis        | Trigger Level for notification |
|-----------------------|------------------------|-----------------------------------|-----------------|-----------------|-------------|----------------------------------------------------|-------------------------|--------------------------------|----------------------------------------------|--------------------------------|
| ML031-CR013           | 15 - 35                | M25                               | October<br>2021 | October<br>2022 | Manual dip  | Suite (a)                                          | Monthly                 | 20                             |                                              |                                |
| ML032-RC001           | 23.5 -<br>64.02        | West Hyde SPZ<br>1                | January<br>2022 | January<br>2023 | Logger      | Suite (a)                                          | Monthly                 | 35                             |                                              |                                |
| ML034-RO407           | 42 - 62.4              | CSP shaft                         | May 2022        | May 2023        | Logger      | Suite (a)                                          | Monthly                 | 55                             |                                              |                                |
| ML035-<br>RO002a      | 6 - 16                 | River<br>Misbourne<br>Crossing #1 | July 2022       | July 2023       | Manual dip  | Suite (a)                                          | Monthly                 | 10                             |                                              |                                |
| ML035-<br>RO003a      | 3 - 6                  | River<br>Misbourne<br>Crossing #1 | July 2022       | July 2023       | Manual dip  | Suite (a)                                          | Monthly                 | 4                              | Purging with<br>direct analysis<br>of purged | 50 NTU                         |
| ML035-<br>CR003       | 13.5 - 34.5            | River<br>Misbourne<br>Crossing #1 | August<br>2022  | August<br>2023  | Logger      | Logger<br>Suite (a) and (d)                        | Monthly                 | 25                             | water quality<br>using a<br>portable         | pH <5 or > 9<br>EC >1000       |
| ML035-<br>CR004 (CHK) | 18 - 28                | River<br>Misbourne<br>Crossing #1 | August<br>2022  | August<br>2023  | Manual dip  | Suite (a) and (d)                                  | Monthly                 | 25                             | turbidity<br>meter                           |                                |
| ML035-<br>CR004 (RTD) | 0.5 - 6                | River<br>Misbourne<br>crossing #1 | August<br>2022  | August<br>2023  | Logger      | Logger<br>Suite (a) and (d)                        | Monthly                 | 3                              |                                              |                                |
| ML035-<br>RO001       | 4.5 - 50               | CSG PWS                           | August<br>2022  | August<br>2023  | Manual dip  | Suite (a)                                          | Monthly                 | 30                             |                                              |                                |
| ML035-<br>RC013       | 14.5 - 61.5            | CSG PWS                           | August<br>2022  | August<br>2023  | Manual dip  | Suite (a)                                          | Monthly                 | 40                             |                                              |                                |

| Location                      | Well<br>Screen<br>mbgl | Purpose                           | Start Date       | End Date         | Water Level | Water Quality<br>sample suites (as<br>per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling and<br>analysis             | Trigger Level<br>for notification |
|-------------------------------|------------------------|-----------------------------------|------------------|------------------|-------------|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------------------------|-----------------------------------|
| ML037-<br>RC001               | 30 - 40                | CSG shaft                         | November<br>2022 | November<br>2023 | Logger      | Suite (a)                                          | Monthly                 | 35                             |                                                   |                                   |
| ML037-<br>RC014               | 37.5 - 65              | CSG shaft                         | November<br>2022 | November<br>2023 | Manual dip  | Suite (a)                                          | Monthly                 | 50                             |                                                   |                                   |
| ML039-<br>RC015               | 31 - 41                | Amersham<br>shaft                 | April 2023       | April 2024       | Logger      | Suite (a)                                          | Monthly                 | 35                             |                                                   |                                   |
| ML040-<br>RC004c              | 27 - 47                | Amersham<br>shaft                 | April 2023       | April 2024       | Manual dip  | Suite (a)                                          | Monthly                 | 40                             |                                                   |                                   |
| ML039-<br>RO002               | 27 - 70                | Amersham<br>shaft                 | April 2023       | April 2024       | Logger      | Suite (a)                                          | Monthly                 | 45                             |                                                   |                                   |
| ML040-<br>RO007               | 10 - 50                | River<br>Misbourne<br>crossing #2 | June 2023        | June 2024        | Manual dip  | Suite (a)                                          | Monthly                 | 40                             |                                                   |                                   |
| ML041-<br>RO001               | 5 - 30.2               | River<br>Misbourne<br>crossing #2 | July 2023        | July 2024        | Manual dip  | Suite (a)                                          | Monthly                 | 25                             | Duraina uith                                      |                                   |
| ML041-<br>RC012               | 5 - 25                 | River<br>Misbourne<br>crossing #2 | August<br>2023   | August<br>2024   | Manual dip  | Suite (a)                                          | Monthly                 | 20                             | Purging with<br>direct analysis<br>of purged      | 50 NTU                            |
| ML042-<br>RC002               | 20 - 30                | River<br>Misbourne<br>crossing #2 | August<br>2023   | August<br>2024   | Logger      | Logger<br>Suite (a)                                | Monthly                 | 25                             | water quality<br>using a<br>portable<br>turbidity | pH <5 or > 9<br>EC >1000          |
| ML042-<br>CR001a<br>(shallow) | 0.8 – 6                | Shardeloes<br>Lake                | August<br>2023   | August<br>2024   | Manual dip  | Suite (a) and (d)                                  | Monthly                 | 3                              | meter                                             |                                   |

| Location                   | Well<br>Screen<br>mbgl | Purpose                           | Start Date        | End Date          | Water Level | Water Quality<br>sample suites (as<br>per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling and<br>analysis | Trigger Level<br>for notification |
|----------------------------|------------------------|-----------------------------------|-------------------|-------------------|-------------|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|-----------------------------------|
| ML042-<br>CR001a<br>(deep) | 20 - 31                | River<br>Misbourne<br>crossing #2 | August<br>2023    | August<br>2024    | Logger      | Logger<br>Suite (a) and (d)                        | Monthly                 | 25                             |                                       |                                   |
| ML042-<br>RO004            | 1 - 3                  | River<br>Misbourne<br>crossing #2 | August<br>2023    | August<br>2024    | Logger      | Logger<br>Suite (a)                                | Monthly                 | 2                              |                                       |                                   |
| ML042-<br>CR003            | 14.9 - 35.1            | River<br>Misbourne<br>crossing #2 | September<br>2023 | September<br>2024 | Logger      | Logger<br>Suite (a) and (d)                        | Monthly                 | 30                             |                                       |                                   |
| ML042-<br>RC014            | 22.5 - 33              | Little<br>Missenden<br>shaft      | September<br>2023 | September<br>2024 | Manual dip  | Suite (a)                                          | Monthly                 | 25                             |                                       |                                   |
| ML042-<br>RC021            | 50 - 65                | Little<br>Missenden<br>shaft      | September<br>2023 | September<br>2024 | Logger      | Suite (a)                                          | Monthly                 | 55                             |                                       |                                   |

Notes: Priority monitoring boreholes in bold.

Monitoring positions at CSP, CSG and Amersham shafts (as indicated in Column 3) are already being monitoring as part of shaft construction (refer to CSP shaft SSMP (1MC05-AL)-EV-REP-CS02\_CL04-000059) and Amersham shaft SSMP (1MC05-AL)-EV-REP-CS02\_CL04-000067) for further details.

The inclusion of suite (d) was derived from the listed requirement for monitoring of Iron and Manganese from four Priority boreholes near the river crossings. This is solely because of their status as priority holes and is not driven by a technical requirement associated with the tunnel crossing of the Misbourne.

### **Cross Passages**

- 3.1.14 Cross passage construction would take place a few months after the TBMs have passed the cross passage location. Monitoring during cross passage construction will be focussed at locations in proximity to significant groundwater and surface water receptors.
- 3.1.15 Baseline monitoring will not be required as all monitoring locations will have been monitored during either tunnel or shaft construction in advance of cross passage construction. Monitoring would initially be daily during cross passage construction but would be reduced to weekly. Monitoring would continue at a weekly frequency until cross passage construction was completed and would then reduce to monthly / for 6 months after cross passage construction was completed. If significant changes in water quality are detected then discussions would be held with the Environment Agency, Affinity Water and HS2 before any change in monitoring frequency is implemented.
- 3.1.16 Groundwater level monitoring would be undertaken by manual dipping using a portable dip meter. Water quality monitoring would consist of in field analysis of well head parameters (turbidity, pH, electrical conductivity, temperature, DO, Redox) using portable equipment.
- 3.1.17 Trigger levels are provided in column 11 of Tables 8 and 9 for the parameters being monitored. These levels have been set based on professional judgement and are designed to provide an indication when additional action may be required by Align. In the event of a trigger level being exceeded the Align shaft environment manager would contact the EA, HS2 and Affinity Water to notify them, to make them aware of the exceedance and to discuss if additional monitoring is required. The notification procedure is discussed further in section 7.
- 3.1.18 The groundwater quality samples would be collected following purging which would be conducted in the same way as that used during tunnel monitoring described above.
- 3.1.19 As part of the preparation of this monitoring plan an audit has been commenced to confirm those boreholes that are available for monitoring. Due to land access constraints only a small number of onsite boreholes have been visited, with the remainder to be checked as soon as access is allowed. Once the audit is complete the available boreholes will be assessed and any replacements will be made.

### Table 8: Monitoring frequency and determinands during cross passage construction.

|                      | firequeries and determ |         | j j              |                   |             |                                                       |                         |                                |                                       |                                      |
|----------------------|------------------------|---------|------------------|-------------------|-------------|-------------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|--------------------------------------|
| Location             | Well Screen<br>(mAOD)* | Purpose | Start Date       | End Date          | Water Level | Water Quality<br>sample suites<br>(as per Table<br>3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling<br>and analysis | Trigger<br>Level for<br>notification |
| ML032-RC004          | 28 - 64                | CP3     | December<br>2021 | March<br>2022     | Manual dip  | Suite (a)                                             | Daily/ weekly           | 45                             |                                       |                                      |
| ML032-RC009          | 49.50 - 64             | CP4     | December<br>2021 | April 2022        | Manual dip  | Suite (a)                                             | Daily/ weekly           | 55                             |                                       |                                      |
| ML035-RC016          | 21 - 31.50             | CP10    | May 2022         | August<br>2022    | Manual dip  | Suite (a)                                             | Daily/ weekly           | 25                             |                                       |                                      |
| ML035-CR004<br>(CHK) | 18 – 28                | CP11    | June 2022        | October<br>2022   | Manual dip  | Suite (a)                                             | Daily/ weekly           | 25                             | Purging<br>with direct                |                                      |
| ML035-CR004<br>(RTD) | 0.5 - 6                | CP11    | June 2022        | October<br>2022   | Logger      | Logger<br>Suite (a)                                   | Daily/ weekly           | 3                              | analysis of<br>purged                 | 500 NTU                              |
| ML035-RC013          | 14.50 - 61.50          | CP12    | July 2022        | October<br>2022   | Logger      | Suite (a)                                             | Daily/ weekly           | 40                             | water<br>quality                      | pH <5 or ><br>9                      |
| ML037-CR433          | 25.40 - 43.40          | CP15    | October<br>2022  | January<br>2023   | Logger      | Suite (a)                                             | Daily/ weekly           | 30                             | using a<br>portable                   | EC >1000                             |
| ML039-RC015          | 31 – 41                | CP22    | March<br>2023    | May 2023          | Logger      | Suite (a)                                             | Daily/ weekly           | 35                             | turbidity<br>meter                    |                                      |
| ML040-RC434          | 37.50 - 55.50          | CP23    | March<br>2023    | June 2023         | Manual dip  | Suite (a)                                             | Daily/ weekly           | 45                             |                                       |                                      |
| ML041-RC007          | 5 - 60                 | CP27    | June 2023        | September<br>2023 | Manual dip  | Suite (a)                                             | Daily/ weekly           | 45                             |                                       |                                      |
| ML042-RC002          | 20 - 30                | CP28    | July 2023        | October<br>2023   | Logger      | Logger<br>Suite (a)                                   | Daily/ weekly           | 25                             |                                       |                                      |

| Location                  | Well Screen<br>(mAOD)* | Purpose            | Start Date     | End Date         | Water Level | Water Quality<br>sample suites<br>(as per Table<br>3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling<br>and analysis | Trigger<br>Level for<br>notification |
|---------------------------|------------------------|--------------------|----------------|------------------|-------------|-------------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|--------------------------------------|
| ML042-CR001a<br>(Shallow) | 0.80 – 6               | Shardeloes<br>Lake | July 2023      | October<br>2023  | Manual dip  | Suite (a)                                             | Daily/ weekly           | 3                              |                                       |                                      |
| ML042-CR001a<br>(deep)    | 20 - 31                | Shardeloes<br>Lake | July 2023      | October<br>2023  | Logger      | Logger<br>Suite (a)                                   | Daily/ weekly           | 25                             |                                       |                                      |
| ML042-RO004               | 1 - 3                  | Shardeloes<br>Lake | July 2023      | October<br>2023  | Logger      | ТВС                                                   | Daily/ weekly           | 2                              |                                       |                                      |
| ML042-CR003               | 14.90 – 35.10          | Shardeloes<br>Lake | August<br>2023 | November<br>2023 | Logger      | Logger<br>Suite (a)                                   | Daily/ weekly           | 30                             |                                       |                                      |
| ML042-RC010               | 23 - 33                | CP29               | August<br>2023 | November<br>2023 | Manual dip  | Suite (a)                                             | Daily/ weekly           | 25                             |                                       |                                      |
| ML042-CR439               | 26 - 44                | CP30               | August<br>2023 | December<br>2023 | Manual dip  | Suite (a)                                             | Daily/ weekly           | 30                             |                                       |                                      |
| ML043-RO403               | 50 - 60                | CP31               | August<br>2023 | December<br>2023 | Manual dip  | Suite (a)                                             | Daily/ weekly           | 52                             |                                       |                                      |

Notes: Priority monitoring boreholes in bold.

Monitoring to begin on a daily basis but will be reduced to weekly (dependent upon data obtained) with agreement from Affinity Water, Environment Agency and HS2.

#### Table 9: Monitoring frequency and determinands post cross passage construction.

| Location                  | Well Screen<br>(mAOD)* | Purpose            | Start Date        | End Date          | Water Level | Water Quality<br>sample suites<br>(as per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling<br>and analysis | Trigger<br>Level for<br>notification |
|---------------------------|------------------------|--------------------|-------------------|-------------------|-------------|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|--------------------------------------|
| ML032-RC004               | 28 - 64                | CP3                | April 2022        | September<br>2022 | Manual dip  | Suite (a)                                          | Monthly                 | 45                             |                                       |                                      |
| ML032-RC009               | 49.50 - 64             | CP4                | May 2022          | October<br>2022   | Manual dip  | Suite (a)                                          | Monthly                 | 55                             |                                       |                                      |
| ML035-RC016               | 21 - 31.50             | CP10               | September<br>2022 | February<br>2023  | Manual dip  | Suite (a)                                          | Monthly                 | 25                             |                                       |                                      |
| ML035-CR004<br>(CHK)      | 18 – 28                | CP11               | November<br>2022  | April 2023        | Manual dip  | Suite (a)                                          | Monthly                 | 25                             | Purging                               |                                      |
| ML035-CR004<br>(RTD)      | 0.5 - 6                | CP11               | November<br>2022  | April 2023        | Logger      | Logger<br>Suite (a)                                | Monthly                 | 3                              | with direct<br>analysis of            |                                      |
| ML035-RC013               | 14.50 - 61.50          | CP12               | November<br>2022  | April 2023        | Manual dip  | Suite (a)                                          | Monthly                 | 40                             | purged<br>water                       | 50 NTU<br>pH <5 or >                 |
| ML037-CR433               | 25.40 - 43.40          | CP15               | February<br>2023  | July 2023         | Manual dip  | Suite (a)                                          | Monthly                 | 30                             | quality<br>using a                    | 9<br>EC >1000                        |
| ML039-RC015               | 31 – 41                | CP22               | June 2023         | November<br>2023  | Manual dip  | Suite (a)                                          | Monthly                 | 35                             | portable<br>turbidity                 |                                      |
| ML040-RC434               | 37.50 - 55.50          | CP23               | July 2023         | December<br>2023  | Manual dip  | Suite (a)                                          | Monthly                 | 45                             | meter                                 |                                      |
| ML041-RC007               | 5 - 60                 | CP27               | October<br>2023   | March<br>2024     | Manual dip  | Suite (a)                                          | Monthly                 | 45                             |                                       |                                      |
| ML042-RC002               | 20 - 30                | CP28               | November<br>2023  | April 2024        | Logger      | Logger<br>Suite (a)                                | Monthly                 | 25                             |                                       |                                      |
| ML042-CR001a<br>(Shallow) | 0.80 – 6               | Shardeloes<br>Lake | November<br>2023  | April 2024        | Manual dip  | Suite (a)                                          | Monthly                 | 3                              |                                       |                                      |

| Location               | Well Screen<br>(mAOD)* | Purpose            | Start Date       | End Date   | Water Level | Water Quality<br>sample suites<br>(as per Table 3) | Monitoring<br>Frequency | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling<br>and analysis | Trigger<br>Level for<br>notification |
|------------------------|------------------------|--------------------|------------------|------------|-------------|----------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|--------------------------------------|
| ML042-CR001a<br>(deep) | 20 - 31                | Shardeloes<br>Lake | November<br>2023 | April 2024 | Logger      | Logger<br>Suite (a)                                | Monthly                 | 25                             |                                       |                                      |
| ML042-RO004            | 1 - 3                  | Shardeloes<br>Lake | November<br>2023 | April 2024 | Logger      | Logger<br>Suite (a)                                | Monthly                 | 2                              |                                       |                                      |
| ML042-CR003            | 14.90 - 35.10          | Shardeloes<br>Lake | December<br>2023 | May 2024   | Logger      | Logger<br>Suite (a)                                | Monthly                 | 30                             |                                       |                                      |
| ML042-RC010            | 23 - 33                | CP29               | December<br>2023 | May 2024   | Manual dip  | Suite (a)                                          | Monthly                 | 25                             |                                       |                                      |
| ML042-CR439            | 26 - 44                | CP30               | January<br>2024  | June 2024  | Manual dip  | Suite (a)                                          | Monthly                 | 30                             |                                       |                                      |
| ML043-RO403            | 50 - 60                | CP31               | January<br>2024  | June 2024  | Manual dip  | Suite (a)                                          | Monthly                 | 52                             |                                       |                                      |

### **Surface Water**

- 3.1.20 Monitoring of surface water will consist of flow logger data collection at each of the Misbourne crossings with water quality samples collected upstream and downstream of the flow logger location. In addition, water quality samples and visual observation records will be collected from Shardeloes Lake to check for any water quality impacts that may be caused by TBM operations.
- 3.1.21 Baseline monitoring will be undertaken in summer 2021 to gain baseline low flow data and during February or March 2022 to ensure that the Misbourne is flowing in order to collect baseline quality samples in advance of the TBM reaching the first Misbourne crossing in April 2022.
- 3.1.22 Water quality monitoring during tunnel construction will begin at each location on a weekly basis when the TBM is within 300m of the surface water feature, increasing to daily when the TBM approaches within 150m. If no significant effects are encountered then monitoring will decrease to weekly once the TBM has moved beyond 150m from the monitoring location and will continue at this frequency until the TBM has moved >300m up gradient of the water feature. Monitoring frequency will then reduce to monthly, for a period of 12 months.
- 3.1.23 Water level monitoring would be undertaken by manual measurement using a stage board, where practicable, with flow data collected using a data logger. Water quality monitoring would consist of in field analysis of well head parameters (turbidity, pH, electrical conductivity, temperature, DO, Redox) using portable equipment, with sample collection for laboratory analysis of suspended solids and hydrocarbons.
- 3.1.24 Trigger levels are provided in column 10 of Table 10 for the parameters being monitored. These levels have been set based on limited baseline data provided by HS2 and Align and are designed to provide an indication when additional action may be required by Align. These trigger levels will be reviewed following further collection of baseline data by Align. In the event of a trigger level being exceeded the Align environment manager would contact the EA, HS2 and Affinity Water to notify them, to make them aware of the exceedance and to discuss if additional monitoring is required. The notification procedure is discussed further in section 7.

### Table 10: Surface water monitoring

| Location        | Easting | Northing | Start Date     | End Date       | Water<br>Level             | Water Quality               | Monitoring<br>Frequency | Comments                                                         | Trigger Level for notification |
|-----------------|---------|----------|----------------|----------------|----------------------------|-----------------------------|-------------------------|------------------------------------------------------------------|--------------------------------|
| ML035-FG001     | 499163  | 193667   | April 2022     | July 2023      | Logger                     | -                           | Continuous              | water level and spot gauging to be<br>undertaken                 | -                              |
| ML042-FG001     | 494513  | 197922   | April 2023     | September 2024 | Logger                     | -                           | Continuous              | water level and spot gauging to be<br>undertaken                 | -                              |
|                 |         |          | April 2022     | May 2022       |                            |                             | Daily                   |                                                                  |                                |
| ML035-SW001     | 499163  | 193676   | May 2022       | June 2022      | Manual                     |                             | Weekly                  | R. Missenden upstream of tunnel<br>crossing                      |                                |
|                 |         |          | July 2022      | July 2023      |                            |                             | Monthly                 | Crossing                                                         |                                |
|                 |         |          | April 2022     | May 2022       |                            |                             | Daily                   | R. Missenden downstream of tunnel                                |                                |
| ML035-SW002     | 499159  | 193657   | May 2022       | June 2022      | Manual                     | Suite (a) (g),              | Weekly                  | crossing                                                         |                                |
|                 |         |          | July 2022      | July 2023      |                            | Suspended                   | Monthly                 |                                                                  |                                |
|                 |         |          | April 2023     | June 2023      |                            | solids                      | Daily                   | R. Missenden downstream of tunnel                                | Turbidity >50 NTU              |
| ML042-SW002     | 494690  | 197920   | July 2023      | August 2023    | Manual                     |                             | Weekly                  | crossing and Shardeloes Lake                                     | pH <5 or > 9                   |
|                 |         |          | September 2023 | September 2024 |                            |                             | Monthly                 |                                                                  | EC >1000                       |
|                 |         |          | April 2023     | June 2023      |                            |                             | Daily                   | R. Missenden downstream of tunnel                                | Any hydrocarbons               |
| ML042-SW003     | 493996  | 198213   | July 2023      | August 2023    | Manual                     |                             | Weekly                  | crossing and up stream of Shardeloes                             | (both visual and               |
|                 | 155550  | 190219   | September 2023 | September 2024 | manaar                     |                             | Monthly                 | Lake (also monitored for Little<br>Missenden shaft construction) | laboratory signatures)         |
| ML042-WFD001    | 493420  | 198455   | April 2023     | September 2024 | None                       | WFD suite                   | Quarterly               | River Misbourne for WFD                                          | -                              |
|                 |         |          | April 2023     | June 2023      |                            |                             | Daily                   | Shardeloes lake to be monitored for                              |                                |
| Shardeloes lake | 494440  | 197940   | July 2023      | August 2023    | None                       | $C_{ij}$                    | Weekly                  | potential quality impacts from tunnel                            |                                |
|                 |         |          | September 2023 | September 2024 |                            | Suite (a) (g),<br>Suspended | Monthly                 |                                                                  | _                              |
|                 |         |          | April 2023     | June 2023      |                            | solids                      | Daily                   |                                                                  |                                |
| ML043-SW001     | 492794  | 198874   | July 2023      | August 2023    | 023 Manual Weekly crossing | Manual                      | ekly crossing           |                                                                  |                                |
|                 |         |          | September 2023 | September 2024 |                            | N                           |                         | crossing                                                         |                                |

Notes: Baseline monitoring to be undertaken in February/March 2022 to ensure the Misbourne is flowing in order to collect quality data. All data to be obtained subject to whether the Misbourne is flowing.

Suite (d) was a requirement for priority monitoring boreholes only and so was not included as a requirement for surface water monitoring.

# 4 Monitoring during accidents or incidents

4.1.1 In the event of an incident or accident involving hazardous or contaminative fluids this would be dealt with as detailed in the Align Pollution Incident Control Plan<sup>4</sup>, including (if required) reporting via the Environment Agency pollution reporting system. Monitoring would be implemented following any such loss in order to determine if mitigation is appropriate and successful and to identify if there could be a potential significant effect on an Affinity Water source, private abstraction or groundwater in general. All such monitoring would be implemented as soon as practicable and agreed with HS2, the Environment Agency and Affinity Water.

## **5 Post construction monitoring**

- 5.1.1 The duration of monitoring post construction is stated in the Asset Protection Agreement (APA) as 30 years from completion, or such other date as may be agreed between HS2 and Affinity Water. This monitoring work is outside of the terms of Align's contract but the detail is included here for information. The monitoring would comprise both water level and water quality monitoring after completion of construction activities. An indicative frequency is provided in Table 11, anticipated as decreasing over time although this will depend on the results of monitoring during and after construction. Any changes would need the agreement of Affinity Water and HS2 and would be based on data interpretation.
- 5.1.2 HS2 would issue the data, once it has been checked and approved, to Affinity Water after each round of monitoring. In the period to December 2032 annual interpretative reports would be prepared, with 5 yearly reports after that date (unless a change in frequency was agreed). The reports would include time series data analysis to look at trends using all collected data.

<sup>&</sup>lt;sup>4</sup> Align, 2020, Pollution Incident Control Plan, Document no: 1MC05-ALJ-EV-PLN-C001-000028

#### Table 11: Monitoring frequency and determinands after construction.

| Location     | Well Screen<br>(mAOD)* | Purpose            | Start Date      | End Date        | Water Level | Water Quality | Frequency     | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling and<br>analysis | Trigger Level for notification |
|--------------|------------------------|--------------------|-----------------|-----------------|-------------|---------------|---------------|--------------------------------|---------------------------------------|--------------------------------|
|              | 23.50 -<br>64.02       | West Hyde SPZ<br>1 | April 2023      | October<br>2026 |             | Suite (a)     | Quarterly     |                                |                                       |                                |
| ML032-RC001  |                        |                    | 2027            | 2031            | Manual dip  |               | Annually      | 35                             |                                       |                                |
|              |                        |                    | 2032            | 2052            |             |               | Every 5 years |                                |                                       |                                |
| N4024 BO 407 | 42 - 62.40             | CSP shaft          | October<br>2023 | October<br>2026 |             | Suite (a)     | Quarterly     |                                |                                       |                                |
| ML034-RO407  |                        |                    | 2027            | 2031            | Manual dip  |               | Annually      | 55                             |                                       |                                |
|              |                        |                    | 2032            | 2052            |             |               | Every 5 years |                                |                                       |                                |
| ML035-       |                        | River              | October<br>2023 | October<br>2026 |             |               | Quarterly     |                                | Purging with                          |                                |
| RO002a       | 6 - 16                 | Misbourne          | 2027            | 2031            | Manual dip  | Suite (a)     | Annually      | 10                             | direct analysis<br>of purged          | >50 NTU                        |
|              |                        | Crossing #1        | 2032            | 2052            |             |               | Every 5 years | -                              |                                       | pH <6 or >9                    |
| ML035-       |                        | River              | October<br>2023 | October<br>2026 |             |               | Quarterly     |                                | water quality<br>using a              | EC >1000                       |
| RO003a       | 3 - 6                  | Misbourne          | 2027            | 2031            | Manual dip  | Suite (a)     | Annually      | 4                              | portable                              |                                |
|              |                        | Crossing #1        | 2032            | 2052            |             |               | Every 5 years | 1                              | turbidity meter                       |                                |
|              | 13.50 -                | River              | October<br>2023 | October<br>2026 |             | Logger        | Quarterly     |                                |                                       |                                |
| ML035-CR003  | 34.50                  | Misbourne          | 2027            | 2031            | Logger      | Suite (a) and | Annually      | - 25                           |                                       |                                |
|              | 54.50                  | Crossing #1        | 2032            | 2052            |             | (d)           | Every 5 years |                                |                                       |                                |
|              |                        | 5.                 | October         | October         |             |               | Quarterly     |                                |                                       |                                |
| ML035-CR004  | 10 20                  | River              | 2023            | 2026            |             |               |               | 25                             |                                       |                                |
| (CHK)        | 18 - 28                |                    | 2027            | 2031            | Manual dip  | Suite (a)     | Annually      | - 25                           |                                       |                                |
|              |                        | Crossing #1        | 2032            | 2052            |             |               | Every 5 years | 7                              |                                       |                                |

| Location         | Well Screen<br>(mAOD)* | Purpose        | Start Date | End Date        | Water Level   | Water Quality       | Frequency       | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling and<br>analysis | Trigger Level<br>for notification |
|------------------|------------------------|----------------|------------|-----------------|---------------|---------------------|-----------------|--------------------------------|---------------------------------------|-----------------------------------|
|                  |                        | River          | October    | October         |               | Logger              | Quarterly       |                                |                                       |                                   |
| ML035-CR004      | 0.50 - 6               | Misbourne      | 2023       | 2026            | Logger        | Suite (a) and       |                 | - 3                            |                                       |                                   |
| (RTD)            | 0.50 0                 | crossing #1    | 2027       | 2031            | Logger        | (d)                 | Annually        | 5                              |                                       |                                   |
|                  |                        | crossing #1    | 2032       | 2052            |               | (u)                 | Every 5 years   |                                |                                       |                                   |
|                  |                        |                | October    | October         |               |                     | Quarterly       |                                |                                       |                                   |
| ML035-RO001      | 4.50 - 50              | CSG PWS        | 2023       | 2026            | Manual dip    | Suite (a)           |                 | - 30                           |                                       |                                   |
| WILUSS-KOUUT     | 4.50 - 50              | C30 F W3       | 2027       | 2031            | Mariua up     | Suite (a)           | Annually        | 50                             |                                       |                                   |
|                  |                        |                | 2032       | 2052            |               |                     | Every 5 years   |                                |                                       |                                   |
|                  |                        |                | October    | October         |               |                     | Quarterly       |                                |                                       |                                   |
|                  | 14.50 -                |                | 2023       | 2026            |               | Suite (a)           |                 | 10                             | Purging with                          |                                   |
| ML035-RC013      | 61.50                  | CSG PWS        | 2027       | 2031            |               |                     | Annually        | 40                             |                                       |                                   |
|                  |                        |                | 2032 2052  |                 | Every 5 years |                     | direct analysis | >50 NTU                        |                                       |                                   |
|                  |                        |                | January    | October         |               |                     | Quarterly       |                                | of purged<br>water quality            | pH <6 or >9                       |
|                  | 20 40                  |                | 2024       | 2026            |               |                     |                 | 25                             |                                       | EC >1000                          |
| ML037-RC001      | 30 - 40                | CSG Shaft      | 2027       | 2031            | Logger        | Suite (a)           | Annually        | 35                             | using a                               |                                   |
|                  |                        |                | 2032       | 2052            |               |                     | Every 5 years   |                                | portable<br>turbidity meter           |                                   |
|                  |                        |                | January    | October         | Manual dip    |                     | Quarterly       |                                | turbially meter                       |                                   |
|                  | 27.50 65               |                | 2024       | 2026            |               |                     |                 | 50                             |                                       |                                   |
| ML037-RC014      | 37.50 - 65             | CSG Shaft      | 2027       | 2031            |               | Suite (a)           | Annually        | 50                             |                                       |                                   |
|                  |                        |                | 2032       | 2052            |               |                     | Every 5 years   |                                |                                       |                                   |
| ML039-RC015      |                        |                |            | October         |               |                     | Quarterly       |                                | 1                                     |                                   |
|                  |                        |                | July 2024  | 2026            |               |                     |                 |                                |                                       |                                   |
|                  | 31 - 41                | Amersham shaft | 2027       | Logger Suite    | Suite (a)     | Annually            | 35              |                                |                                       |                                   |
|                  |                        |                | 2032       | 2052            | 1             |                     | Every 5 years   | 1                              |                                       |                                   |
| ML040-<br>RC004c | 27 - 47                | Amersham shaft | July 2024  | October<br>2026 | Manual dip    | Logger<br>Suite (a) | Quarterly       | 40                             | 1                                     |                                   |

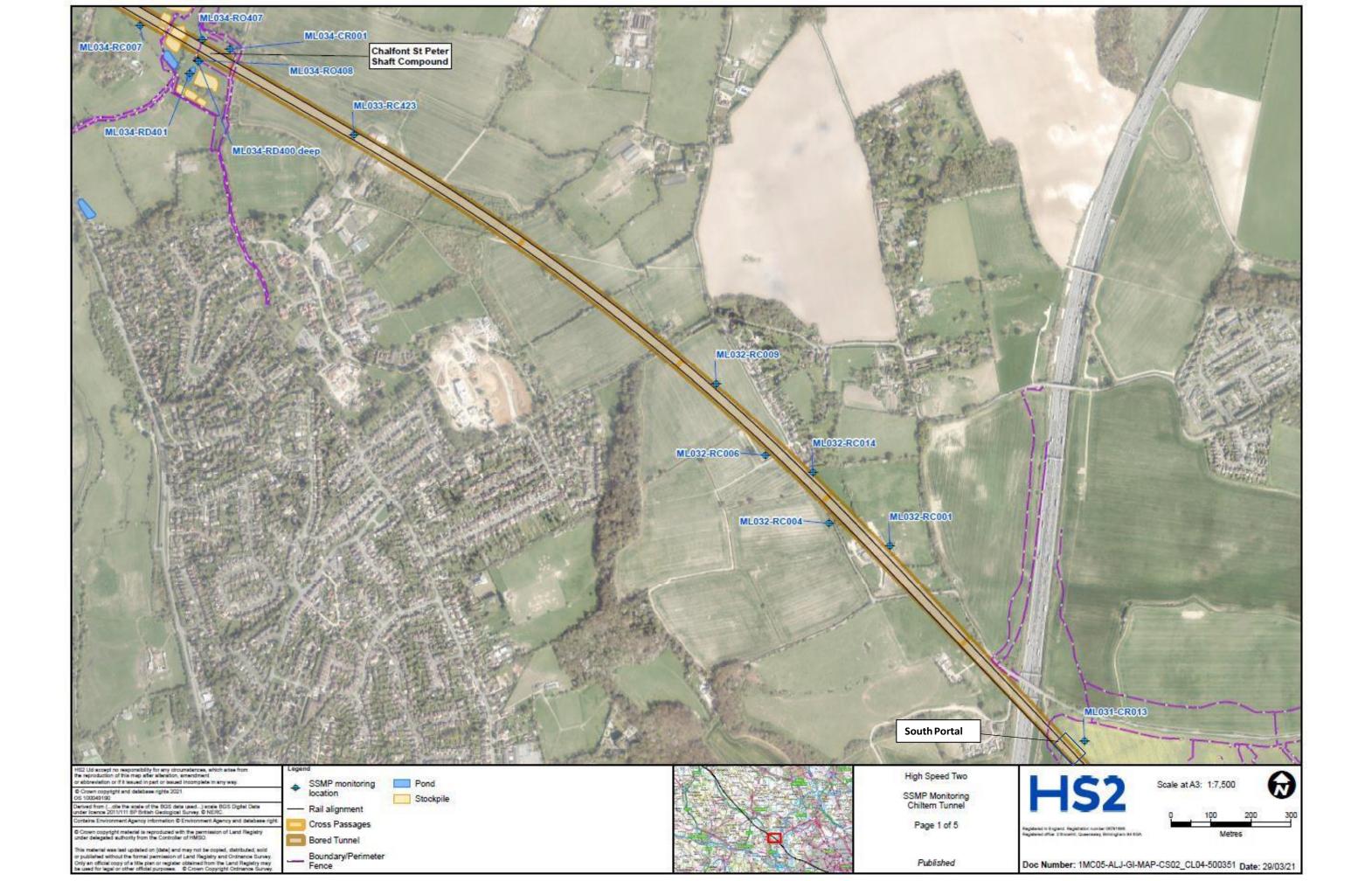
| Location     | Well Screen<br>(mAOD)* | Purpose                 | Start Date      | End Date        | Water Level     | Water Quality | Frequency     | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling and<br>analysis                                    | Trigger Level for notification |
|--------------|------------------------|-------------------------|-----------------|-----------------|-----------------|---------------|---------------|--------------------------------|--------------------------------------------------------------------------|--------------------------------|
|              |                        |                         | 2027            | 2031            |                 |               | Annually      |                                |                                                                          |                                |
|              |                        |                         | 2032            | 2052            |                 |               | Every 5 years |                                |                                                                          |                                |
|              | 27 70                  | A secondaria se alta fi | July 2024       | October<br>2026 |                 |               | Quarterly     | 45                             |                                                                          |                                |
| ML039-RO002  | 27 - 70                | Amersham shaft          | 2027            | 2031            | Logger          | Suite (a)     | Annually      | 45                             |                                                                          | l                              |
|              |                        |                         | 2032            | 2052            |                 |               | Every 5 years |                                | _                                                                        |                                |
|              |                        | Diver                   |                 | October         |                 |               | Quarterly     |                                |                                                                          |                                |
| ML040-RO007  | 10 - 50                | River<br>Misbourne      |                 | 2026            | Manual dip      | Suite (a)     |               | 40                             |                                                                          |                                |
| WIL040-KO007 | 10 - 50                | crossing #2             | 2027            | 2031            | ivialiual uip   | Suite (a)     | Annually      | 40                             |                                                                          |                                |
|              |                        | crossing #2             | 2032            | 2052            |                 |               | Every 5 years |                                | Duration                                                                 |                                |
|              |                        | River                   | October         | October         | Manual dip      |               | Quarterly     |                                | Purging with<br>direct analysis<br>of purged<br>water quality<br>using a | >50 NTU                        |
| ML041-RO001  | 5 - 30.20              | Misbourne               | 2024            | 2026            |                 | o Suite (a)   |               | 25                             |                                                                          |                                |
| WIL041-K0001 | 5 - 50.20              | crossing #2             | 2027            | 2031            |                 |               | Annually      | 25                             |                                                                          | pH <6 or >9                    |
|              |                        | crossing #2             | 2032            | 2052            |                 |               | Every 5 years |                                |                                                                          | EC >1000                       |
|              | 5 25                   | River                   | October<br>2024 | October<br>2026 |                 |               | Quarterly     | 20                             | portable<br>turbidity meter                                              |                                |
| ML041-RC012  | 5 - 25                 | Misbourne               | 2027            | 2031            | Manual dip      | Suite (a)     | Annually      | 20                             | turbiaity meter                                                          |                                |
|              |                        | crossing #2             | 2032            | 2052            |                 |               | Every 5 years |                                |                                                                          |                                |
|              |                        | River                   | October         | October         |                 |               | Quarterly     |                                |                                                                          |                                |
| ML042-RC002  | 20 - 30                | Misbourne               | 2024            | 2026            | Logger          | Suite (a)     |               | - 25                           |                                                                          |                                |
| WIL042-RC002 | 20 - 30                |                         | 2027            | 2031            | Logger          | Suite (a)     | Annually      | 25                             |                                                                          |                                |
|              |                        | crossing #2             | 2032            | 2052            |                 |               | Every 5 years |                                |                                                                          |                                |
| ML042-       |                        | River                   | October         | October         |                 |               | Quarterly     |                                |                                                                          |                                |
| CR001a       | 0.8 - 6                | -                       | 2024            | 2026            | 2026 Manual din | Suito (a)     |               | - 3                            |                                                                          |                                |
| (shallow)    | 0.0 - 0                | Misbourne               | 2027            | 2031            |                 | ip Suite (a)  | Annually      | 5                              |                                                                          |                                |
| (Shanow)     | crossing #             | crossing #2             | 2032            | 2052            |                 |               | Every 5 years |                                |                                                                          |                                |

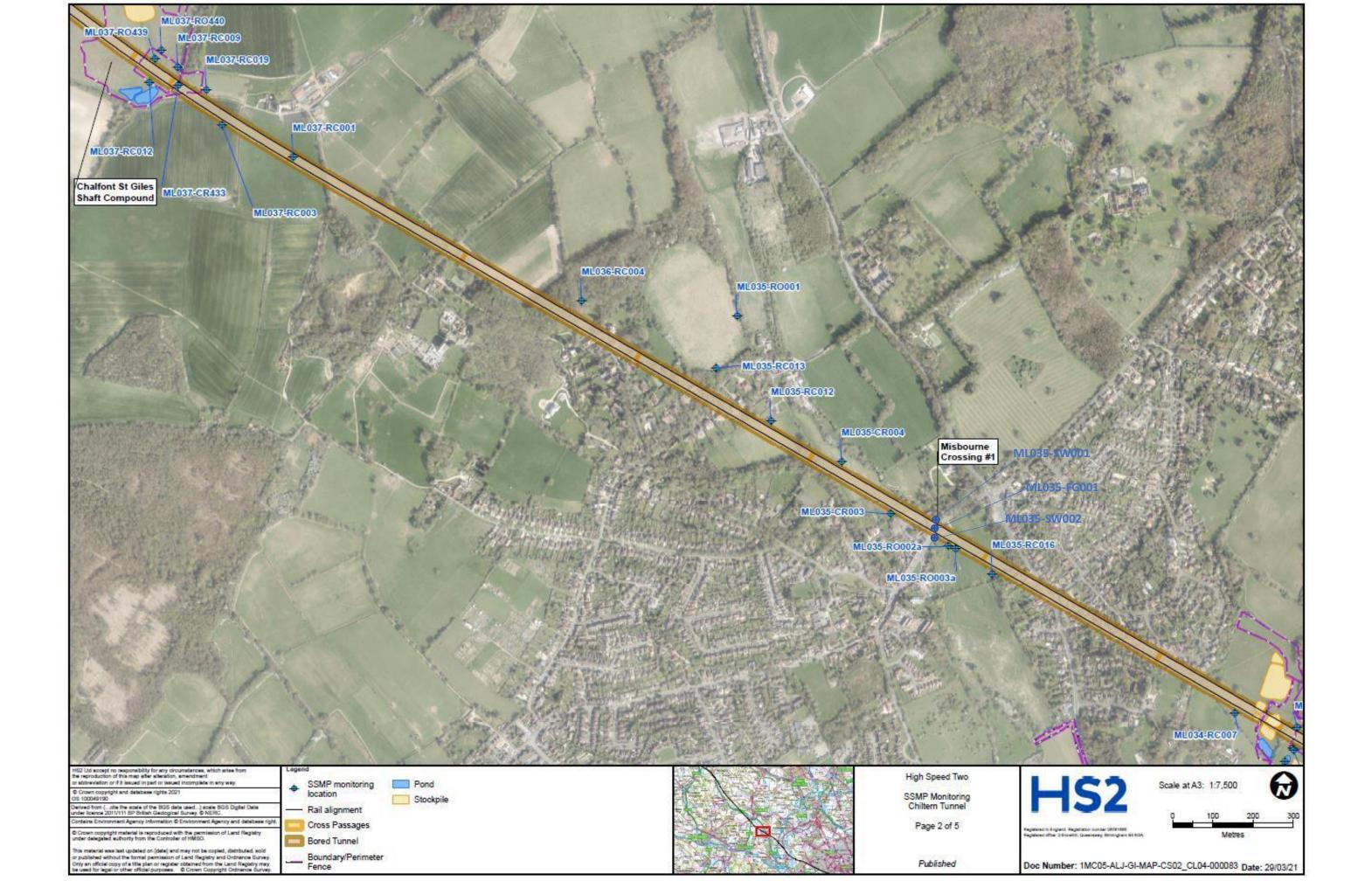
| Location      | Well Screen<br>(mAOD)* | Purpose                   | Start Date      | End Date        | Water Level | Water Quality | Frequency     | Depth of<br>sampling<br>(mbgl) | Method of<br>Sampling and<br>analysis                         | Trigger Level<br>for notification |
|---------------|------------------------|---------------------------|-----------------|-----------------|-------------|---------------|---------------|--------------------------------|---------------------------------------------------------------|-----------------------------------|
| ML042-        |                        | River                     | October<br>2024 | October<br>2026 |             | Logger        | Quarterly     |                                |                                                               |                                   |
| CR001a (deep) | 20 - 31                | Misbourne                 | 2027            | 2031            | Logger      | Suite (a) and | Annually      | 25                             |                                                               |                                   |
|               |                        | crossing #2               | 2032            | 2052            |             | (d)           | Every 5 years |                                |                                                               |                                   |
|               |                        | River                     | October<br>2024 | October<br>2026 |             | Logger        | Quarterly     |                                |                                                               |                                   |
| ML042-RO004   | 1 - 3                  | Misbourne<br>crossing #2  | 2027            | 2031            | Logger      | Suite (a)     | Annually      | 2                              |                                                               |                                   |
|               |                        |                           | 2032            | 2052            |             |               | Every 5 years |                                | Purging with<br>direct analysis<br>of purged<br>water quality |                                   |
|               | 14.90 -                | River                     | October<br>2024 | October<br>2026 |             | Logger        | Quarterly     |                                |                                                               | >50 NTU<br>pH <6 or >9            |
| ML042-CR003   | 35.10                  | Misbourne                 | 2027            | 2031            | Logger      | Suite (a) and | Annually      | 30                             |                                                               | EC >1000                          |
|               |                        | crossing #2               | 2032            | 2052            |             | (d)           | Every 5 years |                                | using a portable                                              |                                   |
|               | 22.50.22               | Little                    | October<br>2024 | October<br>2026 |             |               | Quarterly     | 25                             | turbidity meter                                               |                                   |
| ML042-RC014   | 22.50 - 33             | Missenden shaft           | 2027            | 2031            | Manual dip  | Suite (a)     | Annually      | 25                             |                                                               |                                   |
|               |                        |                           | 2032            | 2052            |             |               | Every 5 years |                                |                                                               |                                   |
|               |                        |                           | October         | October         |             |               | Quarterly     |                                |                                                               |                                   |
| ML042-RC021   | 50 - 65 I              | Little<br>Missenden shaft | 2024            | 2026            | Logger      | Suite (a)     |               | - 55                           |                                                               |                                   |
|               |                        |                           | 2027            | 2031            |             | Suite (a)     | Annually      |                                |                                                               |                                   |
|               |                        |                           | 2032            | 2052            |             |               | Every 5 years |                                |                                                               |                                   |

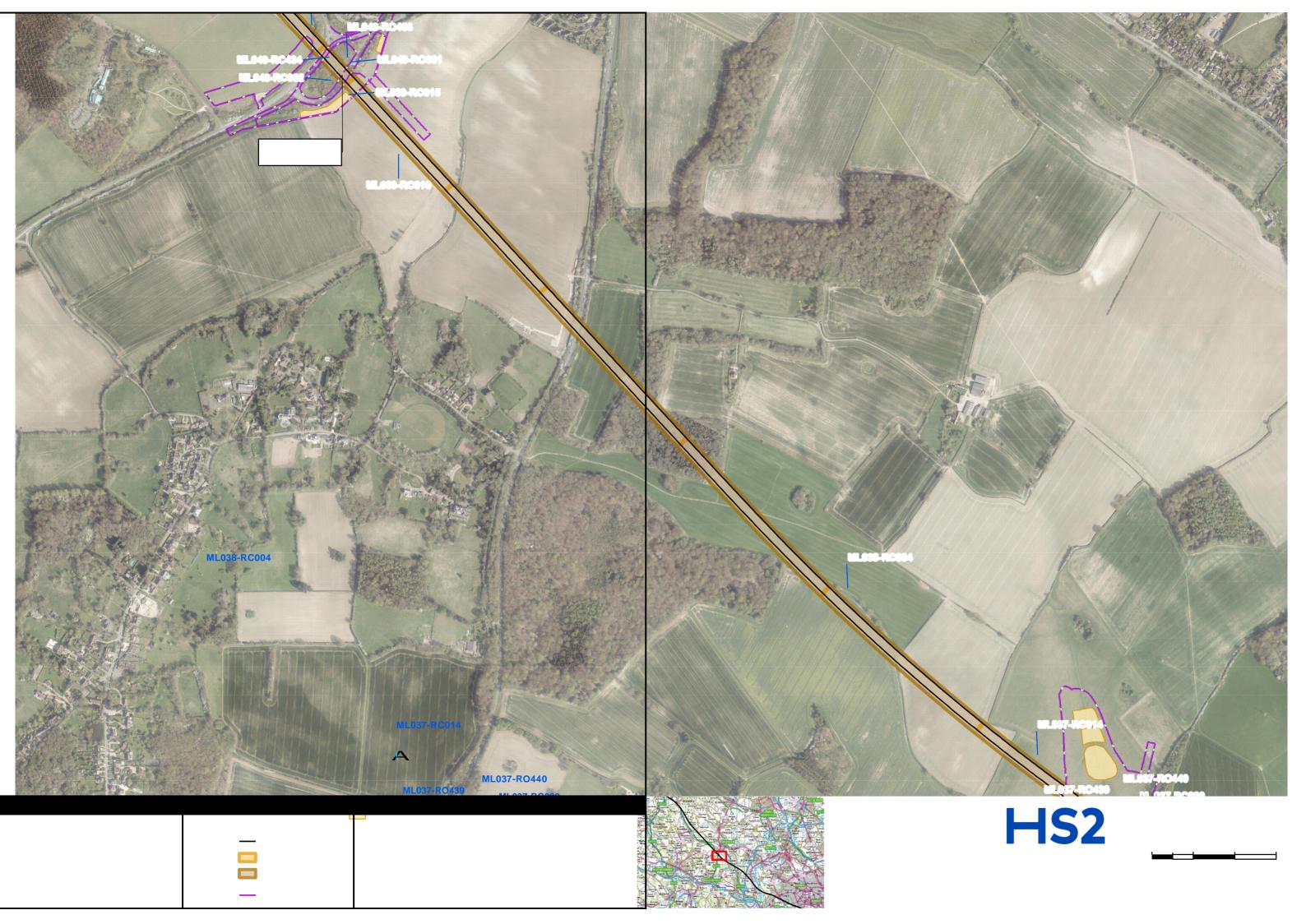
Notes: Turbidity threshold reduced to 50 NTU as turbidity generation not anticipated during post construction period.

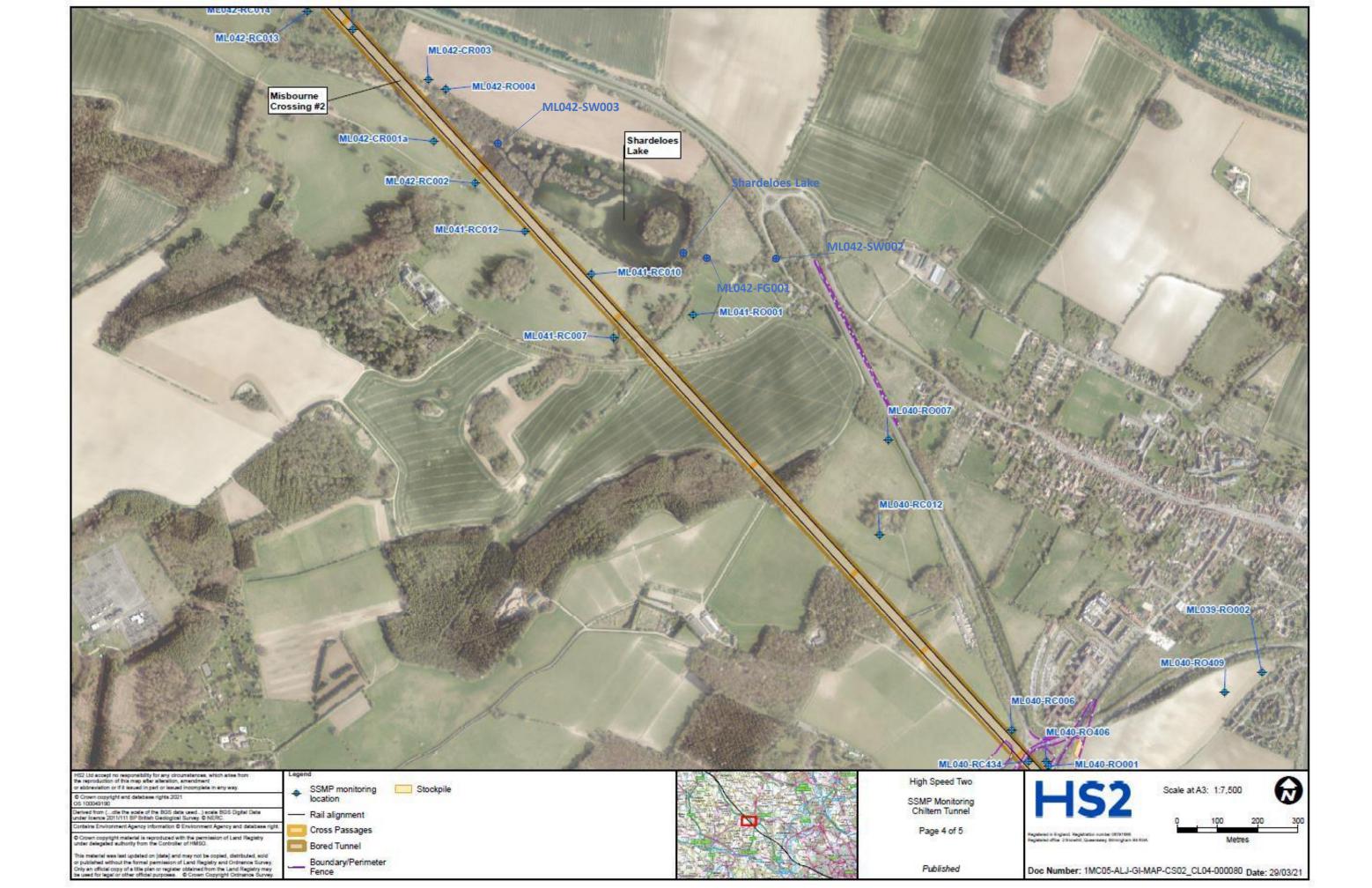
## **6** Mitigation requirements

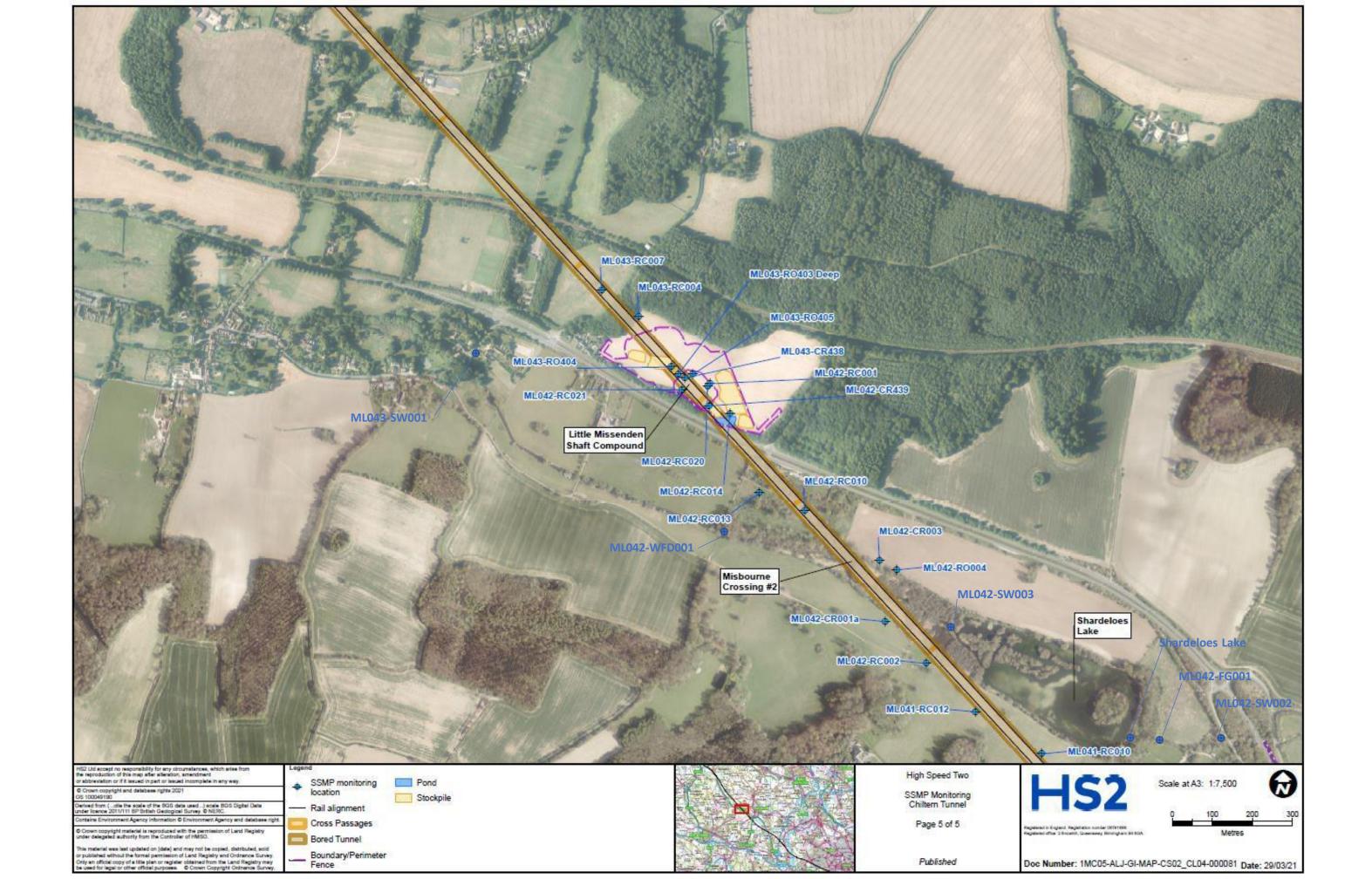
- 6.1.1 Mitigation of the risk to public water supplies is being implemented in the form of construction of a turbidity treatment plant at Amersham to treat water from both Amersham and Chalfont St Giles. This turbidity treatment plant will be operational prior to the start of tunnel construction. Avoidance of Affinity Water's peak demand period is not feasible given the 3-year duration of the tunnelling works. The type of TBM has been selected specifically to minimise the potential effects on the groundwater environment.
- 6.1.2 Further mitigation is not anticipated to be required during tunnel construction. However, the purpose of the monitoring is to ascertain whether there are changes that do require mitigation and if so options for this would be discussed with HS2, Affinity Water and the Environment Agency prior to implementation.
- 6.1.3 If the monitoring data do indicate that water quality impacts are occurring and mitigation is required then mitigation options could include the use of existing boreholes or new boreholes to act as scavenger wells and contain any contaminated groundwater. Modification of the approach to construction of some of the cross passages could be implemented and also changes in how TBM2 is operated could be made if effects are identified from TBM1.
- 6.1.4 If significant negative effects on the River Misbourne are detected then localised stream lining may be necessary. It is also possible that there may be a beneficial effect.
- 6.1.5 Negative impacts at unlicensed abstraction CFA08-GWUA03, located near Amersham and approximately 140m south-west of the tunnel may require mitigation in the form of provision of a temporary alternative water supply. This may involve provision of a temporary main or paying for additional water use if a main is already present on site or use of tankers depending upon the volume of water required and the quality required. This would only likely to be required for a period of 10 to 15 days for each TBM.


## 7 Communication


7.1.1 Communication between Align, HS2, the Environment Agency and Affinity Water will be critical during the periods when the TBM is in close proximity to the most sensitive receptors including the Affinity Water PWS and the two River Misbourne crossings. Relevant contacts are listed in Table 12.


- 7.1.2 Communication will be undertaken on an agreed regular timescale but this will be the basic communication schedule and will not preclude flexibility to change this, or additional *ad hoc* communication in response to specific activities or monitoring findings. The basic communication will include:
  - Daily phone contact between Align tunnel environment manager or Align groundwater data manager and Affinity Water. Others to join as required.
  - Weekly forward look call on Monday morning between Align tunnel environment manager, HS2, EA, and Affinity Water. Align tunnel Manager as required.
  - Monthly meeting at Main Compound between Align tunnel environment manager, Align tunnel Manager, HS2, EA, and Affinity Water.
- 7.1.3 Reporting during construction will include the following:
  - Daily/weekly data transfer in excel format by email from Align to EA and Affinity Water during periods of daily and weekly monitoring. Any significant changes in water level or water quality would be flagged.
  - Monthly transfer of data logger information, except where there are specific requirements for more frequent data transfer associated with activities that could affect water levels. The data transfer would include a summary of any significant changes in water level or water quality.
  - Monthly monitoring reports summarising the data collected over the past month and flagging any issues, trends or deviations from expected results.
  - Annual formal interpretative assessment reports of all water monitoring data.
  - In the event of any sudden or unexpected changes or significant anomalies in the collected data then these would be checked and reported to HS2, the Environment Agency and Affinity Water immediately, especially if they are likely to result in a significant effect on Affinity Water sources.
- 7.1.4 In the event that real time data are required from selected locations due to a particular risk or issue then a telemetry system could be installed.


| Name | Organisation          | Contact No. | Role                                   | Email address |
|------|-----------------------|-------------|----------------------------------------|---------------|
|      |                       |             | Key points of contact                  |               |
| XXXX | Align                 | XXXX        | Align Water<br>Manager                 | XXXX          |
| XXXX | Align                 | XXXX        | Groundwater data<br>manager            | XXXX          |
| XXXX | HS2                   | XXXX        | HS2 water lead                         | XXXX          |
| XXXX | Environment<br>Agency | XXXX        | Consenting<br>Officer<br>(Groundwater) | XXXX          |
|      | ·                     |             | Other contacts                         |               |
| XXXX | Affinity<br>Water     | XXXX        |                                        | XXXX          |
| XXXX | Affinity<br>Water     | XXXX        |                                        | XXXX          |
| XXXX | Affinity<br>Water     | XXXX        | Groundwater<br>technical<br>specialist | XXXX          |
| XXXX | Affinity<br>Water     | XXXX        | Affinity Water /<br>HS2 manager        | XXXX          |
| XXXX | Environment<br>Agency | XXXX        | Water Quality<br>Permitting Lead       | XXXX          |
| XXXX | Align                 | XXXX        | ТВС                                    | XXXX          |
| XXXX | Align                 | XXXX        | ТВС                                    | ХХХХ          |
| XXXX | Align                 | XXXX        | Early Works<br>Environment<br>Manager  | XXXX          |
| XXXX | Align                 | XXXX        | Environment<br>Manager                 | XXXX          |
| XXXX | Align                 | XXXX        | Align<br>groundwater<br>specialist     | XXXX          |
| XXXX | Align                 | XXXX        | Align<br>groundwater<br>specialist     | XXXX          |
| XXXX | Align                 | XXXX        | Align surface<br>water specialist      | XXXX          |


# **Appendix A Monitoring Locations**











# **Appendix B Borehole logs**



| Drilled BH/CJ<br>Logged CM<br>Checked MM<br>Approved MM                                                       | Start<br>07/11/201<br>End<br>28/11/201                       | 6 Co<br>Ha<br>1.2                        | uipment, Methods and Re<br>omacchio 305<br>and dug inspection pit fro<br>20m to 20.50m./Rotary o |                            | 20m. Op<br>from 20.5   | en hole rotary drilling from 20.00<br>50m to 43.50m.                                                                         | (m)<br>20.00<br>21.50 | Dlameter Ca<br>(mm)<br>200<br>150<br>146 | sing Depth<br>(m)<br>20.00<br>21.50 | Ground L<br>Coordina<br>National ( | tes (m)              |                               | E 501            | 6 mOD<br>761.29<br>929.49             |  |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------|-------------------------------------|------------------------------------|----------------------|-------------------------------|------------------|---------------------------------------|--|
| Samples an                                                                                                    |                                                              | •                                        |                                                                                                  |                            |                        | Strata Description                                                                                                           |                       |                                          |                                     |                                    |                      |                               |                  |                                       |  |
| Depth<br>(m)                                                                                                  | TCR<br>SCR<br>RQD                                            | lf                                       | Records/Samples                                                                                  | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                         |                       | Detail                                   |                                     | Depth,<br>(m)<br>(Thicknes:        | Level<br>(mbgl)<br>S | Legend                        | Water-<br>strike | Backfill                              |  |
| 0.30 - 0.50                                                                                                   | B 1A                                                         |                                          |                                                                                                  | 07/ <b>11/1</b> 6<br>0.00  | 0950<br>Dry            | Grass over soft brown slightly sar<br>slightly gravelly CLAY. Gravel is<br>angular to subrounded fine to<br>medium of flint. | dy                    |                                          |                                     |                                    |                      |                               |                  | · · · · · · · · · · · · · · · · · · · |  |
| 0.60 - 0.80                                                                                                   | B 2A                                                         |                                          |                                                                                                  |                            |                        |                                                                                                                              |                       |                                          |                                     |                                    |                      |                               |                  |                                       |  |
| 1 1.00 - 1.20                                                                                                 | В ЗА                                                         |                                          |                                                                                                  | 07/ <b>11/1</b> 6<br>0.00  | 1600<br>Dry            |                                                                                                                              |                       |                                          |                                     |                                    |                      |                               |                  |                                       |  |
| 2                                                                                                             |                                                              |                                          |                                                                                                  | 08/11/16<br>0.00           | 0900<br>Dry            | Sandy CLAY. Flush returns are<br>brown. (Driller's description).<br>(Probably BEACONSFIELD<br>GRAVEL)                        |                       |                                          |                                     | 1.20                               | +85.96               |                               |                  |                                       |  |
|                                                                                                               |                                                              |                                          |                                                                                                  |                            |                        |                                                                                                                              |                       |                                          |                                     |                                    |                      |                               |                  |                                       |  |
| .3                                                                                                            |                                                              |                                          |                                                                                                  |                            |                        |                                                                                                                              |                       |                                          |                                     |                                    |                      |                               |                  |                                       |  |
| 4                                                                                                             |                                                              |                                          |                                                                                                  |                            |                        |                                                                                                                              | 1                     |                                          | 295                                 | 0                                  | 3                    |                               |                  |                                       |  |
| 5                                                                                                             |                                                              |                                          |                                                                                                  |                            |                        |                                                                                                                              | <u>v</u>              | *                                        |                                     |                                    |                      |                               |                  | 12                                    |  |
| 3<br>Groundwater Entrie<br>No. Depth Strike                                                                   |                                                              | 5                                        |                                                                                                  | Depth Sea                  | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                  | <u>}</u>              |                                          |                                     | Hard Bo<br>Depths (                |                      | Duration (n                   | nins)Toc         | els used                              |  |
| Notes: For explanatio<br>abbreviations see Ke<br>All depths and reduce<br>hickness given in bra<br>Scale 1:25 | y to Explorato<br>ed levels in m<br>ackets in depti<br>(c) l | ry Hole<br>etres, S<br>h colun<br>ESG ww | Stratum<br>nn. Projec                                                                            |                            | D60                    | rsham Tunnel (Chiltern) Area C<br>77-16<br>1 Speed Two (HS2) Limited                                                         |                       |                                          |                                     | Borehole<br>N                      | /L0                  | <b>32-R</b> (<br>Sheet 1 of 9 |                  | 1                                     |  |



| hrilled BH/CJ Start<br>ogged CM 07/11/2016<br>Checked MM End<br>pproved MM 28/11/2016                          | Equipment, Methods and Rer<br>Comacchio 305<br>Hand dug inspection pit fro<br>1.20m to 20.50m./Rotary c | m GL to 1.20 | m. Oper<br>om 20.50    | n hole rotary drilling from 0,00<br>0m to 43.50m.                                                     | to<br>(m)<br>20.00<br>21.50<br>43.50 | Dlameter<br>(mm)<br>200<br>150<br>146 | Casing Depth<br>(m)<br>20.00<br>21.50 | Ground Level<br>Coordinates (m<br>National Grid |             | 87.16 mOD<br>E 501761.29<br>N 191929.49 |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------|------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|-------------|-----------------------------------------|
| Samples and Tests                                                                                              |                                                                                                         |              | 5                      | Strata Description                                                                                    |                                      |                                       |                                       |                                                 |             |                                         |
| Depth SCR If<br>(m) RQD                                                                                        | Records/Samples                                                                                         | Casing       | Time &<br>Water<br>(m) | Main                                                                                                  |                                      | Detail                                |                                       | Depth, Leve<br>(m) (mbgl<br>(Thickness          |             | <sup>Water-</sup> Backfill              |
| (m)         300<br>RQD         1           6                                                                   |                                                                                                         | (mbgl)       | (m)                    | Sandy CLAY, Flush returns are<br>brown. (Driller's description).<br>(Probably BEACONSFIELD<br>GRAVEL) | 2                                    |                                       |                                       | I (m)                                           |             |                                         |
| vo. Depui Suike (iii) Kemarks                                                                                  |                                                                                                         | Depth Seale  | a (m)                  | Depths (m) Remarks                                                                                    |                                      |                                       |                                       | Depths (m)                                      | Duration (m | ins)Tools used                          |
| tes: For explanation of symbols an<br>breviations see Key to Exploratory<br>depths and reduced levels in metri | Hole Records,                                                                                           | i No.        | Amer<br>D607           | rsham Tunnel (Chiltern) Area C                                                                        |                                      |                                       |                                       | Borehole                                        | )32-R(      |                                         |



| rilled BH/CJ                                                                                        |                                                                           | Equipment, Methods and Ren                                                 | narks                      |                        | Dept                                                                                                  | h from to<br>m) (m)                | (mm)              | Casing Depth<br>(m)   | Ground Level                     |                              | 87.16 mOD                  |   |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------|------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|-----------------------|----------------------------------|------------------------------|----------------------------|---|
| ged CM<br>cked MM                                                                                   |                                                                           | Comacchio 305<br>Hand dug inspection pit fro<br>1.20m to 20.50m./Rotary of | m GL to 1.2                | 20m, Ope               | en hole rotary drilling from 20                                                                       | 00 20.00<br>.00 21.50<br>.50 43.50 | 200<br>150<br>146 | (m)<br>20.00<br>21.50 | Coordinates (m)<br>National Grid |                              | E 501761.29<br>N 191929.49 |   |
| roved MM                                                                                            | 28/11/2016                                                                | 1.20m to 20.30m./Notary 0                                                  | ore animing i              |                        |                                                                                                       | 43.30                              | 140               |                       |                                  |                              |                            |   |
| amples and                                                                                          |                                                                           |                                                                            |                            |                        | Strata Description                                                                                    |                                    |                   |                       | Depth, Level                     | <u> </u>                     |                            | - |
| Depth<br>(m)                                                                                        | TCR<br>SCR IF<br>RQD                                                      | Records/Samples                                                            | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                  |                                    | Detail            |                       | (m) (mbgl)<br>(Thickness         | Logond                       | Water-<br>strike Backfi    | " |
|                                                                                                     |                                                                           |                                                                            |                            |                        | Sandy CLAY. Flush returns are<br>brown. (Driller's description).<br>(Probably BEACONSFIELD<br>GRAVEL) |                                    |                   |                       |                                  |                              |                            |   |
| 2                                                                                                   |                                                                           |                                                                            |                            |                        |                                                                                                       |                                    |                   |                       |                                  |                              |                            |   |
| 14                                                                                                  |                                                                           |                                                                            |                            |                        | GRAVEL. Flush returns are br<br>(Driller's description) (Probably<br>BEACONSFIELD GRAVEL)             |                                    | AC                | ,eQ                   | 13.80 + 13.31                    |                              |                            |   |
|                                                                                                     |                                                                           |                                                                            | 08/11/16<br>0.00           | 1600<br>1.60           |                                                                                                       | n                                  |                   | -                     |                                  |                              |                            | / |
| <u>;                                    </u>                                                        |                                                                           |                                                                            |                            |                        |                                                                                                       |                                    |                   |                       | 15.00 +72.10                     | ·····                        |                            |   |
| oundwater Entries                                                                                   | (m) Remarks                                                               |                                                                            | Depth Sea                  |                        | Depth Related Remarks<br>Depths (m) Remarks                                                           |                                    |                   |                       |                                  | Duration (mi                 | ins)Tools used             |   |
| tes: For explanation<br>previations see Key<br>depths and reduce<br>kness given in bra<br>cale 1:25 | y to Exploratory H<br>ed levels in metre<br>ackets in depth co<br>(c) ESG | Hole Records,<br>es, Stratum<br>plumn, AGS Project                         |                            | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                 |                                    |                   |                       |                                  | <b>32-RC</b><br>Sheet 3 of 9 | 001                        |   |



| Drilled BH/CJ<br>Logged CM<br>Checked MM<br>Approved MM                                                         | Start<br>07/11/2016<br>End<br>28/11/2016                           | Equipment, Methods<br>Comacchio 305<br>Hand dug inspectic<br>1.20m to 20.50m./F | n pit from GL to 1,2                      | 0m. Op<br>rom 20.9     | en hole rotary drilling from 20                                                        | h from to<br>m) (m)<br>.00 20.00<br>0.00 21.50<br>1.50 43.50 | Dlameter (<br>(mm)<br>200<br>150<br>146 | casing Depth<br>(m)<br>20.00<br>21.50 | Ground Level<br>Coordinates (m)<br>National Grid |                               | 87.16<br>E 5017<br>N 1919 | 61.29    |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------|------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------|---------------------------|----------|
| Samples an                                                                                                      | d Tests                                                            | •                                                                               |                                           |                        | Strata Description                                                                     |                                                              |                                         |                                       |                                                  |                               |                           |          |
| Depth<br>(m)                                                                                                    | TCR<br>SCR IF<br>RQD                                               | Records/Sam                                                                     | Date &<br>Casing<br>(mbgl)                | Time &<br>Water<br>(m) | Main                                                                                   |                                                              | Detail                                  |                                       | Depth, Level<br>(m) (mbgl)<br>(Thickness         | Legend                        | Water-<br>strike          | Backfill |
|                                                                                                                 |                                                                    |                                                                                 | 09/11/16<br>0.00                          | 0600<br>Dry            | Dense GRAVEL with flint. (Dril<br>description). (Probably<br>BEACONSFIELD GRAVEL)      | ler's                                                        |                                         |                                       |                                                  |                               |                           |          |
| 16                                                                                                              |                                                                    |                                                                                 | 09/11/16<br>15.00                         | 1830<br>6.50           |                                                                                        |                                                              |                                         |                                       |                                                  |                               | <br> <br> <br>            |          |
|                                                                                                                 |                                                                    |                                                                                 | 10/11/16<br>15.00                         | 0720<br>6.90           |                                                                                        |                                                              |                                         |                                       |                                                  |                               |                           |          |
| - 17                                                                                                            |                                                                    |                                                                                 |                                           |                        |                                                                                        |                                                              |                                         |                                       |                                                  |                               |                           |          |
|                                                                                                                 |                                                                    |                                                                                 |                                           |                        |                                                                                        |                                                              |                                         |                                       | bř.                                              | C)                            |                           |          |
| - 19                                                                                                            |                                                                    |                                                                                 |                                           |                        | Structureless CHALK. (Drillers<br>description). (SEAFORD CHAI<br>FORMATION - Ungraded) | LK                                                           | Acc                                     | e Q                                   | 19.50 +67.60                                     |                               |                           |          |
|                                                                                                                 |                                                                    |                                                                                 |                                           |                        |                                                                                        | n l                                                          |                                         | -                                     |                                                  |                               | 1                         |          |
| 20<br>Groundwater Entries<br>No. Depth Strike                                                                   | s<br>(m) Remarks                                                   |                                                                                 | Depth Sea                                 | led (m)                | Depth Related Remarks<br>Depths (m) Remarks<br>19.00 - 20.00 Bentonite seal (Aqu       | iler protection),                                            |                                         |                                       | Hard Boring<br>Depths (m)                        | Duration (n                   | ins)Tool:                 | s used   |
| Notes: For explanatio<br>abbreviations see Key<br>All depths and reduce<br>thickness given in bra<br>Scale 1:25 | y to Exploratory<br>ed levels in meti<br>ackets in depth<br>(c) ES | Hole Records.<br>es. Stratum                                                    | Project<br>Project No.<br>Carried out for | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>1 Speed Two (HS2) Limited                  |                                                              |                                         |                                       | Borehole<br>MLO                                  | <b>32-R</b> (<br>Sheet 4 of 9 |                           | 1        |



| Drilled BH/CJ<br>.ogged CM<br>Checked MM<br>Approved MM                                                              | Start<br>07/11/2<br>End<br>28/11/2       | 2016                                         | Equipment, Methods and<br>Comacchio 305<br>Hand dug inspection pit<br>1.20m to 20.50m./Rotar | from GL to 1.2                   |                        | en hole rotary drilling from                                                                                                                                                                                                                                                                                                                                                                  | (m) (i<br>0.00 20<br>20.00 21                                                                       | to Dlameter (<br>m) (mm)<br>0.00 200<br>1.50 150<br>3.50 146                                                    | Casing Depth<br>(m)<br>20.00<br>21.50 | Ground<br>Coordin<br>National | ates (m)              |                               | E 501            | 6 mOD<br>761.29<br>929.49 |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------|-----------------------|-------------------------------|------------------|---------------------------|
| Samples an                                                                                                           |                                          |                                              |                                                                                              |                                  |                        | Strata Description                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                     |                                                                                                                 |                                       |                               |                       |                               |                  |                           |
| Depth<br>(m)                                                                                                         | TCR<br>SCR<br>RQD                        | lf                                           | Records/Samples                                                                              | Date &<br>Casing<br>(mbgl)       | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                     | Detail                                                                                                          |                                       | Depth,<br>(m)<br>(Thickne:    | Level<br>(mbgl)<br>SS | Legend                        | Water-<br>strike | Backfill                  |
|                                                                                                                      |                                          |                                              | _                                                                                            | 10/11/16<br>20.50<br>17/11/16    | 1545<br>5.52<br>0800   | Structureless CHALK. (Dnll<br>description). (SEAFORD C<br>FORMATION - Ungraded)<br>Core recovered non-intact,<br>presumably due to drilling t<br>fints, Recovered materials                                                                                                                                                                                                                   | HALK                                                                                                |                                                                                                                 |                                       | 20.50                         | +66.66                |                               |                  |                           |
| 20.50 <b>-</b> 21.00                                                                                                 | 94<br>0<br>0                             | NIDD                                         |                                                                                              | 20.50                            | Dry                    | medium and large flints. (S<br>CHALK FORMATION - Ung                                                                                                                                                                                                                                                                                                                                          | EAFORD                                                                                              |                                                                                                                 |                                       |                               |                       |                               | ,<br>,           | <br>   <br>               |
| 21.00 - 21.50                                                                                                        | 100<br>0<br>0                            | NIDD<br>NIDD                                 |                                                                                              |                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                     |                                                                                                                 |                                       |                               |                       |                               |                  |                           |
| 22                                                                                                                   |                                          | NIDD<br>NIDD<br>NIDD                         |                                                                                              |                                  |                        | Core NIDD, recovered as a<br>gravel of weak medium der<br>CHALK with black specklin<br>surfaces. (SEAFORD CHA<br>FORMATION - Ungraded)                                                                                                                                                                                                                                                        | nsity white<br>g on                                                                                 |                                                                                                                 |                                       | 21.60                         | +65.56                |                               |                  |                           |
| 22.15 - 22.40<br>21.50 - 23.00                                                                                       | 95<br>23<br>23                           | 60<br>80<br>130                              | - C 1                                                                                        |                                  |                        | Weak medium density whith<br>with occasional grey wispy<br>seams. Fractures are horizi<br>two sets at 70 to 85 degree<br>spaced (60/80/130) undular<br>closed with black speckling<br>occasional orange staining<br>surfaces. (SEAFORD CHAI<br>FORMATION - Grade B2)                                                                                                                          | marl<br>ontal and<br>is closely<br>ting rough<br>and 22<br>on 22<br>LK                              | 2.50 Grey wispy m<br>2.60 Grey marl se                                                                          | -                                     |                               | +65.01                |                               |                  |                           |
| 23<br>23.50 - 23.72                                                                                                  |                                          | 60<br>80<br>120                              | C 2                                                                                          |                                  |                        | Lamination (10mm thick) of<br>MARL. (Possibly SHOREH<br>MARL. LEWES NODULAR<br>FORMATION)<br>Weak medium density whiti<br>with occasional grey wispy<br>seams. Fractures are horiz-<br>two sets at 70 to 85 degree<br>spaced (60/80/130) undula<br>closed with black speckling<br>occasional orange staining<br>surfaces. (LEWES NODUL<br>CHALK FORMATION - Gra<br>Recovery is of stronger ma | AM<br>CHALK<br>CHALK<br>marl<br>ontal and<br>ss closely<br>ting rough<br>and<br>on<br>AR<br>dde B2) | 2.90 Medium nodu                                                                                                | -                                     | 22.80<br><br>23.00            | +64.36                |                               |                  |                           |
| 23.00 - 24.50<br>24                                                                                                  | 68<br>31<br>10                           | NA<br>NA<br>NA                               | _                                                                                            |                                  |                        | Weaker material not recover<br>Recovered material compri-<br>medium to high density whi<br>CHALK. Fractures are horiz<br>85 degrees closely spaced<br>(60/80/120) undulating roug<br>slight black speckling on su<br>(LEWES NODULAR CHAL<br>FORMATION- Grade A2)<br>AZCL. Driller's description:<br>(LEWES NODULAR CHAL<br>FORMATION - Ungraded)<br>Recovery is of stronger ma                | ered.<br>ses weak<br>ite 22<br>flin<br>cc<br>gh with<br>rfaces.<br>K<br>CHALK.<br>K<br>terial.      | 8,80-23.90 Medium<br>nt surrounded by<br>omminuted chalk (<br>illing induced).                                  | -                                     | 23.90                         | +62.76                |                               |                  |                           |
| 24.50 - 25.00<br><del>25</del>                                                                                       | 94<br>12<br>0                            |                                              |                                                                                              |                                  |                        | Weaker material not recove<br>Recovered material compri<br>medium to high density whi<br>CHALK, Fractures are hori;<br>85 degrees closely spaced<br>(60/80/120) undulating roug<br>slight black speckling on su<br>(LEWES NODULAR CHAL                                                                                                                                                        | ses weak<br>ite<br>zontal and 22<br>gh with<br>irfaces, st<br>K                                     | 4.70 Smc <sup>1</sup> nodula<br>4.75-75.00 40 deg<br>cture with heavy<br>uning on surface.<br>5.00 Small nodula | ree -<br>orange -                     |                               |                       |                               |                  |                           |
| Depth<br>Froundwater Entrie<br>No. Depth Strike                                                                      |                                          | narks                                        | Records                                                                                      | Depth Sea                        | lled (m)               | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                                                                                                                                   | 0002                                                                                                |                                                                                                                 |                                       | Hard Bo<br>Depths             |                       | Duration (n                   | nins)Too         | ols used                  |
| lotes: For explanations see Ke<br>bbreviations see Ke<br>Il depths and reduce<br>hickness given in bra<br>Scale 1:25 | y to Explo<br>ed levels i<br>ackets in o | oratory H<br>in metre<br>depth cc<br>(c) ESG | Iole Records.<br>s. Stratum<br>Jumn.                                                         | ject<br>ject No.<br>ried out for | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                                                                                                                 |                                       | Borehol                       | NL0                   | <b>32-R</b> (<br>Sheet 5 of 6 |                  | 1                         |



| Drilled BH/CJ<br>Logged CM<br>Checked MM<br>Approved MM   | Start<br>07/11/2<br>End<br>28/11/2  | 2016 (<br>H<br>1      | Equipment, Methods and Rem<br>Comacchio 305<br>Hand dug inspection pit fror<br>L20m to 20.50m./Rotary co | n GL to 1.2                | 20m. Op<br>from 20.5   | en hole rotary drilling from<br>60m to 43,50m.                                                                                                                                                                                                                                                                                                                                    | to         Dlameter         Casing Depth           (m)         (mm)         (m)           20.00         20.00         20.00           21.50         150         21.50           43.50         146         146 | Ground Level<br>Coordinates (m)<br>National Grid | 87.16 mOD<br>E 501761.29<br>N 191929.49 |
|-----------------------------------------------------------|-------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------|----------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|
| Samples an                                                |                                     | ts                    |                                                                                                          |                            |                        | Strata Description                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               | Depth, Level                                     |                                         |
| Depth<br>(m)                                              | TCR<br>SCR<br>RQD                   | lf                    | Records/Samples                                                                                          | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                                                                                                              | Detail                                                                                                                                                                                                        | (m) (mhdl)                                       | Legend <sup>Water-</sup> Backfill       |
| 25.00 - 26.00                                             | 63<br>38<br>38                      |                       |                                                                                                          |                            |                        | FORMATION- Grade A2)                                                                                                                                                                                                                                                                                                                                                              | 25.30 Medium nodular flint,<br>surrounding chalk has<br>orange speckling.                                                                                                                                     |                                                  |                                         |
| 26.50 - 26.70<br>26.00 - 27.50<br>27                      | 63<br>34<br>22                      | 60<br>80<br>120       | C 3                                                                                                      |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                   | 26.30 Horizontal fracture<br>infilled (10mm) of with<br>comminuted chalk.<br>26.45 Medium nodular flint.                                                                                                      | 27.50 +59.66                                     |                                         |
| 27.50 - 28.25<br>- <sup>28</sup><br>28.25 - 28. <b>44</b> | 45<br>0<br>0                        | NIDD<br>NIDD<br>190   | C 4                                                                                                      |                            |                        | Partial recovery. Core loss presumed<br>to be due to erosion of chalk during<br>drilling. Recovered material<br>comprises medium nodular flints.<br>(LEWES NODULAR CHALK<br>FORMATION - Ungraded)<br>Partial recovery. Core loss presumed<br>to be due to erosion of chalk during<br>drilling. Recovered material<br>comprises weak medium density<br>white CHALK. (LEWES NODULAR |                                                                                                                                                                                                               | 27.50 +59.66                                     |                                         |
| 28.25 - 29.00<br>- 29                                     | 11<br>0                             |                       |                                                                                                          |                            |                        | CHALK FORMATION - Ungraded)<br>No recovery. Driller's description:<br>CHALK, (LEWES NODULAR<br>CHALK FORMATION - Ungraded)                                                                                                                                                                                                                                                        | 28.90 Medium nodular flint.                                                                                                                                                                                   | 29.00 +58.16                                     |                                         |
| 29.00 - 30.50<br>39                                       | 0<br>0                              | NA<br>NA<br>NA        |                                                                                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                   | 2. Acces                                                                                                                                                                                                      |                                                  |                                         |
| Notes: For explanatic<br>abbreviations see Ke             | (m) Rem<br>on of symi<br>y to Explo | bols and<br>pratory H | , Stratum                                                                                                |                            | Ame                    | Depth Related Remarks<br>Depths (m) Remarks<br>ersham Tunnel (Chiltern) Area C                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                               | Borehole                                         | uration (mins)Tools used                |
| hickness given in bra<br>Scale 1:25                       | ackets in o                         | (c) ESG               | umn.<br>www.esg.co.uk<br>/2017 11:41:29<br>Project<br>Carried                                            |                            |                        | 77-16<br>n Speed Two (HS2) Limited                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |                                                  | 2-RC001<br>heet 6 of 9                  |



| Drilled BH/CJ<br>Logged CM<br>Checked MM<br>Approved MM                                                        | Start<br>07/11/2<br>End<br>28/11/2       | 2016                                        | Equipment, Methods and Re<br>Comacchio 305<br>Hand dug inspection pit fr<br>1.20m to 20.50m./Rotary ( | om GL to 1.2               | 20m. Op<br>from 20.3   | en hole rotary drilling from<br>50m to 43.50m.                                                                                                                                                                                                                                                              | to         Dlameter         Casing Depth           (m)         (mm)         (m)           20.00         200         20.00           21.50         150         21.50           43.50         146         146 | Ground Level<br>Coordinates (m)<br>National Grid | 87.16 mOD<br>E 501761.29<br>N 191929.49 |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|
| Samples an                                                                                                     | d Tes                                    | ts                                          |                                                                                                       |                            | 1                      | Strata Description                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                             |                                                  |                                         |
| Depth<br>(m)                                                                                                   | TCR<br>SCR<br>RQD                        | lf                                          | Records/Samples                                                                                       | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                                        | Detail                                                                                                                                                                                                      | Depth, Level<br>(m) (mbgl)<br>(Thickness         | Water-<br>strike Backfill               |
|                                                                                                                |                                          |                                             | -                                                                                                     |                            |                        | No recovery. Dniller's description:<br>CHALK. (LEWES NODULAR<br>CHALK FORMATION - Ungraded)<br>Weak medium density white<br>CHALK. Fractures are horizontal and<br>80 degrees very closely to closely<br>spaced (30/50/100), undulating<br>rough with slight black speckling on<br>surfaces. (LEWES NODULAR |                                                                                                                                                                                                             | 30,50 +56,66                                     |                                         |
| - 3131.00 - 31.32<br>30.50 - 32.00                                                                             | 99<br>38<br>31                           | 30<br>50<br>100                             | C 5                                                                                                   |                            |                        | CHALK FORMATION - Grade B3/<br>B4)                                                                                                                                                                                                                                                                          | 31.00 Large nodular flint. —<br>31.00-31.40 80 degree<br>fracture with heavy orange<br>staining on surface.<br>31.50 Medium nodular flint. –                                                                |                                                  |                                         |
|                                                                                                                |                                          |                                             |                                                                                                       | 17/11/16<br>20.50          | 1730<br>Dry            |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                             |                                                  |                                         |
| - 32<br>32.00 - 33.00<br>32.60 - 32.90                                                                         | 100<br>45<br>30                          |                                             | C 6                                                                                                   | 18/11/16<br>20.50          | 0800<br>Dry            | Weak medium density white CHALK.<br>Fractures are horizontal and 80<br>degrees closely spaced<br>(100/150/200) undulating rough with<br>slight black speckling on surfaces.<br>(LEWES NODULAR CHALK<br>FORMATION- Grade A2)                                                                                 |                                                                                                                                                                                                             | 32.10 +55.00                                     |                                         |
| - 33<br>33.00 - 33.50                                                                                          | 100<br>0<br>0                            | 100<br>150                                  |                                                                                                       |                            |                        |                                                                                                                                                                                                                                                                                                             | 33.30-33.70 Highly fractured<br>(probably drilling induced)<br>with occasional small nodular<br>flints.                                                                                                     |                                                  |                                         |
| - 3433.50 - 34.50<br>34,10 - 34,30                                                                             | 100<br>51<br>51                          | 200                                         | C 7                                                                                                   |                            |                        |                                                                                                                                                                                                                                                                                                             | equ                                                                                                                                                                                                         |                                                  |                                         |
| 34.50 - 35.00                                                                                                  | 100<br>0<br>0                            |                                             |                                                                                                       |                            |                        |                                                                                                                                                                                                                                                                                                             | 34.75 Occasional orange<br>o, eck-es through core<br>(p ssib-e sponge bed).                                                                                                                                 |                                                  |                                         |
| Groundwater Entrie<br>No. Depth Strike                                                                         |                                          | arks                                        | 1                                                                                                     | Depth Sea                  | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                                                 | ,                                                                                                                                                                                                           | Hard Boring<br>Depths (m) Duration               | (mins)Tools used                        |
| Notes: For explanatic<br>abbreviations see Ke<br>All depths and reduce<br>thickness given in bra<br>Scale 1:25 | y to Explo<br>ed levels i<br>ackets in o | n metres<br>n metres<br>depth co<br>(c) ESG | ole Records,<br>s, Stratum<br>lumn, AGS                                                               |                            | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                                                                                                                                       |                                                                                                                                                                                                             | Borehole<br>ML032-R<br>Sheet 7 of                |                                         |



| Drilled BH/CJ<br>.ogged CM<br>Checked MM                                           | Start<br>07/11/<br>End               | 2016 C                                             |                                         | m GL to 1,2                |                        | en hole rotary drilling from 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,000 20,00 20,00 20,00 20,00 20,00 20,00 20,000 | to         Dlameter         Casing Depth           (m)         (mm)         (m)           20.00         200         20.00           21.50         150         21.50           42.50         146         21.50 | Ground Level<br>Coordinates (m)<br>Natjonal Grjd | 87.16 mOD<br>E 501761.29<br>N 191929.49 |
|------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|-----------------------------------------|----------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|
| pproved MM                                                                         | 28/11/                               | 2016                                               | .20m to 20.50m./Rotary c                | ore arilling f             | rom 20.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.50 <b>146</b>                                                                                                                                                                                              |                                                  | 101323.43                               |
| Samples an                                                                         |                                      | ts                                                 |                                         | D.: 6                      | <b>7</b> 5. 4          | Strata Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                               | Depth, Level                                     |                                         |
| Depth<br>(m)                                                                       | TCR<br>SCR<br>RQD                    | lf                                                 | Records/Samples                         | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Detail                                                                                                                                                                                                        | (m) (mbgl) Lege                                  | nd <sup>Water-</sup> Backfill           |
| 35.33 - 35.53                                                                      |                                      |                                                    | С 8                                     |                            |                        | Partial recovery. Core loss presumed<br>to be more weathered material.<br>Material recovered comprises weak<br>medium to high density white<br>nodular CHALK with a purplish hue.<br>Occasional orange speckling<br>throughout. (LEWES NODULAR<br>CHALK FORMATION - Ungraded)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                               |                                                  |                                         |
| 35.00 - 36.50                                                                      | 37<br>20<br>20                       |                                                    |                                         |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35.90-36,15 Drill cuttings of                                                                                                                                                                                 |                                                  |                                         |
| 36                                                                                 |                                      | NIDD                                               |                                         |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | chalk and flint.<br>                                                                                                                                                                                          |                                                  |                                         |
|                                                                                    |                                      | NIDD                                               |                                         | 18/11/16<br>20.50          | 1500<br>Dry            | Partial recovery, Core loss presumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | seams.<br>36.30 Horizontal fracture<br>infilled with 10mm<br>comminuted chalk.                                                                                                                                | 36.50 +50.66                                     |                                         |
| 3736.50 - 37.50                                                                    | 26<br>0<br>0                         |                                                    |                                         | 24/11/16<br>20.50          | 1100<br>Dry            | to be due to erosion of chalk by<br>drilling process. Recovered material<br>comprises a mixture of comminuted<br>CHALK and medium nodular flints.<br>(LEWES NODULAR CHALK<br>FORMATION - Ungraded)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                               |                                                  |                                         |
|                                                                                    |                                      |                                                    |                                         | 24/11/16<br>20.50          | 1830<br>33.00          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               | 37.50 +49.66                                     |                                         |
| 37.50 - 38.00                                                                      | 100<br>40<br>40                      | NIDD<br>NIDD<br>200                                |                                         | 25/11/16<br>20.50          | 0800<br>Dry            | White CHALK with much flint.<br>Recovered as predominately fine<br>and coarse gravel of flint. (LEWES<br>NODULAR CHALK FORMATION -<br>Ungraded)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37.80-38.00 Medium bed of white chalk.                                                                                                                                                                        |                                                  |                                         |
| 38                                                                                 |                                      |                                                    |                                         |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.00-38.20 NIDD, recovered-<br>as gravel of flint with brown                                                                                                                                                 |                                                  |                                         |
| 38.00 - 38.50                                                                      | 100<br>20<br>0                       |                                                    | NIDD<br>50<br>100                       |                            |                        | Weak medium density white nodular<br>CHALK with rare orange speckles.<br>Fractures are predominantly<br>horizontal occasionally 45 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | staining.<br>38.20 Medium nodular flint.<br>38,40 Medium nodular flint.                                                                                                                                       | 38,20 +48,96                                     |                                         |
| 38,45<br>38,50 - 39,00                                                             | 20<br>0                              |                                                    | D 9<br>NA<br>NA<br>NA                   |                            |                        | very closely to closely spaced and<br>locally non-intact (NI/50/100)<br>stepped and rough (LEWES<br>NODULAR CHALK FORMATION -<br>Grade A3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                               | 38.50 +48.66                                     |                                         |
| 39                                                                                 | 0                                    |                                                    | -                                       |                            |                        | AZCL. Driller's description: CHALK.<br>(LEWES NODULAR CHALK<br>FORMATION - Ungraded)<br>Weak medium density white nodular<br>CHALK with rare orange speckles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38.80 Medium nodular flint.<br>38.95 Medium nodular flint.                                                                                                                                                    | 38.80                                            |                                         |
| 39.00 - 39.50                                                                      | 100<br>26<br>0                       | NIDD<br>50<br>100                                  |                                         | 25/11/16<br>20.50          | 1400<br>Dry            | Fractures are predominantly<br>horizontal occasionally 45 degrees<br>very closely to closely spaced and<br>locally non-intact (NI/50/100)<br>stepped and rough (LEWES<br>NODULAR CHALK FORMATION -<br>Grade A3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.20-39.37 Soft comminue of<br>chalk.<br>39.30 Horizontal fracture<br>infilled 15mm of soft provin<br>slightly sandy c a                                                                                     |                                                  |                                         |
| 39.70 - 40.00                                                                      |                                      | 60<br>160<br>440                                   | C 10                                    | 28/11/16<br>20.50          | 0800<br>21.50          | Weak high density white nodular<br>CHALK with occasional grey marly<br>pockets (up to 15mm) and with<br>occasionally slightly sandy texture.<br>Fractures are predominantly<br>horizontal very close to medium<br>spaced (60/200/440) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39.38-39.45     45 de grue       fracture closed with orange       staining on surface.       39.40 Grey wispy marl seam.       39.60 Medium nodular flint.                                                   |                                                  |                                         |
| 40 <del>39.50 - 40.50</del>                                                        |                                      |                                                    |                                         |                            |                        | occasionally 80 degrees. A-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                               |                                                  | <u>-+</u> _0H0                          |
| No. Depth Strike                                                                   | (m) Rem                              | bols and                                           | Projec                                  | Depth Sea                  |                        | Depth Related Remarks<br>Depths (m) Remarks<br>ersham Tunnel (Chiltern) Area C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                               | Hard Boring<br>Depths (m) Duratio<br>Borehole    | on (mins)Tools used                     |
| bbreviations see Ke<br>II depths and reduce<br>hickness given in bra<br>Scale 1:25 | y to Explo<br>ed levels<br>ackets in | oratory Ho<br>in metres<br>depth colu<br>(c) ESG \ | ole Records.<br>Stratum<br>umn. Project |                            | D60                    | 77-16<br>h Speed Two (HS2) Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                               | ML032-                                           |                                         |



| orilled BH/CJ<br>ogged CM<br>shecked MM                                                                 | Start<br>07/11/2<br>End                  | 2016 C<br>H<br>1                                | quipment, Methods and Rer<br>Comacchio 305<br>land dug inspection pit fro<br>.20m to 20.50m./Rotary c | om GL to 1,2               | 20m. Op<br>from 20.5   | en hole rotary drilling from                                                                                                                                                                                                                   | 0.00 20.00                           | to Dlameter<br>(m) (mm)<br>20.00 200<br>21.50 150<br>43.50 146                                  | Casing Depth<br>(m)<br>20.00<br>21.50                    | Ground Le<br>Coordinat<br>National G | es (m)          |                               | 87.1<br>E 501    | 6 mOD<br>1761.29<br>1929.49 |
|---------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|-----------------|-------------------------------|------------------|-----------------------------|
| pproved MM<br>Samples an                                                                                | 28/11/2<br>d Tes                         |                                                 |                                                                                                       |                            |                        | Strata Description                                                                                                                                                                                                                             |                                      |                                                                                                 |                                                          |                                      |                 |                               |                  |                             |
| Depth<br>(m)                                                                                            | TCR<br>SCR<br>RQD                        | lf                                              | Records/Samples                                                                                       | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                           |                                      | Detail                                                                                          |                                                          |                                      | Level<br>(mbgl) | Legend                        | Water-<br>strike | Backfill                    |
|                                                                                                         | 100<br>84<br>52                          |                                                 | -                                                                                                     |                            |                        | fractures are undulating roug<br>slight black speckling on surf<br>(LEWES NODULAR CHALK<br>FORMATION - Grade A2/A3)<br>Weak high density white CH/<br>with occasional grey wispy m<br>seams. Fractures are horizor<br>closely to medium spaced | faces.<br>)<br>ALK<br>harl<br>ntal   | 40.20 Small nodul                                                                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 40.30                                | +46.86          |                               |                  |                             |
| 11 <b>40</b> ,50 <b>- 41</b> ,50                                                                        | 100<br>62<br>33                          |                                                 |                                                                                                       |                            |                        | (90/160/240) and occasionall<br>degrees. All fractures are und<br>rough closed with slight black<br>speckling on surfaces. (LEW<br>NODULAR CHALK FORMAT<br>Grade A3)                                                                           | dulating 2<br>k 2<br>/ES 1<br>FION - | 40.65 Grey wispy<br>40.70 Medium noo<br>with slight orange<br>40.90 Small nodul                 | lular flints -<br>speckling<br>-                         |                                      |                 |                               |                  |                             |
|                                                                                                         |                                          | 90<br>160<br>240                                |                                                                                                       |                            |                        |                                                                                                                                                                                                                                                | 5                                    | 41.40 Small nodul<br>surrounded by hea<br>staining.                                             | avy orange                                               | -<br>-<br>-<br>-<br>-                |                 |                               |                  |                             |
| 41.50 - 42.00<br>41.80 - 42.00                                                                          | 100<br>60<br>60                          |                                                 | C 11                                                                                                  |                            |                        |                                                                                                                                                                                                                                                | 2                                    | 41.65 Grey wispy<br>seams.<br>41.70 Small nodul<br>42.00 Orange stai                            | ar flint<br>-<br>-                                       |                                      |                 |                               |                  |                             |
| 42                                                                                                      |                                          |                                                 |                                                                                                       |                            |                        |                                                                                                                                                                                                                                                | (<br>2<br>5                          | 42.00 Orlange star<br>(30mm diameter),<br>42.10 Slight orang<br>speckling,<br>42.25 Small nodul | e _                                                      |                                      |                 |                               |                  |                             |
| 42.00 - 43.50<br>43                                                                                     | 40<br>9<br>9                             | NA<br>NA<br>NA                                  | -                                                                                                     |                            |                        | AZCL, Driller's description: C<br>(LEWES NODULAR CHALK<br>FORMATION - Ungraded)                                                                                                                                                                |                                      |                                                                                                 |                                                          | 42.60                                | +44.56          |                               |                  |                             |
|                                                                                                         |                                          |                                                 |                                                                                                       | 28/11/16<br>20.50          | 1715<br>38.12          | END OF EXPLORATORY                                                                                                                                                                                                                             |                                      |                                                                                                 |                                                          | 43.50                                | +43.66          |                               |                  |                             |
| 44                                                                                                      |                                          |                                                 |                                                                                                       |                            |                        | END OF EAFLORATORY                                                                                                                                                                                                                             | NULL                                 |                                                                                                 |                                                          |                                      |                 | Ċ,                            |                  |                             |
|                                                                                                         |                                          |                                                 |                                                                                                       |                            |                        |                                                                                                                                                                                                                                                |                                      | AC                                                                                              | .eqt                                                     | 0,                                   |                 |                               |                  |                             |
| 45                                                                                                      |                                          |                                                 |                                                                                                       |                            |                        |                                                                                                                                                                                                                                                |                                      |                                                                                                 |                                                          |                                      |                 |                               |                  |                             |
| <del>is</del><br>roundwater Entrie<br>No. Depth Strike                                                  |                                          | arks                                            |                                                                                                       | Depth Sea                  | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                    | 300                                  |                                                                                                 |                                                          | Hard Bor<br>Depths (r                |                 | Duration (n                   | nins)To          | ols used                    |
| otes: For explanation<br>breviations see Ke<br>I depths and reduce<br>ckness given in bra<br>Scale 1:25 | y to Explo<br>ed levels i<br>ackets in c | n metres<br>n metres<br>depth coli<br>(c) ESG 1 | Stratum                                                                                               |                            | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                                                                          |                                      |                                                                                                 |                                                          | Borehole<br><b>N</b>                 |                 | <b>32-R</b> (<br>Sheet 9 of 9 |                  | )1                          |



| Orilled AP/GR<br>.ogged CG<br>Checked MM<br>Approved MM                                                     | Start<br>14/11/2016<br>End<br>08/12/2016                              | Equipment, Methods and Re<br>Comacchio 305<br>Hand dug inspection pit fro<br>1.20m to 14.50m./Rotary o | om GL to 1.2               | 20m. Op<br>14.50m t    |                                                                                                                                                                                                                                                                                                                                                 | n to<br>(m)<br>14.50<br>30.05<br>50.60 | Dlameter<br>(mm)<br>200<br>150<br>146 | Casing Depth<br>(m)<br>30.05 | Ground Le<br>Coordinat<br>National G | es (m) |                               | 94.27<br>E 5016<br>N 1919 |          |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|------------------------------|--------------------------------------|--------|-------------------------------|---------------------------|----------|
| Samples an                                                                                                  | d Tests                                                               |                                                                                                        | Data 8                     | Time 9                 | Strata Description                                                                                                                                                                                                                                                                                                                              |                                        |                                       |                              | Depth,                               | Level  |                               |                           |          |
| Depth<br>(m)                                                                                                | SCR IF<br>RQD                                                         | Records/Samples                                                                                        | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                                                                            |                                        | Detail                                |                              | (m)<br>(Thickness                    | (mbgi) | Legend                        | Water-<br>strike          | Backfill |
|                                                                                                             |                                                                       |                                                                                                        | 14/11/16<br>0.00           | 0800<br>Dry            | Grass over firm brown slightly sand<br>slightly gravelly CLAY. Sand is fine i<br>coarse. Gravel is subangular to<br>subrounded fine to coarse.<br>Occasional pockets of light brown<br>slightly sandy clay. Gravel from<br>0.50m. (Possibly TOPSOIL)                                                                                            |                                        |                                       |                              |                                      | +93.67 |                               |                           | 0        |
| 1                                                                                                           |                                                                       |                                                                                                        | <b>14/11/16</b><br>0.00    | 1600<br>Dry            | Stiff orangish brown slightly sandy<br>gravelly CLAY. Sand is fine to<br>coarse. Gravel is subangular to wel<br>rounded fine to coarse of flint.<br>(Possibly CLAY WTH FLINTS)<br>Firm to stiff orangish brown slightly<br>sandy CLAY. Sand is fine to mediur<br>Occasional reddish brown fine to<br>medium sand. (Possibly CLAY WTI<br>FLINTS) | n.                                     |                                       |                              | <br>0.90<br><br>1.20                 | +93.37 |                               |                           |          |
|                                                                                                             |                                                                       |                                                                                                        | 15/11/16<br>0.00           | 0800<br>Dry            | Stiff brown gravelly CLAY, (Driller's<br>description). (Possibly CLAY WITH<br>FLINTS)                                                                                                                                                                                                                                                           |                                        |                                       |                              |                                      |        |                               |                           |          |
| 2                                                                                                           |                                                                       |                                                                                                        |                            |                        |                                                                                                                                                                                                                                                                                                                                                 |                                        |                                       |                              |                                      |        |                               |                           |          |
| 4                                                                                                           |                                                                       |                                                                                                        |                            |                        | Soft CHALK. (Driller's description).<br>(SEAFORD CHALK FORMATION -<br>Ungraded)                                                                                                                                                                                                                                                                 |                                        |                                       |                              | 3.50                                 | +90.77 |                               |                           |          |
| 5                                                                                                           |                                                                       |                                                                                                        |                            |                        |                                                                                                                                                                                                                                                                                                                                                 | 2<br>2                                 | Pcc                                   | e                            | 0                                    |        |                               |                           |          |
| roundwater Entrie<br>No. Depth Strike                                                                       | (m) Remarks                                                           | ,<br>,<br>,                                                                                            | Depth Sea                  |                        | Depth Related Remarks<br>Depths (m) Remarks<br>1.00 - 50.00 Natural growna logging.                                                                                                                                                                                                                                                             |                                        |                                       |                              | Hard Bor<br>Depths (r                |        | Duration (n                   | nins)Too                  | ls used  |
| lotes: For explanatic<br>bbreviations see Ke<br>II depths and reduce<br>hickness given in bra<br>Scale 1:25 | y to Exploratory<br>ed levels in metri<br>ackets in depth c<br>(c) ES | Hole Records,<br>es, Stratum<br>column, Projec                                                         |                            | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                                                                                                                                                                           |                                        |                                       |                              | Borehole<br><b>N</b>                 |        | <b>32-R</b> (<br>Sheet 1 of 1 |                           | 4        |



| Description         Strata Description           Trim         Trial         Description           Trim         Trial         Description         Trial         Event           Strata Description         Trial         Description         Trial         Event         Trial         Event                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Optimization         Optimization< |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



| rilled AP/GR<br>ogged CG<br>:hecked MM<br>pproved MM                                                    | Start<br>14/11/2<br>End<br>08/12/        | 2016 (<br>2016                                 | Equipment, Methods and Re<br>Comacchio 305<br>Hand dug inspection pit fr<br>I.20m to 14.50m./Rotary | om GL to 1.2               |                        |                                                                                                                                                                                                                                                                         | to         Dlameter<br>(m)           14.50         200           30.05         150           50.60         146 | Casing Depth<br>(m)<br>30.05 | Ground Level<br>Coordinates (m)<br>N <del>at</del> ional Grid |                               | 94.27 mOD<br>E 501608.91<br>N 191986.38 |
|---------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------|-------------------------------|-----------------------------------------|
| Samples and<br>Depth<br>(m)                                                                             | TCR<br>SCR<br>RQD                        | lis<br>If                                      | Records/Samples                                                                                     | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Strata Description                                                                                                                                                                                                                                                      | Detail                                                                                                         |                              | Depth, Level<br>(m) (mbgl)<br>(Thickness                      | Legend                        | <sup>Water-</sup> Backfill              |
|                                                                                                         |                                          |                                                |                                                                                                     | 15/11/16<br>0.00           | 1700<br>3.00           | Soft CHALK. (Dnller's description).<br>(SEAFORD CHALK FORMATION -<br>Ungraded)                                                                                                                                                                                          |                                                                                                                |                              | ) (m)<br>                                                     |                               |                                         |
| 1                                                                                                       |                                          |                                                |                                                                                                     | 16/11/16<br>0.00           | 0800<br>Dry            |                                                                                                                                                                                                                                                                         |                                                                                                                |                              |                                                               |                               |                                         |
| 12                                                                                                      |                                          |                                                |                                                                                                     |                            |                        |                                                                                                                                                                                                                                                                         |                                                                                                                |                              |                                                               |                               |                                         |
| 13                                                                                                      |                                          |                                                |                                                                                                     |                            |                        |                                                                                                                                                                                                                                                                         |                                                                                                                |                              | 10 C                                                          |                               |                                         |
|                                                                                                         |                                          |                                                |                                                                                                     | 16/11/16<br>11.10          | 1700<br>5.00           |                                                                                                                                                                                                                                                                         |                                                                                                                | e P                          | 14.50 +79.77                                                  |                               |                                         |
| 014 50 - 45 50                                                                                          |                                          |                                                | NA<br>NA<br>NIDD<br>NIDD<br>- NIDD                                                                  | 17/11/16<br>11.10          | 0800<br>8.45           | White CHALK recovered non-intact<br>as comminuted chalk with fragments<br>of weak to strong low density chalk.<br>(Probably disturbed by drilling).<br>(SEAFORD CHALK FORMATION -<br>Ungraded)<br>Recovery is of stronger materials.<br>Weaker materials not recovered. | 14.50-14.70 A 201<br>14.77-14.84 2 subh<br>(b degrees) brown<br>partings (probably of<br>disturbed).           | clay _                       | <br>14.85 +79.42                                              |                               |                                         |
| oundwater Entrie<br>No. Depth Strike                                                                    |                                          | lf<br>arks                                     | Records                                                                                             | Depth Sea                  | led (m)                | Depth Related Remarks<br>Depths (m) Remarks<br>14.50 - 15.00 Coring through housing pr                                                                                                                                                                                  | viously drilled by open he                                                                                     | ble methods.                 | Hard Boring<br>Depths (m)                                     | Duration (mi                  | ns)Tools used                           |
| otes: For explanatio<br>ibreviations see Ke<br>I depths and reduce<br>ckness given in bra<br>Scale 1:25 | y to Explo<br>ed levels i<br>ackets in o | oratory H<br>in metres<br>depth col<br>(c) ESG | s, Stratum<br>lumn. AGS                                                                             |                            | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                                                                                                   |                                                                                                                |                              |                                                               | <b>32-RC</b><br>Sheet 3 of 11 |                                         |



| orilled AP/GR<br>ogged CG<br>Checked MM                                                                               | Start<br>14/11/<br>End               | 2016 (                                         |                                                    | m GL to 1.2                                       |                                       | en hole rotary drilling from 14.50                                                                                                                                                                                                                                                                                                                      | to Dlameter Casing Depth<br>(m) (mm) (m)<br>14.50 200 30.05<br>30.05 150                                                                                                                                                          | Ground Level<br>Coordinates (m)<br>National Grid                   | 94.27 mOD<br>E 501608.91<br>N 191986.38 |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|
| pproved MM                                                                                                            | епа<br>08/12/                        |                                                | .20m to 14.50m./Rotary c                           | oring from 1                                      | 4.50m t                               | o 50.60m. 30.05                                                                                                                                                                                                                                                                                                                                         | 50.60 146                                                                                                                                                                                                                         | National Grid                                                      | N 191900.36                             |
| Samples an                                                                                                            | d Tes                                | ts                                             |                                                    |                                                   |                                       | Strata Description                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |                                                                    |                                         |
| Depth<br>(m)                                                                                                          | TCR<br>SCR<br>RQD                    | lf                                             | Records/Samples                                    | Date &<br>Casing<br>(mbgl)                        | Time &<br>Water<br>(m)                | Main                                                                                                                                                                                                                                                                                                                                                    | Detail                                                                                                                                                                                                                            | Depth, Level<br>(m) (mbgl)<br>(Thickness                           | Legend <sup>Water-</sup> Backfill       |
| 15.02 - 15.26                                                                                                         | 80<br>50<br>27                       | 50<br>90<br>170                                | C 1<br>NIDD<br>NIDD<br>30<br>40                    |                                                   |                                       | Recovered material comprises very<br>weak medium to high density white<br>unstained CHALK with light grey and<br>light yellow mottling (possible<br>burrows). Shell fragments (2-5mm<br>thick) scattered throughout. Fracture<br>Set 1 - subhorizontal (5 degrees)<br>closely to medium spaced                                                          | inclined joints moderately<br>black speckles and greenish<br>brown staining.<br>15.26-15.40 Recovered as<br>NI. with flint fragments (up to                                                                                       |                                                                    |                                         |
| 15.50 - 16.00<br>16                                                                                                   | <b>4</b> 0<br>0<br>0                 |                                                | 50<br>NIDD<br>NIDD<br>NIDD<br>NIDD<br>NIDD<br>NIDD |                                                   |                                       | (70/100/250) slightly to moderately<br>black speckled undulating rough. Se<br>2 - 30 degrees probably closely<br>spaced slightly to moderately black<br>speckled planar to undulating rough.<br>Set 3 - 55-60 degrees with slight to<br>moderate black speckling and slight<br>greyish brown staining planar rough.<br>Set 4 - Subvertical (90 degrees) | 70mm) and one shell<br>fragment 90x2mm thick.<br>15.40-15.50 Two parallel<br>subvertical (85 degrees)<br>joints, moderate black<br>speckling.<br>15.50-15.80 AZCL<br>15.50-16.00 Recovery is NI<br>of sand sized flint and chalk  |                                                                    |                                         |
| 16.00 - 16.50<br>16.30 - 16.45                                                                                        | 50<br>40<br>30                       |                                                | NA<br>NA<br>NA<br>C 2                              |                                                   |                                       | Sightly to moderately black speckled<br>locally moderately orangish brown<br>stained planar rough, (SEAFORD<br>CHALK FORMATION - Grade A3/<br>B3, where recovered)                                                                                                                                                                                      | debris (cuttings) fragments<br>(up to 60mm) of very weak<br>medium density chalk.<br>15.97 5x50mm lens of<br>orangish brown sitty clay.<br>Small nodular flint.<br>16.00 Black sitt.                                              | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                         |
| 16.50 - 17.00<br>17                                                                                                   | 100<br>100<br>24                     | NDP<br>NDP<br>NDP                              | NA                                                 |                                                   |                                       |                                                                                                                                                                                                                                                                                                                                                         | 16.00-16.25 AZCL<br>16.25-16.30 Fragments (up<br>to 100mm) of flint.<br>16.45-16.46 Comminuted<br>chalk due to drilling.<br>16.56-16.58 Moderate heavy<br>orangish brown staining on<br>subvertical (90 degrees)                  |                                                                    |                                         |
| 17.00 - 17.50                                                                                                         | 60<br>0<br>0                         |                                                | NA<br>NA<br>NIDD<br>NIDD<br>NIDD                   |                                                   |                                       |                                                                                                                                                                                                                                                                                                                                                         | fracture surface (fracture<br>combines to end of run<br>17.00m moderate black<br>speckles along whole length).<br>17.00-17.20 AZCL.<br>17.20-17.50 Recovered NI as<br>fragments (up to 100mm) of<br>very weak medium density      | 17.50 +76.77                                                       |                                         |
| 17.50 - 18.00<br>18                                                                                                   | 50<br>0<br>0                         |                                                |                                                    |                                                   |                                       | Partial recovery. Core loss presumed<br>to be more weathered material.<br>Recovered core comprises<br>extremely weak to weak medium<br>density, locally high density, white<br>CHALK recovered non-intact as<br>gravel and cobble fragments in a<br>comminuted chalk matrix.<br>Occasional brown staining, black                                        | CHALK with slight black<br>speckles on surfaces, flint<br>fragments (up to 70mm) and<br>compact comminuted chalk<br>with 5mm thick shell<br>fragments.<br>17.50-17.75 AZCL.<br>17.75-18.00 Recovered NI as<br>fragments (30mm) of |                                                                    |                                         |
| 18.00 - 18.50                                                                                                         | <b>4</b> 0<br>0<br>0                 |                                                |                                                    |                                                   |                                       | specking or grey mail on fragment<br>surfaces and occasional 5mm thick<br>shell fragments. (SEAFORD CHALK<br>FORMATION - Ungraded)                                                                                                                                                                                                                      | extremely weak to very weak<br>low to medium density chalk                                                                                                                                                                        |                                                                    |                                         |
| 18,50 - 19,00<br><sup>19</sup>                                                                                        | 30<br>20<br>20                       | 100                                            |                                                    |                                                   |                                       |                                                                                                                                                                                                                                                                                                                                                         | NI. Recovered material is<br>compact comminuted chalk<br>fragments (70mm) of very<br>weak to weak medium high<br>density chalk. Occasional<br>brown staining and black<br>speckles on surfaces.<br>18.50-18.75 AZCL.              | , tai                                                              |                                         |
| 19.00 - 19.50<br>19.40 - 19.50                                                                                        | 30<br>20<br>20                       |                                                | C 3                                                | 18/11/16<br>17/11/16<br>14,50<br><del>11,10</del> | 0800<br>1700<br>Dry<br><del>Dry</del> |                                                                                                                                                                                                                                                                                                                                                         | 18.85-19.00 Recovered as<br>NI, Recovered material is<br>fragments (60mm) of very<br>weak to weak medium high<br>density with a little black<br>speckling and grey ( nr.w)<br>surfaces. Occasiona - that<br>fragments (20mm, )    |                                                                    |                                         |
| <del>2019.50 - 20.50 -</del>                                                                                          |                                      | 70<br>110<br>140                               |                                                    |                                                   |                                       | Recovery is of stronger material.<br>Weaker materials not recovered.<br>Recovered material comprises very<br>weak to weak medium to high<br>density white unstructured CHALK<br>with wispy marl seams alternating                                                                                                                                       | 19.00-19.25 A 7CI.<br>19.25-19.40 Recovered as<br>NI. Recovered material is<br>fragments (90mm) of very<br>what to weak medium high<br>density chalk a little black<br>sp. ckling and grey marty<br>surfaces.                     | 19.60 +74.67                                                       |                                         |
| Froundwater Entrie<br>No. Depth Strike                                                                                |                                      | harks                                          | 1                                                  | Depth Sea                                         | led (m)                               | Depth Related Remarks<br>Depths (m) Remarks<br>29.50 - 30.00 150mm c sing surged belo<br>barrel.<br>30.40 - 37.90 Optical imaging.                                                                                                                                                                                                                      | w base of borehole to help free core                                                                                                                                                                                              | Hard Boring<br>Depths (m)                                          | Duration (mins)Tools used               |
| lotes: For explanations see Ke<br>obreviations see Ke<br>III depths and reduce<br>nickness given in bra<br>Scale 1:25 | y to Explo<br>ed levels<br>ackets in | oratory H<br>in metres<br>depth col<br>(c) ESG | Stratum                                            |                                                   | D60                                   | rsham Tunnel (Chiltern) Area C<br>77-16<br>1 Speed Two (HS2) Limited                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                                    | <b>32-RC004</b>                         |



| Drilled AP/GR<br>Logged CG<br>Checked MM                                                                       | Start<br>14/11/<br>End               | 2016 (                                         | quipment, Methods and R<br>Comacchio 305<br>Hand dug inspection pit f<br>1.20m to 14.50m./Rotary | rom GL to 1,2                          |                            | Depth from<br>(m)         0.00           o 50.60m.         30.05                                                                                                                                                                                                                                                                                                                                                                                                                                                         | to         Dlameter         Casing Depth           (m)         (mm)         (m)           14.50         200         30.05           30.05         150         50.60         146                                                                                                                                                                                                              | Ground Level<br>Coordinates (m<br>National Grid | ) E5                            | .27 mOD<br>01608.91<br>91986.38 |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------|---------------------------------|
| Approved MM                                                                                                    | 08/12/                               | 2016                                           | ,                                                                                                |                                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                 |                                 |
| Samples and<br>Depth<br>(m)                                                                                    | TCR<br>SCR<br>RQD                    | If                                             | Records/Samples                                                                                  | Date &<br>Casing<br>(mbgl)             | Time &<br>Water<br>(m)     | Strata Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Detail                                                                                                                                                                                                                                                                                                                                                                                       | Depth, Leve<br>(m) (mbg<br>(Thickness           |                                 |                                 |
|                                                                                                                | 65<br>18<br>10                       | NA<br>NA<br>NA                                 | NIDD<br>NIDD<br>NIDD                                                                             |                                        |                            | with rubbly chalk. Shell fragments<br>(2mm thick) scattered throughout.<br>Fracture set 1 - subhorizontal (5-10<br>degrees) closely to medium spaced<br>(120/160/200) with moderate black<br>speckling and slightly to moderately<br>orangish brown yellow staining<br>undulating rough. Set 2 - Subvertical<br>(85-90 degrees) with moderate black                                                                                                                                                                      | 19.60-19.70 Wispy marl<br>seams.<br>19.80-19.90 Fragmented flint<br>probably medium nodular<br>flint.<br>19.90-20.00 Moderate<br>orangish brown staining and<br>patchy brown clay sear on<br>subvertical (85 degrees)                                                                                                                                                                        | 20,10 +74.                                      |                                 |                                 |
| 20.70 - 21.00<br>2120.50 - 21.50                                                                               | 100<br>80<br>60                      | 45<br>140<br>370                               | C 4                                                                                              | 24/11/16<br>18/11/16<br>14.50<br>14.50 | 0800<br>1600<br>Dry<br>Dry | (Searching undulating rough.<br>(SEAFORD CHALK FORMATION -<br>Possibly Grade A2 to B3, where<br>trecovered)<br>AZCL, Driller's description: Badly<br>broken CHALK and flints.<br>(SEAFORD CHALK FORMATION -<br>Ungraded)<br>Recovery is of stronger material.<br>Weaker materials not recovered.<br>Recovered material comprises very<br>weak to weak medium to high<br>density white unstructured CHALK<br>with wispy marl seams alternating<br>with rubbly chalk. Shell fragments<br>(2mm thick) scattered throughout. | fracture.<br>20.05-20.10 Recovered NI as<br>compact comminuted chalk,<br>fragments (60mm) of<br>extremely weak to very weak<br>low to medium density chalk<br>and flint fragments (120mm).<br>20.60-21.15 Frequent grey<br>wispy marl seams.<br>21.25 Shell fragments<br>(40mm) 5mm to 6mm thick<br>layered and ridged (1mm).<br>21.25-21.35 Slight orangish<br>brown and yellowish staining |                                                 |                                 |                                 |
| 21.50 - 22.25<br>22                                                                                            | 53<br>24<br>13                       | NIDD<br>NIDD<br>NIDD                           | -                                                                                                |                                        |                            | Fracture set 1 - subhorizontal (5-10<br>degrees) closely to medium spaced<br>(45/140/370) with moderate black<br>speckling and slightly to moderately<br>orangish brown yellow staining<br>undulating rough. Set 2 - Subvertical<br>(85-90 degrees) with moderate black<br>speckling undulating rough.<br>(SEAFORD CHALK FORMATION -<br>Possibly Grade A2 to B3, where<br>recovered)                                                                                                                                     | on 75 degree fracture.<br>21.50-22.25 Slight to<br>moderate orangish brown<br>staining on 55 to 90 degree<br>fractures and on surfaces of<br>NI material.<br>21.58-22.15 Recovered as NI<br>as finit fragments (90mm)<br>and chalk fragments (80mm)<br>with some speckles and<br>staining on surfaces.                                                                                       |                                                 |                                 |                                 |
| 22.25 - 22.75                                                                                                  | 100<br>76<br>76                      | 50<br>100<br>260                               |                                                                                                  | 24/11/16<br>22.45<br>25/11/16<br>22.45 | 1700<br>Dry<br>0800<br>Dry |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.25-22.75 Slight brown<br>mottling trace fossils.<br>22.35 Conical void orangish<br>brown stained 3mm to 10mm<br>diameter 10mm deep, Shell –<br>fragments 1mm thick,<br>22.65 Small nodular flint,                                                                                                                                                                                         |                                                 |                                 |                                 |
| <sup>23</sup><br>22.75 - 23.75                                                                                 | 50<br>50<br><b>4</b> 5               | NA<br>NA<br>NA                                 | -                                                                                                |                                        |                            | AZCL. Driller's description: Broken<br>CHALK and flints. (SEAFORD<br>CHALK FORMATION - Ungraded)<br>Recovery is of stronger material.                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                              | 22.75 +71.<br><br>23.35 +70.                    |                                 |                                 |
| 23.75 - 23.92                                                                                                  |                                      | - 100<br>100                                   | C 5                                                                                              |                                        |                            | Weaker materials not recovered.<br>Recovered material comprises very<br>weak to weak medium to high<br>density white structureless CHALK<br>with wispy marl seams alternating<br>with rubbly chalk. Shell fragments<br>(2mm thick) scattered throuchout.                                                                                                                                                                                                                                                                 | 1mm to 5mm wispy marl<br>seams.                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                 |                                 |
| 2423.75 <b>- 24.2</b> 5                                                                                        | 100<br>100<br>100                    | 500                                            |                                                                                                  |                                        |                            | Fracture set 1 - subhorizontal (5-10<br>degrees) closely to medium spaced<br>(120/20/550) with moderate black<br>speckling and slightly to moderately<br>orangish brown yellow staining<br>undulating rough. Set 2 - Subvertical                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                 |                                 |
|                                                                                                                | 95<br>67                             |                                                | - NIDD<br>NIDD<br>NIDD<br>-                                                                      |                                        |                            | (85-90 degrees) with moderate black<br>speckling undulating rough.<br>(SEAFORD CHALK FORMATION -<br>Possibly Grade A2 to B3, where<br>recovered)                                                                                                                                                                                                                                                                                                                                                                         | 24.25-24.50 Recovered N a.<br>flint fragments (up to 90 nm<br>some medium to large<br>nodular flints and fragments<br>(80mm) of very weak to weak –<br>medium to high density chalk<br>with sligh to moderate black                                                                                                                                                                          |                                                 |                                 |                                 |
| 24.25 - 25.25<br>25                                                                                            | 38                                   |                                                |                                                                                                  |                                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | specking on surfaces.                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                 |                                 |
| Groundwater Entrie<br>No. Depth Strike                                                                         |                                      | narks                                          | 1                                                                                                | Depth Sea                              | led (m)                    | Depth Related Remarks<br>Depths (m) Remarks<br>37.80 - 50.00 Acoustic i naging,                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                            | Hard Boring<br>Depths (m)                       | Duration (mins)]                | ools used                       |
| Notes: For explanation<br>abbreviations see Ke<br>All depths and reduce<br>hickness given in bra<br>Scale 1:25 | y to Explo<br>ed levels<br>ackets in | oratory H<br>in metres<br>depth col<br>(c) ESG | umn. UProje                                                                                      | ct<br>ct No.<br>ed out for             | D60                        | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                              | Borehole<br>ML(                                 | <b>)32-RC0</b><br>Sheet 5 of 11 | 04                              |



| Drilled AP/GR<br>.ogged CG<br>Checked MM                                                                    | Start<br>14/11//<br>End                  | 2016 C                                           |                           | om GL to 1.2                  |                        | Depth from<br>(m)<br>0.00<br>14.50                                                                                                                                                                                                                                  | to Dlameter Casing Depth<br>(m) (mm) (m)<br>14.50 200 30.05<br>30.05 150                                                                       | Ground Level<br>Coordinates (m)<br>National Grid | 94.27 mOD<br>E 501608.91<br>N 191986.38 |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------|---------------------------|-------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|
| approved MM                                                                                                 | 08/12/                                   | 2016                                             | .20m to 14.50m./Rotary of | oring from 1                  | 14.50m t               |                                                                                                                                                                                                                                                                     | 50.60 146                                                                                                                                      | National Grid                                    | N 191980.38                             |
| Samples an                                                                                                  | d Tes                                    | ts                                               | 1                         |                               |                        | Strata Description                                                                                                                                                                                                                                                  |                                                                                                                                                | Depth, Level                                     |                                         |
| Depth<br>(m)                                                                                                | TCR<br>SCR<br>RQD                        | lf                                               | Records/Samples           | Date &<br>Casing<br>(mbgl)    | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                | Detail                                                                                                                                         | (m) (mbgl)<br>(Thickness                         | Water-<br>strike Backfill               |
|                                                                                                             |                                          |                                                  |                           | 25/11/16<br>25.25<br>28/11/16 | 1600<br>Dry<br>0800    | Recovery is of stronger material.<br>Weaker materials not recovered.<br>Recovered material comprises very<br>weak to weak medium to high<br>density white structureless CHALK<br>with wispy marl seams alternating                                                  | 25.15-25.25 Very closely<br>spaced subvertical (85<br>degrees) fractures with<br>moderate black speckling.                                     |                                                  |                                         |
| 25.25 - 25.95                                                                                               | 100<br>86<br>14                          | 40<br>200<br>380                                 |                           | 25.25                         | Dry<br>1800            | with rubbly chalk. Shell fragments<br>(2mm thick) scattered throughout.<br>Fracture set 1 - subhorizontal (5-10<br>degrees) closely to medium spaced<br>(120/200/550) with moderate black<br>speckling and slightly to moderately<br>orangish brown yellow staining |                                                                                                                                                |                                                  |                                         |
| 26                                                                                                          |                                          |                                                  | NA<br>NA<br>NA            | 25.95<br>29/11/16<br>25.95    | 1.70<br>0800<br>5.00   | undulating rough. Set 2 - Subvertical<br>(85-90 degrees) with moderate black<br>speckling undulating rough.<br>(SEAFORD CHALK FORMATION -<br>Possibly Grade A2 to B3, where                                                                                         | _                                                                                                                                              |                                                  |                                         |
| 25.95 - 26.75                                                                                               | 38<br>0                                  |                                                  | _                         | 20.90                         | 5.00                   | recovered)                                                                                                                                                                                                                                                          | 26,25-26,65 Recovered NI as<br>fragments (80mm) of very                                                                                        |                                                  |                                         |
| 20.00 20.10                                                                                                 | 0                                        | NIDD<br>NIDD<br>NIDD                             |                           |                               |                        |                                                                                                                                                                                                                                                                     | weak to weak medium to<br>high density chalk with<br>moderate black speckling on -<br>surfaces.<br>26.65-26.75 Medium (90mm)<br>nodular flint. |                                                  |                                         |
| 27                                                                                                          |                                          | NA<br>NA<br>NA                                   | -                         |                               |                        | AZCL. Driller's description: Broken<br>CHALK and flints. (SEAFORD<br>CHALK FORMATION - Ungraded)                                                                                                                                                                    |                                                                                                                                                |                                                  |                                         |
| 26.75 <b>-</b> 27.75                                                                                        | 50<br>45<br>30                           |                                                  | NIDD<br>NIDD<br>NIDD      |                               |                        | Recovery is of stronger material.<br>Weaker materials not recovered.                                                                                                                                                                                                | 27.20-27.30 Recovered NI.<br>27.30-27.40 Orangish brown                                                                                        | 27.20 +67.07                                     |                                         |
| 27.51 - 27.68                                                                                               |                                          | 100<br>135<br>170                                | C 6                       | 29/11/16<br>27.75             | 1800<br>Dry            | Recovered material comprises very<br>weak to weak medium to high<br>density white unstructured CHALK<br>with wispy marl seams alternating<br>with rubbly chalk. Shell fragments<br>(2mm thick) scattered throughout.<br>Fracture set 1 - subhorizontal (5-10        | wispy staining. Chalk is<br>fragmented.                                                                                                        |                                                  |                                         |
| 2827.75 - 28.25                                                                                             | 50<br>40<br>40                           |                                                  | - NA<br>NA<br>NA          | 30/11/16<br>27.75             | 0800<br>Dry            | degrees) closely to medium spaced<br>(100/135/200) with moderate black<br>speckling and slightly to moderately<br>orangish brown yellow staining<br>undulating rough. Set 2 - Subvertical<br>(85-90 degrees) with moderate black                                    | 27.75-28.00 AZCL<br>28.00-28.75 Core smeared in-<br>brown sandy clay (drilling<br>related).                                                    |                                                  |                                         |
| 28,25 - 28,75                                                                                               | 100<br>80                                | 100                                              |                           |                               |                        | speckling undulating rough.<br>(SEAFORD CHALK FORMATION -<br>Possibly Grade A2 to B3, where<br>recovered)                                                                                                                                                           | 28.35-28.45 Recovered NI as<br>fragments (60mm) of very<br>weak medium density chalk                                                           | 28.50 +65.77                                     |                                         |
| 20,20 20,70                                                                                                 | 50                                       | 150<br>200                                       |                           |                               |                        | Recovery is of stronger material.<br>Weaker materials not recovered.<br>Recovered material comprises very<br>weak medium to high density white<br>CHALK with shell fragments (2mm                                                                                   | and fragments (20mm) of<br>flint.<br>28.55-28.75 Extremely<br>closely spaced near vertical<br>fractures unstained and                          |                                                  |                                         |
| 29 <b>28.75 - 29.2</b> 5                                                                                    | 70<br>40<br>40                           |                                                  | NIDD                      | 30/11/16<br>29.25             | 1800<br>27.60          | thick) scattered throughout, Fracture<br>Set 1 - subhorizontal (5-10 degrees)<br>close to medium spaced<br>(100/250/500) moderately orangish<br>brown stained undulating rough. Set<br>2- 85-90 degrees with moderate                                               | unspeckled (drilling induced).<br>29.10-29.25 Recovered NI as                                                                                  |                                                  |                                         |
|                                                                                                             |                                          |                                                  |                           | 01/12/16                      | 0800                   | black speckling locally extremely to<br>very closely spaced with some<br>orangish brown and yellowish brown                                                                                                                                                         | fragments (60mm) of very weak medium density cha                                                                                               | <b>29.25</b> +65.02                              |                                         |
|                                                                                                             |                                          | NA<br>NA<br>NA                                   |                           | 25.25                         | Dry                    | staining planar to undulating rough.<br>(SEAFORD CHALK FORMATION -<br>Possibly Grade A2 to B2)<br>NO CORE RECOVERY - core lost<br>due to over-drilling to free Geobor<br>barrel. (SEAFORD CHALK<br>FORMATION - Ungraded)                                            | 2 ACCON                                                                                                                                        |                                                  |                                         |
| 30                                                                                                          | c                                        |                                                  |                           |                               |                        | Death Balatard Dame 1                                                                                                                                                                                                                                               |                                                                                                                                                | 30.00 +64.27                                     | 4_040                                   |
| roundwater Entrie<br>No. Depth Strike                                                                       |                                          | arks                                             |                           | Depth Sea                     | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                         |                                                                                                                                                | Hard Boring<br>Depths (m) Duration               | (mins)Tools used                        |
| lotes: For explanatic<br>bbreviations see Ke<br>II depths and reduce<br>nickness given in bra<br>Scale 1:25 | y to Explo<br>ed levels i<br>ackets in o | oratory Ho<br>in metres<br>depth coli<br>(c) ESG | Stratum<br>umn. AGS       |                               | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                                                                                               |                                                                                                                                                | Borehole<br>ML032-F<br>Sheet 6 of                |                                         |



| Drilled AP/GR<br>.ogged CG<br>Checked MM                                                                        | Start<br>14/11/<br>End              | 2016 (<br>H<br>1                               | equipment, Methods and Rer<br>Comacchio 305<br>Hand dug inspection pit fro<br>.20m to 14.50m./Rotary c | m GL to 1.2                |                        | en hole rotary drilling from 0.00<br>0.50,60m. 0.05                                                                                                                                                                                                                                          | to         Dlameter         Casing Depth           (m)         (mm)         (m)           14.50         200         30.05           30.05         150           50.60         146                                                                                                                                                                                                                                 | Ground Level<br>Coordinates (m)<br>National Grid | 94.27 mOD<br>E 501608.91<br>N 191986.38 |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|
| Samples an                                                                                                      | 08/12/<br>d Tes                     |                                                |                                                                                                        |                            |                        | Strata Description                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                |                                         |
| Depth<br>(m)                                                                                                    | TCR<br>SCR<br>RQD                   | lf                                             | Records/Samples                                                                                        | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                         | Detail                                                                                                                                                                                                                                                                                                                                                                                                            | Depth, Level<br>(m) (mbgl)<br>(Thickness         | d <sup>Water-</sup> Backfill            |
| 30.00 - 30.25<br>30.00 - 30.50                                                                                  | 50<br>50<br>50                      |                                                | NA<br>NA<br>C 7<br>NDP<br>NDP<br>NDP                                                                   |                            |                        | Recovery is of stronger material.<br>Weaker materials not recovered.<br>Recovered material comprises very<br>weak medium to high density white<br>CHALK with shell fragments (2mm<br>thick) scattered throughout, Fracture<br>Set 1 - subhorizontal (5-10 degrees)<br>close to medium spaced | 30.25-30.50 AZCL.                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                         |
| 30.50 - 31.00                                                                                                   | 30<br>0<br>0                        | NIDD<br>NIDD<br>NIDD                           |                                                                                                        | 01/12/16<br>30.05          | 1700<br>Damp           | (100/250/500) moderately orangish<br>brown stained undulating rough. Set<br>2- 85-90 degrees with moderate<br>black speckling locally extremely to<br>very closely spaced with some<br>orangish brown and yellowish brown<br>staining, undulating rough.<br>(SEAFORD CHALK FORMATION -       | 30.50-31.00 NIDD, recovered -<br>as chalk fragments (up to<br>130mm) and flint fragments<br>(90mm).                                                                                                                                                                                                                                                                                                               |                                                  |                                         |
| <sup>31</sup><br>31.00 - 31.50                                                                                  | 60<br>20<br>20                      |                                                | NA<br>NA<br>NIDD<br>NIDD<br>NIDD<br>NIDD                                                               |                            |                        | Possibly Grade A2 to B2)                                                                                                                                                                                                                                                                     | 31.00-31.20 AZCL. –<br>31.20-31.30 NIDD, recovered<br>as very weak to weak chalk<br>fragments (up to 90mm) and<br>filnt fragments (up to 80mm).<br>31.40-31.50 NIDD, recovered<br>as upon the weak the weak the                                                                                                                                                                                                   |                                                  |                                         |
| 31.50 - 32.00<br><sup>32</sup>                                                                                  | 40<br>40<br>20                      |                                                | NDP<br>NDP<br>NIDD<br>NIDD<br>NIDD<br>NA<br>NA<br>NA                                                   |                            |                        |                                                                                                                                                                                                                                                                                              | as very weak to weak chalk<br>fragments (up to 90mm) and<br>flint fragments (up to 80mm).<br>31.50-31.80 AZCL.                                                                                                                                                                                                                                                                                                    |                                                  |                                         |
| 32.00 - 32.50                                                                                                   | 60<br>20<br>20                      |                                                | NIDD<br>NIDD<br>NIDD<br>NA<br>NA<br>NA                                                                 |                            |                        |                                                                                                                                                                                                                                                                                              | 32.10-32.30 NIDD, recovered<br>as fragments (50mm) of very<br>weak to weak medium to<br>high density chalk with little<br>yellow staining.<br>32.50-33.00 Predominantly                                                                                                                                                                                                                                           |                                                  |                                         |
| 32.50 - 32.60<br>32.50 - 33.20                                                                                  | 100<br>100<br>14                    | NDP<br>NDP<br>NDP                              | C 8                                                                                                    |                            |                        |                                                                                                                                                                                                                                                                                              | very weak medium density<br>chalk.<br>32,65 Flint fragments 50mm.<br>33,00-33,20 NIDD, recovered                                                                                                                                                                                                                                                                                                                  |                                                  |                                         |
| 33.20 - 34.20<br>33.80 - 33.98                                                                                  | 95<br>50<br>50                      | 100<br>200<br>300                              | NIDD<br>NIDD<br>C 9                                                                                    | 05/12/16<br>30.05          | 0800<br>32.50          |                                                                                                                                                                                                                                                                                              | as fragments (70mm) of very<br>weak to weak medium to<br>high density chalk and<br>occasional flint fragments<br>(60mm).<br>33.20-33.30 85 degree<br>fractures slightly to<br>moderately black speckled –<br>and very closely spaced.<br>33.60 Small to medium<br>(60mm) nodular flint.<br>33.60-34.20 2 parallel 85<br>degree fractures with slight<br>black speckling and slightly<br>locally moderate orangish |                                                  |                                         |
| 34                                                                                                              |                                     |                                                | NA<br>NA<br>NA                                                                                         |                            |                        |                                                                                                                                                                                                                                                                                              | brown staining.                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                         |
| 34.20 - 35.60<br><del>35</del>                                                                                  | 82<br>29<br>29                      |                                                |                                                                                                        |                            |                        |                                                                                                                                                                                                                                                                                              | 2. ACU                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                                         |
| Groundwater Entrie<br>No. Depth Strike                                                                          |                                     | narks                                          | 1                                                                                                      | Depth Sea                  | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                 | Hard Boring<br>Depths (m) Duration               | (mins)Tools used                        |
| Notes: For explanations<br>abbreviations see Ke<br>All depths and reduce<br>hickness given in bra<br>Scale 1:25 | y to Expl<br>ed levels<br>ackets in | oratory H<br>in metres<br>depth col<br>(c) ESG | . Stratum<br>umn. AGS                                                                                  |                            | D60                    | rsham Tunnel (Chiltern) Area C<br>77-16<br>n Speed Two (HS2) Limited                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                   | Borehole<br>ML032-F<br>Sheet 7 of                |                                         |



| Drilled AP/GR<br>.ogged CG<br>Checked MM<br>Approved MM                                          | Start<br>14/11/2<br>End<br>08/12/2 | 2016 (<br>        | Equipment, Methods and Rer<br>Comacchio 305<br>Hand dug inspection pit fro<br>1.20m to 14.50m./Rotary c | m GL to 1.2                |                        | en hole rotary drilling from (m)<br>0.00<br>14.50<br>0.50.60m.                                                                                                                                                                                                                                                                                                                                             | to         Dlameter         Casing Depth           (m)         (mm)         (m)           14.50         200         30.05           30.05         150         50.60         146                                                    | Ground Level<br>Coordinates (m)<br>National Grid | 94.27 mC<br>E 501608.<br>N 191986. | .91   |
|--------------------------------------------------------------------------------------------------|------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------|----------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------|-------|
| Samples an                                                                                       |                                    |                   |                                                                                                         |                            |                        | Strata Description                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |                                                  |                                    |       |
| Depth<br>(m)                                                                                     | TCR<br>SCR<br>RQD                  | lf                | Records/Samples                                                                                         | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                                                                                                                                       | Detail                                                                                                                                                                                                                             | Depth, Level<br>(m) (mbgl)<br>(Thickness         | Legend <sup>Water-</sup> Bac       | kfill |
| 35.62 - 35.92                                                                                    |                                    | 100<br>200<br>300 | - NA                                                                                                    |                            |                        | Recovery is of stronger material.<br>Weaker materials not recovered.<br>Recovered material comprises very<br>weak medium to high density white<br>CHALK with shell fragments (2mm<br>thick) scattered throughout. Fracture<br>Set 1 - subhorizontal (5-10 degrees)<br>close to medium spaced<br>(100/250/500) moderately orangish<br>brown stained undulating rough. Set<br>2- 85-90 degrees with moderate | 35.00-35.10 Small to medium<br>(up to 50mm) nodular flints<br>and flint fragments,<br>35.10-35.40 Moderate<br>orangish brown staining on<br>subvertical fracture surfaces,<br>35.60-35.63 Very stiff<br>greenish sitly CLAY with   | 35.60 +58.67                                     |                                    |       |
| <sup>36</sup><br>35.60 - 36.60                                                                   | 75<br>75<br>54                     | 80<br>365<br>650  | NA<br>C 10                                                                                              |                            |                        | black speckling locally extremely to<br>very closely spaced with some<br>orangish brown and yellowish brown<br>staining, undulating rough.<br>(SEAFORD CHALK FORMATION -<br>l. Possibly Grade A2 to B2)<br>Very thin bed (30mm) of very stiff<br>greenish brown silty CLAY with<br>orangish brown spots and speckling.<br>(Probably SHORHAM MARL,<br>LEWES NODULAR CHALK                                   | (Probably SHORHAM MARL)<br>(Probably SHORHAM MARL)<br>36.35 Impression of flint.                                                                                                                                                   |                                                  |                                    |       |
|                                                                                                  |                                    |                   | NA<br>NA                                                                                                | 05/12/16<br>30.05          | 1700<br>32.90          | FORMATION)<br>Recovery is of stronger material.<br>Weaker materials not recovered,<br>Recovered material comprises very                                                                                                                                                                                                                                                                                    | 36.35-36.60 AZCL.                                                                                                                                                                                                                  |                                                  |                                    | P     |
| 36.60 - 37.10<br><sup>37</sup>                                                                   | 100<br>26<br>26                    |                   | - NIDD<br>NIDD<br>- 20<br>- 40<br>- 60<br>NIDD                                                          | 06/12/16<br>30.05          | 0800<br>34.30          | weak to weak medium to high<br>density white unstained CHALK with<br>light grey mottling and occasional<br>wispy marl seams. Occasional dark<br>grey zoophycos. Fractures are<br>subhorizontal (0-10 degrees)<br>medium spaced (20/300/650) slightly                                                                                                                                                       | 36.60-36.82 NIDD, recovered<br>as fragments (100mm) of<br>very weak medium density<br>chalk with evidence of very<br>closely spaced subvertical<br>fractures with moderately<br>orangish brown staining and<br>brown day smearing. |                                                  |                                    |       |
| 37.33 - 37.48<br>37.10 - 37.60                                                                   | 100<br>70<br>30                    | NDP<br>NDP<br>NDP | NIDD<br>NIDD<br>C 11                                                                                    |                            |                        | to moderately black speckled and<br>slightly orangish brown and grey<br>stained planar to undulating rough.<br>Occasional 20 degree and rare<br>subvertical (85-90 degree) fractures<br>with slight to moderate black<br>speckles and slight orangish brown<br>grey stained planar to undulating<br>rough. (LEWES NODULAR CHALK<br>FORMATION - Grade A2/B2)                                                | 36.82-36.96 3 very closely<br>spaced 80 to 90 degree<br>fractures with orangish brown<br>staining.<br>36.96-37.10 NIDD, recovered<br>as fragments (65mm) of very<br>weak medium density chalk<br>and flint fragments (40mm).       | 37.60 +56.67                                     |                                    |       |
| <sup>38</sup><br>37.60 - 38.60                                                                   | 60<br>30<br>20                     | NA<br>NA<br>NA    |                                                                                                         |                            |                        | AZCL, Driller's description: Broken<br>CHALK and flints, (LEWES<br>NODULAR CHALK FORMATION -<br>Ungraded)<br>Recovery is of stronger material.<br>Weaker materials not recovered.<br>Recovered material comprises very                                                                                                                                                                                     | - 38.00-38.10 NIDD, recovered-<br>as flint fragments (40mm) in<br>soft wet comminuted chalk.<br>38.15 Small nodular lint                                                                                                           | <br>38.00 +56.27                                 |                                    |       |
|                                                                                                  |                                    |                   | 50<br>140<br>230<br>NIDD<br>NIDD<br>NA<br>NA<br>NA                                                      |                            |                        | weak to weak medium to high<br>density white unstained CHALK with<br>light grey mottling and occasional<br>wispy marl seams. Occasional dark<br>grey zoophycos. Fractures are<br>subhorizontal (0-10 degrees)<br>medium spaced (20/300/650) slightly<br>to moderately black speckled and<br>slightly orangish brown and grey                                                                               | 38.35-38.60 NIDD, recovered<br>as very weak to weak<br>medium to high density chalk<br>with evidence of moderate<br>orangish brown staining and<br>clay smeared fracture                                                           |                                                  |                                    |       |
| <sup>39</sup><br>38.60 - 39.60                                                                   | 90<br>90<br>35                     | 70<br>180<br>200  | NA                                                                                                      |                            |                        | slightly of anglish forwh and grey<br>stained planar to undulating rough.<br>Occasional 20 degree and rare<br>subvertical (85-90 degree) fractures<br>with slight to moderate black<br>speckling and slight orangish<br>brownish grey staining planar to<br>undulating rough. (LEWES<br>NODULAR CHALK FORMATION -<br>Grade A2/B2)                                                                          | surfaces.<br>38.60-38.70 AZCL.<br>38.80 Small nodular flint.<br>38.90 Marly bedding surface.<br>38.95 Zoophycos trace fossil.<br>39.10 85 degree fracture with<br>brown staining.<br>39.20 Zoophycos trace fossil.                 | 0                                                |                                    |       |
|                                                                                                  |                                    |                   | - NIDD<br>NIDD                                                                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                            | 39.40-39.45 Wispy r and<br>seams and mary bedoing<br>surface.<br>39.60-39.70 NPDD, recovered<br>as weak high density chalk                                                                                                         |                                                  |                                    |       |
| 39.70 - 39.88<br>39.60 - 40.10                                                                   | 100<br>100<br>40                   | 50<br>160<br>360  | NIDD<br>C 12                                                                                            |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                            | fragments (70mm) and flint<br>fragments (30mm).                                                                                                                                                                                    |                                                  |                                    |       |
| Froundwater Entrie<br>No. Depth Strike                                                           |                                    | arks              |                                                                                                         | Depth Sea                  | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                  | Hard Boring<br>Depths (m) I                      | Duration (mins)Tools us            | sed   |
| Notes: For explanations see Ke<br>All depths and reduce<br>hickness given in brace<br>Scale 1:25 | y to Explo<br>ed levels i          | n metres          | ole Records,<br>s, Stratum<br>lumn, AGS                                                                 |                            | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                    |                                                  | <b>32-RC004</b>                    | _     |



| Drilled AP/GR<br>.ogged CG<br>Checked MM                                                                        | Start<br>14/11/<br>End               | 2016 (                                         | Equipment, Methods and Rer<br>Comacchio 305<br>Hand dug inspection pit fro<br>1.20m to 14.50m./Rotary c | m GL to 1.2                |                        | Depth from<br>(m)           0.00           14.50           0 50.60m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to         Dlameter         Casing Depth           (m)         (mm)         (m)           14.50         200         30.05           30.05         150         50.60                                                                          | Ground Level<br>Coordinates (m)<br>National Grid | 94.27 mOD<br>E 501608.91<br>N 191986.38 |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|
| Approved MM<br>Samples an                                                                                       | 08/12/<br>d Tes                      |                                                |                                                                                                         |                            |                        | Strata Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                              | -                                                |                                         |
| Depth<br>(m)                                                                                                    | TCR<br>SCR<br>RQD                    | If                                             | Records/Samples                                                                                         | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Detail                                                                                                                                                                                                                                       | Depth, Level<br>(m) (mbgl)<br>(Thickness         |                                         |
| 40.46 - 40.68<br>40,10 - 41.10                                                                                  | 90<br>75<br>40                       | 60<br>130<br>330                               | - NIDD<br>NIDD<br>NIDD<br>C 13                                                                          | 06/12/16<br>30.05          | 1800<br>32.10          | Recovery is of stronger material.<br>Weaker materials not recovered.<br>Recovered material comprises very<br>weak to weak medium to high<br>density white unstained CHALK with<br>light grey mottling and occasional<br>wispy marl seams. Occasional dark<br>grey zoophycos. Fractures are<br>subhorizontal (0-10 degrees)<br>medium spaced (20/300/650) slightly<br>to moderately black speckled and<br>slightly orangish brown and grey<br>stained planar to undulating rough.<br>Occasional 20 degree and rare<br>subvertical (65-90 degree) fractures<br>with slight to moderate black | 40.05 20 degree sheet flint<br>(5-7mm thick).<br>40.20-40.35 NIDD, recovered<br>as fragments (40mm) of flint,<br>comminuted chalk, brown<br>clay and chalk fragments<br>(50mm). Possible infilled<br>fracture.<br>40.45 Small nodular flint. | 41.00 +53.2                                      |                                         |
| 41.10 - 41.60                                                                                                   | 20<br>0<br>0                         | NA<br>NA<br>NA                                 |                                                                                                         | 07/12/16<br>30.05          | 0800<br>Dry            | speckling and slight orangish<br>brownish grey staining planar to<br>undulating rough, (LEWES<br>NODULAR CHALK FORMATION -<br>Grade A2/82)<br>Minimal core recovery, probably due<br>to drilling through flints, Recovered<br>core comprises fragments of<br>probably large flint nodule, (LEWES<br>NODULAR CHALK FORMATION -<br>Ungraded)                                                                                                                                                                                                                                                 | subhorizontal orangish brown<br>stained line possible sponge<br>bed.                                                                                                                                                                         |                                                  |                                         |
| <b>41.60 - 42.10</b>                                                                                            | 80<br>70<br>70                       |                                                |                                                                                                         |                            |                        | Recovery is of stronger material.<br>Weaker materials not recovered.<br>Recovered material comprises very<br>weak to weak medium to high<br>density white unstained CHALK with<br>light grey mottling and occasional<br>wispy marl seams. Occasional dark                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                              | 41.70 +52.5                                      |                                         |
| 42.30 - 42.60<br>42.10 - 42.80                                                                                  | 93<br>93<br>50                       | 20<br>300<br>650                               | C 14                                                                                                    |                            |                        | grey zoophycos. Fractures are<br>subhorizontal (0-10 degrees)<br>medium spaced (20/300/650) slightly<br>to moderately black speckled and<br>slightly orangish brown and grey<br>stained, planar to undulating rough.<br>Occasional 20 degree and rare<br>subvertical (85-00 degree) fractures<br>with slight to moderate black                                                                                                                                                                                                                                                             | 42.30 Small nodular flint.<br>42.40-42.55 Series of<br>zoophycos trace fossils.                                                                                                                                                              |                                                  |                                         |
| 42.80 - 43.10<br>43                                                                                             |                                      |                                                | - NA<br>NA<br>NA<br>0<br>0                                                                              |                            |                        | speckles and slight orangish brown<br>grey stained planar to undulating<br>rough. (LEWES NODULAR CHALK<br>FORMATION - Grade A2/B2)<br>No core recovery. Driller's<br>description: Broken CHALK and<br>flints. (LEWES NODULAR CHALK                                                                                                                                                                                                                                                                                                                                                         | 42.70 Small nodular flints.<br>42.70-42.80 Irregular marly<br>surfaces.<br>43.10-43.60 NIDD, recovered                                                                                                                                       | 42.80 +51.4<br><br>43.10 +51.1                   |                                         |
| 43.10 - 43.60                                                                                                   | 60<br>0<br>0                         | NIDD<br>NIDD<br>NIDD                           |                                                                                                         |                            |                        | FORMATION - Ungraded)<br>Recovery is of stronger material.<br>Weaker materials not recovered.<br>Recovered material is NIDD,<br>comprising fragments (70nm) of<br>very weak to weak medium to high<br>density chalk and fragments<br>(100mm) of finit with 20nm diameter                                                                                                                                                                                                                                                                                                                   | as fragments (70mm) of very<br>weak to weak medium to<br>high density chalk and<br>fragments (100mm) of flint<br>with 20mm diameter void part<br>infilled with orangish brown<br>gritty material (sponge<br>remains).                        |                                                  |                                         |
|                                                                                                                 |                                      |                                                |                                                                                                         |                            |                        | void part infilled with orangish brown<br>gritty material (sponge remains).<br>(LEWES NODULAR CHALK<br>FORMATION - Ungraded)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43.60-43.90 AZCL.<br>43.90-43.95 NIDD, recovered<br>as flint fragments.                                                                                                                                                                      | 43.95 50.3                                       |                                         |
| 43.60 - 44.60<br>44.33 - 44.60                                                                                  | 70<br>65<br>65                       | NDP<br>NDP<br>NDP                              | NIDD<br>C 15                                                                                            |                            |                        | Very weak to weak medium to high<br>density white unstained CHALK with<br>light grey mottling and occasional<br>wispy marl seams. (LEWES<br>NODULAR CHALK FORMATION -<br>Grade A1)                                                                                                                                                                                                                                                                                                                                                                                                         | 44.18 Small nodular flint.<br>44.33 Fragments (30mm, of<br>10mm thick sheet firit                                                                                                                                                            | 0                                                |                                         |
| 44.60 - 45.10                                                                                                   | 80<br>20<br>20                       |                                                | - NA<br>NA<br>NA                                                                                        |                            |                        | Very weak medium density white<br>unstained CHALK. Fractures are<br>subhorizontal (0-10 degrees)<br>probably closely to medium spaced<br>(85/300/400) with slight black<br>speckling planar rough. (LEWES                                                                                                                                                                                                                                                                                                                                                                                  | 44.60-44, ro Acoc<br>44.70-45.01 N.DD, recovered<br>as very weak to weak<br>m adum to high density chalk<br>ar d fint fragments (60mm).                                                                                                      | 44.60 +49.6                                      |                                         |
| Froundwater Entrie<br>No. Depth Strike                                                                          |                                      | narks                                          | 1                                                                                                       | Depth Sea                  | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                                                                                                                                                                                                                            | Hard Boring<br>Depths (m)                        | Duration (mins)Tools used               |
| Notes: For explanation<br>abbreviations see Ke<br>All depths and reduce<br>hickness given in bra-<br>Scale 1:25 | y to Explo<br>ed levels<br>ackets in | oratory H<br>in metres<br>depth col<br>(c) ESG | iole Records.<br>s, Stratum<br>lumn. AGS                                                                |                            | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>n Speed Two (HS2) Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                              | Borehole<br>MLO                                  | 32-RC004                                |



| ogged CG                                     | Start<br>14/11/   | 2016                   | Equipment, Methods and Ren<br>Comacchio 305<br>Hand dug inspection pit fro |                            | :0m. ೧n                | en hole rotarv drilling from                                                                              | Depth from<br>(m)<br>0.00<br>14.50 | to Dlameter<br>(m) (mm)<br>14.50 200<br>30.05 150                                                                                                                                        | Casing Depth<br>(m)<br>30.05                                    | Coordinates (m)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94.27 mOD<br>E 501608.91  |
|----------------------------------------------|-------------------|------------------------|----------------------------------------------------------------------------|----------------------------|------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| hecked MM                                    | End<br>08/12/     | 1                      | 1.20m to 14.50m./Rotary co                                                 |                            |                        |                                                                                                           | 30.05                              | 50.60 146                                                                                                                                                                                |                                                                 | National Grid                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N 191986.38               |
| Samples an                                   | d Tes             | ts                     | 1                                                                          | 1                          |                        | Strata Description                                                                                        | I                                  | 1                                                                                                                                                                                        |                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Depth<br>(m)                                 | TCR<br>SCR<br>RQD | lf                     | Records/Samples                                                            | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                      |                                    | Detail                                                                                                                                                                                   |                                                                 | Depth, Level<br>(m) (mbgl)<br>(Thickness | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Water-<br>strike Backfill |
| 45.10 - 45.60                                | 40<br>0<br>0      | NIDD<br>NIDD<br>NIDD   |                                                                            |                            |                        | NODULAR CHALK FORM<br>Possible Grade A2)                                                                  | AATION-                            | 45.10-45.60 NIDD.                                                                                                                                                                        |                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 45.70 - 45.80                                |                   |                        | 85<br>100<br>110                                                           |                            |                        |                                                                                                           |                                    |                                                                                                                                                                                          | -                                                               |                                          | a de la de l | ofo                       |
| 45.60 <b>- 4</b> 6.10                        | 100<br>40<br>20   |                        | C 16<br>NIDD<br>NIDD<br>NIDD                                               | 07/12/16<br>30.05          | 1700<br>31.80          |                                                                                                           |                                    | 45.80-46.10 NIDD,<br>as very weak medi<br>chalk and flint fragr<br>(50mm).                                                                                                               | um density -<br>nents                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 46.10 - 46.60                                | 70<br>60<br>20    |                        | - NA<br>NA<br>NA                                                           | 08/12/16<br>30.05          | 0800<br>33.40          |                                                                                                           |                                    | 46.10-46.25 AZCL.<br>46.35-46.40 Patche<br>and wisps of orang<br>staining.                                                                                                               | -<br>-<br>-<br>es (15mm) -                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 46.60 - 47.10<br>46.85 - 47.10<br>47         | 100<br>90<br>70   | NIDD<br>200<br>350     | C 17                                                                       |                            |                        |                                                                                                           |                                    | 46.60-46.65 NIDD,<br>as flint fragments (2)<br>very weak medium<br>chalk fragments (5)<br>comminuted chalk,<br>46.65 Medium nod<br>46.65-46.80 Spots<br>speckles of orangis<br>staining. | 20mm),<br>density<br>0mm) and<br>ular flint,<br>and<br>sh brown |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 47.32 - 47.50<br>47.10 - 47.60               | 80<br>80<br>44    | NDP<br>NDP<br>NDP      | NA<br>NA<br>C 18                                                           |                            |                        |                                                                                                           |                                    | 47.10-47.20 AZCL                                                                                                                                                                         |                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 47.60 - 48.10<br>48                          | 80<br>50<br>20    |                        | NA<br>NA<br>NIDD<br>NIDD<br>NIDD<br>NDP<br>NDP<br>NDP                      |                            |                        |                                                                                                           |                                    | 47.60-47.70 AZCL.<br>47.70-47.85 NIDD,<br>as very weak medi<br>white chalk fragme<br>(80mm) and flint fra<br>(20mm),<br>47.85-48.10 Locall<br>wispy marts (10mm)                         | um density<br>nts<br>agments<br>y frequent<br>thickness)        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 48.10 - 48.60<br>48.35 - 48.55               | 80<br>60<br>40    | NDP<br>NDP<br>NDP      | NA<br>NA<br>NA<br>C 19                                                     |                            |                        |                                                                                                           |                                    | 48.10-48.20 AZCL.<br>48.20 40mm thick t<br>diameter flint.<br>48.55 Flint fragmer                                                                                                        | iull core -<br>-<br>-<br>-<br>-                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 48.60 <b>- 4</b> 9.10<br><sup>49</sup>       | 80<br>60<br>60    |                        | NA<br>NA<br>NDP<br>NDP<br>NDP                                              |                            |                        |                                                                                                           |                                    | 48.50 Fille Tragilier<br>48.60-48.70 AZCL.<br>48.70-48.80 NIDD,<br>as flint fragments (i<br>softened wet comm<br>chalk.                                                                  | recovered =<br>50mm) in =                                       | , kai                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 49.10 - 50.10                                | 0<br>0<br>0       | NA<br>NA<br>NA         |                                                                            |                            |                        | No core recovery. Driller's<br>description: Broken CHAL<br>flints. (LEWES NODULAF<br>FORMATION - Ungraded | -K and<br>R CHALK                  | 2. 20                                                                                                                                                                                    | e                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 50<br>Froundwater Entrie                     |                   |                        |                                                                            |                            |                        | Depth Related Remarks                                                                                     |                                    |                                                                                                                                                                                          |                                                                 | Hard Boring                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,,                        |
| No. Depth Strike                             | on of syml        | bols and<br>pratory He | ole Records,                                                               | Depth Sea                  |                        | Depths (m) Remarks                                                                                        | c c                                |                                                                                                                                                                                          |                                                                 | Depths (m)<br>Borehole                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ins)Tools used            |
| I depths and reduce<br>hickness given in bra | ackets in o       | donth coli             | www.esg.co.uk                                                              | No.                        | D60                    | 77-16                                                                                                     |                                    |                                                                                                                                                                                          |                                                                 | I MLO                                    | 32-RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ;004                      |



| Approved MM         08/12/2016           Samples autors         Second from the second from | 2016 Comacchio 305                                       |                                             | en hole rotary drilling from                                                                                                                                                                                                                                                                                                              | pth from         to         Dlameter           (m)         (m)         (mm)           0.00         14.50         200           14.50         30.05         150           30.05         50.60         146 | Casing Depth<br>(m)<br>30.05<br>Coordinates (m<br>National Grid | 94.27 mOD<br>) E 501608.91<br>N 191986.38 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|
| - 52<br>- 53<br>- 53<br>- 53<br>- 51<br>- 51<br>- 52<br>- 53<br>- 51<br>- 52<br>- 52<br>- 52<br>- 53<br>- 55<br>- 52<br>- 53<br>- 55<br>- 55<br>- 55<br>- 55<br>- 55<br>- 55<br>- 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          | 1                                           | Strata Description                                                                                                                                                                                                                                                                                                                        | J                                                                                                                                                                                                        |                                                                 |                                           |
| 50.10 - 50.60<br>50.48 - 50.60<br>51<br>52<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | If Records/Samples                                       | Date & Time &<br>Casing Water<br>(mbgl) (m) | Main                                                                                                                                                                                                                                                                                                                                      | Detai                                                                                                                                                                                                    | Depth, Leve<br>(m) (mbg<br>(Thickness                           | ll Legend Water-<br>strike Backfill       |
| - 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NIDD<br>NIDD<br>NIDD<br>C 20<br>NDP<br>NDP               | 08/12/16 1600<br>50.60 36.10                | No core recovery, Driller's<br>description: Broken CHALK at<br>filnts, (LEWES NODULAR C<br>(FORMATION - Ungraded)<br>Very weak medium density w<br>unstained CHALK, Fractures<br>subhorizontal (0-10 degrees)<br>probably closely to medium a<br>with slight black speckling pl<br>- rough, (LEWES NODULAR (<br>FORMATION - Possible Grac | HALK<br>vhite<br>a as fragments (90)<br>veak medium del<br>anar<br>CHALK                                                                                                                                 | <br>D, recovered —<br>mm) of very —<br>nsity chalk              |                                           |
| 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NDP                                                      |                                             | END OF EXPLORATORY                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                          |                                                                 |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |                                             |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                          |                                                                 |                                           |
| - 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |                                             |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                          |                                                                 | ane                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |                                             |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                          | REdwit                                                          |                                           |
| 55<br>Groundwater Entries<br>No. Depth Strike (m) Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | arks                                                     | Depth Sealed (m)                            | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                                                                               | D. AC                                                                                                                                                                                                    | Hard Boring<br>Depths (m)                                       | Duration (mins)Tools used                 |
| Notes: For explanation of symbols and<br>abbreviations see Key to Exploratory H-<br>All depths and reduced levels in metres<br>thickness given in brackets in depth col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iols and Pr<br>ratory Hole Records.<br>n metres. Stratum | oject An                                    | Depths (m) Remarks                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                          | Depths (m)<br>Borehole                                          | 032-RC004                                 |



| Drilled LG/NK<br>Logged GC/<br>CM<br>Checked MM<br>Approved MM                                                  | Start<br>31/10/201<br>End<br>07/11/201                    | 6 Comac<br>Hand c<br>20m./F | nent, Methods and R<br>cchio 305<br>dug inspection pit fi<br>Rotary core drilled f<br>eer's instruction. | rom GL to 1.2              | 2m, Rota<br>55m, Terr |                                                                                                                               | n to Dlameter Casing Dep<br>(m) (mm) (m)<br>2.50 200 2.50<br>20.00 160 20.00<br>65.00 146 | th Ground Level<br>Coordinates (m)<br>National Grid | 99.44 mOD<br>E 501450.85<br>N 192155.04 |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|
| Samples and                                                                                                     |                                                           |                             |                                                                                                          | Date &                     | Time &                | Strata Description                                                                                                            |                                                                                           | Depth, Level                                        |                                         |
| Depth<br>(m)                                                                                                    | TCR<br>SCR<br>RQD                                         | lf                          | Records/Samples                                                                                          | Casing<br>(mbgl)           | Water<br>(m)          | Main                                                                                                                          | Detail                                                                                    | (m) (mbgl)<br>(Thickness<br>) (m)                   | d <sup>Water-</sup> Backfill            |
| - 0.50 - 0.60                                                                                                   | B 1A                                                      |                             |                                                                                                          | 31/10/16<br>0.00           | 0800<br>Dry           | Soft brown slightly gravelly silty<br>CLAY. Gravel is angular to<br>subrounded fine to coarse of flint.<br>(Possibly TOPSOIL) |                                                                                           |                                                     |                                         |
| 0.50 - 0.60                                                                                                     | В 1А<br>D 4А<br>В 2А                                      |                             |                                                                                                          |                            |                       |                                                                                                                               |                                                                                           |                                                     |                                         |
| 0.80 - 0.90<br>- 1 1.00 - 1.10<br>1.00 - 1.10                                                                   | D 5A<br>B 3A<br>D 6A                                      |                             |                                                                                                          | 31/10/16<br>0.00           | 1700<br>Dry           |                                                                                                                               |                                                                                           |                                                     |                                         |
|                                                                                                                 |                                                           |                             |                                                                                                          | 01/11/16<br>0.00           | 0800<br>Dry           | Sandy CLAY with flint gravels,<br>(Driller's description), Orange flush<br>returns. (Possibly CLAY WITH<br>FLINTS)            |                                                                                           | 1.20 +98.24                                         |                                         |
| - 2                                                                                                             |                                                           |                             |                                                                                                          |                            |                       |                                                                                                                               |                                                                                           |                                                     |                                         |
| - 3                                                                                                             |                                                           |                             |                                                                                                          |                            |                       |                                                                                                                               |                                                                                           |                                                     |                                         |
| - 4                                                                                                             |                                                           |                             |                                                                                                          |                            |                       |                                                                                                                               | 2. Accept                                                                                 |                                                     |                                         |
| Groundwater Entries<br>No. Depth Strike                                                                         | s<br>(m) Remark                                           | s                           |                                                                                                          | Depth Sea                  | led (m)               | Depth Related Remarks<br>Depths (m) Remarks                                                                                   | 0                                                                                         | Hard Boring<br>Depths (m) Duration                  | (mins)Tools used                        |
| Notes: For explanatio<br>abbreviations see Key<br>All depths and reduce<br>thickness given in bra<br>Scale 1:25 | y to Explorate<br>ed levels in m<br>ackets in dept<br>(c) | etres, Strati               | um<br>Proje<br>AGS                                                                                       | ct<br>ct No.<br>ed out for | D60                   | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                         |                                                                                           | Borehole<br>ML032-F<br>Sheet 1 o                    |                                         |



| Drilled LG/NK<br>Logged GC/<br>CM<br>Checked MM<br>Approved MM | 31/10/2016         | Equipment, Methods an<br>Comacchio 305<br>Hand dug inspection p<br>20m./Rotary core drille<br>Engineer's instruction. | oit from GL to 1.2<br>ed from 20m to 6 | m. Rota<br>5m. Terr | ry open hole from 1.2m to 2.50<br>minated at 65m on                                                                | to         Dlameter         Casing Depth           (m)         (mm)         (m)           2.50         200         2.50           20.00         160         20.00           65.00         146         20.00 | Ground Level<br>Coordinates (m)<br>National Grid | 99.44 mOD<br>E 501450.85<br>N 192155.04 |
|----------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|
| Samples and                                                    | TCR                |                                                                                                                       | Date &                                 | Time &<br>Water     | Strata Description                                                                                                 |                                                                                                                                                                                                             | Depth, Level<br>(m) (mbgl)                       |                                         |
| Depth<br>(m)                                                   | SCR If<br>RQD      | Records/Sample                                                                                                        | s Casing<br>(mbgl)                     | Water<br>(m)        | Main                                                                                                               | Detail                                                                                                                                                                                                      | (Thickness                                       | Legend Water-<br>strike Backfill        |
| - 6<br>- 7<br>- 8<br>- 9                                       |                    |                                                                                                                       |                                        |                     | Sandy CLAY with flint gravels.<br>(Driller's description). Orange flush<br>returns. (Possibly CLAY WITH<br>FLINTS) | 2 Accept                                                                                                                                                                                                    |                                                  |                                         |
| Groundwater Entries<br>No. Depth Strike                        | s<br>(m) Remarks   | ı                                                                                                                     | Depth Sea                              | led (m)             | Depth Related Remarks<br>Depths (m) Remarks                                                                        | 7                                                                                                                                                                                                           | Hard Boring<br>Depths (m)                        | Duration (mins)Tools used               |
| Notes: For explanatio                                          | n of symbols and   | Ι <sub>Ρ</sub> ι                                                                                                      | roject                                 | Am                  | ersham Tunnel (Chiltern) Area C                                                                                    |                                                                                                                                                                                                             | Borehole                                         |                                         |
| All depths and reduce<br>hickness given in bra                 | y to Exploratory H | iole Records.<br>s, Stratum<br>lumn. AGS<br>www.esg.co.uk                                                             | roject No.<br>arried out for           | D60                 | 77-16<br>h Speed Two (HS2) Limited                                                                                 |                                                                                                                                                                                                             | ML0                                              | <b>32-RC006</b><br>Sheet 2 of 13        |



| Drilled LG/NK<br>Logged GC/<br>CM<br>Checked MM<br>Approved MM                                                 | 31/10/2016<br>End    | Equipment, Methods and<br>Comacchio 305<br>Hand dug inspection pit<br>20m./Rotary core drilled<br>Engineer's instruction. | from GL to 1.2                   | m. Rota<br>5m. Teri    | ry open hole from 1.2m to<br>minated at 65m on                                                                     | to Dlameter Casing<br>(m) (mm) (m<br>2.50 200 2.5<br>20.00 160 20.0<br>65.00 146 | )<br>Coordinates (m)      | 99.44 mOD<br>E 501450.85<br>N 192155.04 |
|----------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------|-----------------------------------------|
| Samples an                                                                                                     |                      |                                                                                                                           |                                  |                        | Strata Description                                                                                                 |                                                                                  | Depth, Level              |                                         |
| Depth<br>(m)                                                                                                   | TCR<br>SCR IF<br>RQD | Records/Samples                                                                                                           | Date &<br>Casing<br>(mbgl)       | Time &<br>Water<br>(m) | Main                                                                                                               | Detail                                                                           | (m) (mbgl)<br>(Thickness  | Legend Water-<br>strike Backfill        |
| - 11                                                                                                           |                      |                                                                                                                           |                                  |                        | Sandy CLAY with flint gravels.<br>(Driller's description). Orange flush<br>returns. (Possibly CLAY WITH<br>FLINTS) |                                                                                  | - ((m)<br>                |                                         |
| - 12                                                                                                           |                      |                                                                                                                           |                                  |                        |                                                                                                                    |                                                                                  |                           |                                         |
| - 13                                                                                                           |                      |                                                                                                                           |                                  |                        |                                                                                                                    |                                                                                  |                           |                                         |
| - 14<br>-                                                                                                      |                      |                                                                                                                           |                                  |                        |                                                                                                                    | 2. Acces                                                                         |                           |                                         |
| Groundwater Entrie<br>No. Depth Strike                                                                         | s<br>(m) Remarks     |                                                                                                                           | Depth Sea                        | led (m)                | Depth Related Remarks<br>Depths (m) Remarks<br>14.40 - 14.40 No flush r durns colow 14.40                          | )m.                                                                              | Hard Boring<br>Depths (m) | Duration (mins)Tools used               |
| Notes: For explanatio<br>abbreviations see Ke<br>All depths and reduce<br>thickness given in bra<br>Scale 1:25 | y to Exploratory I   | Hole Records,<br>is, Stratum<br>Dlumn, AGS                                                                                | ject<br>ject No.<br>ried out for | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                              |                                                                                  |                           | <b>32-RC006</b><br>Sheet 3 of 13        |



| Drilled LG/NK<br>Logged CM<br>CM<br>Checked MM<br>Approved MM                                                  | Start<br>31/10/2016<br>End<br>07/11/2016 | Equipment, Methods and R<br>Comacchio 305<br>Hand dug inspection pit f<br>20m./Rotary core drilled f<br>Engineer's instruction. | rom GL to 1.2              | ?m, Rota<br>55m, Terr |                                                                                                   | to         Dlameter         Casing Depth           (m)         (mm)         (m)           2.50         200         2.50           20.00         160         20.00           65.00         146 | Ground Level<br>Coordinates (m)<br>National Grid              | 99.44 mOD<br>E 501450.85<br>N 192155.04 |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|
| Samples and<br>Depth                                                                                           | TCR                                      |                                                                                                                                 | Date &                     | Time &<br>Water       | Strata Description                                                                                |                                                                                                                                                                                               | Depth, Level<br>(m) (mbgl) Legen                              | Weter                                   |
| (m)                                                                                                            | SCR If<br>RQD                            | Records/Samples                                                                                                                 | Casing<br>(mbgl)           | Water<br>(m)          | Main<br>Sandy CLAY with flint gravels.                                                            | Detail                                                                                                                                                                                        | (Thickness ) (m)                                              | d Water-<br>strike Backfill             |
|                                                                                                                |                                          |                                                                                                                                 |                            |                       | (Driller's description). Örange flush<br>returns. (Possibly CLAY WITH<br>FLINTS)                  |                                                                                                                                                                                               |                                                               |                                         |
| - 16                                                                                                           |                                          |                                                                                                                                 | 01/11/16<br>14.50          | 1700<br>Dry           | Putty CHALK. (Driller's description)<br>(SEAFORD CHALK FORMATION -<br>Ungraded)                   |                                                                                                                                                                                               |                                                               |                                         |
| - 17                                                                                                           |                                          |                                                                                                                                 | 02/11/16<br>13.70          | 0800<br>Dry           |                                                                                                   |                                                                                                                                                                                               |                                                               |                                         |
|                                                                                                                |                                          |                                                                                                                                 |                            |                       |                                                                                                   |                                                                                                                                                                                               |                                                               |                                         |
| - 18                                                                                                           |                                          |                                                                                                                                 |                            |                       |                                                                                                   |                                                                                                                                                                                               |                                                               |                                         |
| - 19                                                                                                           |                                          |                                                                                                                                 |                            |                       |                                                                                                   | Accept                                                                                                                                                                                        |                                                               |                                         |
|                                                                                                                |                                          |                                                                                                                                 |                            |                       |                                                                                                   |                                                                                                                                                                                               |                                                               |                                         |
| 20<br>Groundwater Entrie<br>No. Depth Strike                                                                   | S<br>(m) Remarks                         |                                                                                                                                 | Depth Sea                  | led (m)               | Depth Related Remarks<br>Depths (m) Remarks<br>20.00 - 65.00 Unable to ecomposential gr<br>flush. | oundwater strikes due to use of water                                                                                                                                                         | <u>20.00 +70.44</u> ' '<br>Hard Boring<br>Depths (m) Duration | (mins)Tools used                        |
| Notes: For explanatio<br>abbreviations see Ke<br>All depths and reduce<br>thickness given in bra<br>Scale 1:25 | y to Exploratory                         | Hole Records.<br>es, Stratum<br>olumn. AGS                                                                                      | ct<br>ct No.<br>ed out for | D60                   | rrsham Tunnel (Chiltern) Area C<br>77-16<br>n Speed Two (HS2) Limited                             |                                                                                                                                                                                               | Borehole<br>ML032-F<br>Sheet 4 o                              |                                         |



| Drilled LG/NK<br>Logged GC/<br>CM<br>Checked MM<br>Approved MM                                                | Start<br>31/10/2<br>End<br>07/11/2       | 2016 C<br>H<br>2                                | quipment, Methods and Ren<br>Comacchio 305<br>Iand dug inspection pit fro<br>Om./Rotary core drilled fro<br>ingineer's instruction. | m GL to 1.2      | 2m. Rota<br>35m. Terr  | Depth from<br>(m)           0.00           ry open hole from 1.2m to           2.50           ninated at 65m on                                                                                                                                                                                                                     | to         Dlameter         Casing Depth           (m)         (mm)         (m)           2.50         200         2.50           20.00         160         20.00           65.00         146         20.00 | n Ground Level<br>Coordinates (m)<br>National Grid | 99.44 mOD<br>E 501450.85<br>N 192155.04 |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|
| Samples an                                                                                                    |                                          | ts                                              |                                                                                                                                     | Date &           | <b>T</b> 0             | Strata Description                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                             | Depth, Level                                       |                                         |
| Depth<br>(m)                                                                                                  | TCR<br>SCR<br>RQD                        | lf                                              | Records/Samples                                                                                                                     | Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                                                                | Detail                                                                                                                                                                                                      | (m) (mbgl)<br>(Thickness                           | gend <sup>Water-</sup> Backfill         |
| 20.00 - 21.50<br>- 21 21.00                                                                                   | 97<br>0<br>0                             | NIDD<br>NIDD<br>NIDD                            | D 1                                                                                                                                 |                  |                        | Weak low density white CHALK with<br>black speckles on fracture surfaces.<br>NIDD. recovered as angular gravel.<br>(SEAFORD CHALK FORMATION -<br>Ungraded)                                                                                                                                                                          | 20.00-20.35 Small and<br>medium nodular flints<br>recovered as gravel sized<br>fragments in a matrix of<br>comminuted chalk.<br>-<br>21.10 Medium nodular flint.<br>21.30 Medium nodular flint.             |                                                    |                                         |
| 21.50 - 22.25<br>- 22<br>22.25 - 22.50                                                                        | 76<br>9<br>0                             |                                                 | C 2                                                                                                                                 |                  |                        | Recovery is of stronger material.<br>Weaker material not recovered.<br>Recovered material comprises weak<br>low to medium density white CHALK<br>with a purplish hue. Fractures are<br>horizontal, vertical and 45 degrees<br>very closely to closely spaced<br>(50/90/140mm) planar to undulating<br>rough with black speckling on | 22.00 Shell fragments                                                                                                                                                                                       | 21.75 +77.68                                       |                                         |
| 22,25 - 23,00                                                                                                 | 53<br>45<br>0                            |                                                 |                                                                                                                                     |                  |                        | surfaces, Occasional shell<br>fragments. (SEAFORD CHALK<br>FORMATION - Grade A3/4)                                                                                                                                                                                                                                                  | 22.70 Horizontal fracture with<br>slight orange staining on<br>surface,<br>22.85 Orange speckled<br>staining throughout core                                                                                |                                                    |                                         |
| 23.40 - 23.60                                                                                                 |                                          | 50<br>90<br>140                                 | С 3                                                                                                                                 |                  |                        |                                                                                                                                                                                                                                                                                                                                     | (possible sponge bed). –<br>23.10 Subhorizontal fracture<br>with heavy black speckling<br>and brown staining on<br>surfaces.                                                                                |                                                    |                                         |
| 23.00 - 24.50                                                                                                 | 100<br>41<br>24                          |                                                 |                                                                                                                                     |                  |                        |                                                                                                                                                                                                                                                                                                                                     | 23.65-23.70 NIDD and small nodular flints.                                                                                                                                                                  |                                                    |                                         |
| - 24<br>24.60 - 24.80                                                                                         |                                          |                                                 | C 4                                                                                                                                 |                  |                        |                                                                                                                                                                                                                                                                                                                                     | 24.10 Small nodular flints.                                                                                                                                                                                 |                                                    |                                         |
| 25                                                                                                            |                                          |                                                 | -                                                                                                                                   |                  |                        | Weak medium density white CHALK.<br>Fractures are horizontal and vertical<br>very closely to closely spaced                                                                                                                                                                                                                         | 24.90 Thin marl seams.                                                                                                                                                                                      | 24.80 +74.64                                       |                                         |
| Groundwater Entrie<br>No. Depth Strike                                                                        |                                          | arks                                            | 1                                                                                                                                   | Depth Sea        | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                           | Hard Boring<br>Depths (m) Durat                    | tion (mins)Tools used                   |
| Notes: For explanatic<br>abbreviations see Ke<br>All depths and reduce<br>hickness given in bra<br>Scale 1:25 | y to Explo<br>ed levels i<br>ackets in o | n metres<br>n metres<br>depth coli<br>(c) ESG 1 | Stratum                                                                                                                             |                  | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>n Speed Two (HS2) Limited                                                                                                                                                                                                                                                               |                                                                                                                                                                                                             |                                                    | -RC006                                  |



| Drilled LG/NK<br>.ogged GC/<br>CM<br>Checked MM                                                              | Start<br>31/10/2<br>End<br>07/11/2       | 2016                                          | Equipment, Methods and Re<br>Comacchio 305<br>Hand dug inspection pit fro<br>20m./Rotary core drilled fr<br>Engineer's instruction. | om GL to 1,2               |                        | ry open hole from 1.2m to                                                                                                                                                                                                      |                    | to         Dlameter         Casing Depth           (m)         (mm)         (m)           2.50         200         2.50           20.00         160         20.00           65.00         146         146        | Ground Level<br>Coordinates (m)<br>National Grid |               | 99.44<br>E 5014<br>N 1921 | 50.85    |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|---------------------------|----------|
| Samples an                                                                                                   |                                          | ts                                            |                                                                                                                                     |                            |                        | Strata Description                                                                                                                                                                                                             |                    |                                                                                                                                                                                                                  | Depth, Level                                     |               |                           |          |
| Depth<br>(m)                                                                                                 | TCR<br>SCR<br>RQD                        | lf                                            | Records/Samples                                                                                                                     | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                           |                    | Detail                                                                                                                                                                                                           | (m) (mbgl)<br>(Thickness                         | Legend        | Water-<br>strike          | Backfill |
| 24.50 - 26.00                                                                                                | 100<br>10<br>10                          | 50<br>80<br>180                               |                                                                                                                                     |                            |                        | (50/80/180mm) undulating rou<br>Black speckles on fracture su<br>Occasional shell fragments.<br>(SEAFORD CHALK FORMAT<br>Grade A3)                                                                                             | ırfaces.<br>TION - | 25.00 Thick lamination<br>(10mm) of light grey marl.<br>25.05 Orange stained<br>speckles throughout core<br>(possible sponge bed).<br>25.25 Orange stained<br>speckles throughout core<br>(possible sponge bed). |                                                  |               |                           |          |
| <sup>26</sup><br>26.25 - 26.45                                                                               |                                          |                                               | C 5                                                                                                                                 |                            |                        |                                                                                                                                                                                                                                |                    | 26.00 Medium nodular flints. —<br>-<br>-<br>-<br>-<br>-                                                                                                                                                          |                                                  |               | 1                         |          |
| 26.00 - 27.50                                                                                                | 98<br>29<br>10                           |                                               |                                                                                                                                     |                            |                        | Weak medium density white C<br>Fractures are horizontal and 2<br>degrees closely spaced<br>(60/100/180mm) undulating ro<br>with black speckling on surfac<br>Occasional shell fragments.<br>(SEAFORD CHALK FORMAT<br>Grade A3) | 45<br>ough<br>ces. | 26.50 Orange speckles and -<br>striations throughout core.<br>26.50-27.00 NIDD, recovered<br>as angular gravel of flint and<br>chalk.                                                                            | 26.45 +72.99                                     |               |                           |          |
|                                                                                                              |                                          |                                               |                                                                                                                                     |                            |                        |                                                                                                                                                                                                                                |                    | 27.05-27.55 AZCL                                                                                                                                                                                                 |                                                  |               |                           |          |
| 27.50 - 28.25<br>28                                                                                          | 93<br>55<br>21                           | 60<br>100<br>180                              |                                                                                                                                     |                            |                        |                                                                                                                                                                                                                                |                    | 27.55 Small nodular flint.<br>27.90 Large shell fragment.                                                                                                                                                        |                                                  |               |                           |          |
| 28.35 - 28.60<br>28.25 - 29.00                                                                               | 99<br>59<br>40                           |                                               | C 6                                                                                                                                 |                            |                        |                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                  |                                                  |               |                           |          |
| 29                                                                                                           | 40                                       |                                               |                                                                                                                                     |                            |                        |                                                                                                                                                                                                                                |                    | 28,70 Numerous shell<br>fragments.<br>28.90 Medium nodular flints.                                                                                                                                               | d tai                                            |               |                           |          |
|                                                                                                              | 100<br>11<br>0                           |                                               |                                                                                                                                     |                            |                        |                                                                                                                                                                                                                                |                    | 29,50 Medium of the r flints                                                                                                                                                                                     |                                                  |               |                           |          |
| 29.00 - 30.50<br>29.85 - 30.00                                                                               |                                          |                                               | C 7                                                                                                                                 |                            |                        | Very thin bed (60mm) of soft t<br>CLAY with occasional flint gra<br>(Probable fault gouge).                                                                                                                                    |                    | 29.80-30.00 Chalk has brown<br>st ining throughout.                                                                                                                                                              | 29.80 +69.64                                     |               |                           |          |
| Groundwater Entrie<br>No. Depth Strike                                                                       |                                          | arks                                          |                                                                                                                                     | Depth Sea                  | aled (m)               | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                    | 500                |                                                                                                                                                                                                                  | Hard Boring<br>Depths (m)                        | Duration (n   | nins)Tool                 | s used   |
| lotes: For explanatio<br>bbreviations see Ke<br>III depths and reduce<br>nickness given in bra<br>Scale 1:25 | y to Explo<br>ed levels i<br>ackets in o | oratory H<br>in metres<br>depth co<br>(c) ESG | Iole Records,<br>s, Stratum<br>Iumn.                                                                                                |                            | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                                                          |                    |                                                                                                                                                                                                                  |                                                  | <b>32-R</b> ( |                           | 6        |



| rilled LG/NK<br>ogged GC/<br>CM<br>hecked MM<br>pproved MM                                                  | Start<br>31/10/<br>End<br>07/11/         | 2016 (<br>2<br>2016 <sup>E</sup>               | Equipment, Methods and Re<br>Comacchio 305<br>Hand dug inspection pit fro<br>20m./Rotary core drilled fro<br>Engineer's instruction. | om GL to 1,2      |                        |                                                                                                                                                                                                                                                                                  | to         Dlameter         Casing Depth           (m)         (mm)         (m)           2.50         200         2.50           20.00         160         20.00           65.00         146         20.00 | Ground Level<br>Coordinates (m)<br>National Grid | 99.44 mOD<br>E 501450.85<br>N 192155.04 |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|
| Depth<br>(m)                                                                                                | d Tes<br>TCR<br>SCR<br>RQD               | ts<br>#                                        | Records/Samples                                                                                                                      | Date &<br>Casing  | Time &<br>Water<br>(m) | Strata Description                                                                                                                                                                                                                                                               | Detail                                                                                                                                                                                                      | Depth, Level<br>(m) (mbgl)<br>(Thickness         | Water-<br>strike Backfill               |
|                                                                                                             |                                          | 60<br>100<br>180                               |                                                                                                                                      | (mbgl)            |                        | Weak medium density white CHALK,<br>Fractures are horizontal and 45<br>degrees closely spaced<br>(60/100/180mm) undulating rough<br>with brown staining and black<br>speckling on surfaces. Occasional<br>flints and shell fragments.<br>(SEAFORD CHALK FORMATION -<br>Grade B3) | 30.20-30.60 NIDD, recovered<br>as angular gravel of chalk.<br>Occasional shell fragments.                                                                                                                   |                                                  |                                         |
| <sup>31</sup><br>30.50 - 32.00<br>31.40 - 31.64                                                             | 89<br>41<br>32                           |                                                | C 8                                                                                                                                  |                   |                        | Weak medium density white CHALK<br>with occasional light grey mottling.<br>Fractures are horizontal and vertical<br>closely to medium spaced<br>(80/120/230mm) undulating rough<br>with slight black speckling on<br>surfaces. (SEAFORD CHALK<br>FORMATION - Grade A2/3)         | 31.10 Orange stained<br>speckles and striations<br>throughout core (possible<br>sponge bed).<br>31.25 Small nodular flints.                                                                                 | 31.00 +68.44 P                                   |                                         |
| 3232.00 - 32.15                                                                                             |                                          |                                                | C 9                                                                                                                                  |                   |                        |                                                                                                                                                                                                                                                                                  | 31.75 Large nodular flint.                                                                                                                                                                                  |                                                  |                                         |
| 32.00 - 33.50<br>33                                                                                         | 77<br>33<br>20                           | 80<br>120<br>230                               |                                                                                                                                      | 02/11/16<br>20.00 | 1700<br>Dry            |                                                                                                                                                                                                                                                                                  | 32.20 Medium nodular flint.                                                                                                                                                                                 |                                                  |                                         |
| <sup>34</sup><br>33,50 - 35,00<br>34,30 - 34,50                                                             | 100<br>23<br>15                          |                                                | C 10                                                                                                                                 | 03/11/16          | 0800<br>Dry            |                                                                                                                                                                                                                                                                                  | 34.00 Large nodular flint.                                                                                                                                                                                  |                                                  |                                         |
| 85<br>Froundwater Entrie<br>No. Depth Strike                                                                | (m) Rem                                  |                                                |                                                                                                                                      | Depth Sea         |                        | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                      |                                                                                                                                                                                                             |                                                  | mins)Tools used                         |
| lotes: For explanatic<br>bbreviations see Ke<br>II depths and reduce<br>nickness given in bra<br>Scale 1:25 | y to Explo<br>ed levels i<br>ickets in o | oratory H<br>in metres<br>depth col<br>(c) ESG | lole Records.<br>s. Stratum<br>lumn. AGS                                                                                             |                   | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                                                                                                            |                                                                                                                                                                                                             | Borehole<br>ML032-R<br>Sheet 7 of                |                                         |



| rilled LG/NK<br>ogged GC/<br>CM<br>hecked MM<br>pproved MM                                                | Start<br>31/10/2<br>End<br>07/11/2       |                                              | Equipment, Methods and R<br>Comacchio 305<br>Hand dug inspection pit i<br>20m./Rotary core drilled<br>Engineer's instruction. | rom GL to 1,2                |                        | ry open hole from 1.2m to<br>minated at 65m on                                                                                                                                                                                              | Depth from<br>(m)<br>0.00<br>2.50<br>20.00                         | to         Diameter         Casing Depth           (m)         (mm)         (m)           2.50         200         2.50           20.00         160         20.00           65.00         146 | Ground Level<br>Coordinates (m)<br>National Grid |                             | 99.44 mOD<br>E 501450.85<br>N 192155.04 |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------|-----------------------------------------|
| amples an                                                                                                 | d Tes                                    | ts                                           |                                                                                                                               |                              |                        | Strata Descriptio                                                                                                                                                                                                                           | n                                                                  |                                                                                                                                                                                               |                                                  |                             |                                         |
| Depth<br>(m)                                                                                              | TCR<br>SCR<br>RQD                        | ŀf                                           | Records/Samples                                                                                                               | Date &<br>Casing<br>(mbgl)   | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                        |                                                                    | Detail                                                                                                                                                                                        | Depth, Level<br>(m) (mbgl)<br>(Thickness         |                             | Water-<br>strike Backfill               |
|                                                                                                           |                                          |                                              | _                                                                                                                             |                              |                        | Weak medium density w<br>with occasional light grey<br>Fractures are horizontal<br>closely to medium space<br>(80/120/230mm) undulat<br>with slight black specklin<br>surfaces, (SEAFORD Ch<br>FORMATION - Grade A2<br>Telal Units of Carde | / mottling.<br>and vertical<br>ing rough<br>g on<br>HALK<br>2/3) / | 35.00-35.35 NIDD, recovered<br>as gravel.<br>35.35-35.36 Thick lamination<br>(10mm) of soft light grey clay.<br>(Possibly SHOREHAM                                                            | -35.35 +64.0                                     |                             |                                         |
| 35.00 - 36.50                                                                                             | 97<br>33<br>33                           |                                              |                                                                                                                               |                              |                        | Thick lamination (10mm)<br>grey CLAY. (Possibly SH<br>MARL No 2, LEWES NO<br>CHALK FORMATION)<br>Weak medium density w<br>with occasional flints. Fra<br>horizontal and subvertic<br>closely to closely spaced                              | OREHAM<br>DULAR<br>hite CHALK<br>actures are<br>al very            | MARL No 2)<br>35.40-35.75 NIDD<br>35.90 Medium tubular flints /<br>Shoreham flints and some                                                                                                   |                                                  |                             |                                         |
| <sup>6</sup><br>36.25 <b>-</b> 36.50                                                                      |                                          |                                              | C 11                                                                                                                          |                              |                        | (50/120/200mm) closed<br>occasional black speckle<br>surfaces. (LEWES NOD<br>CHALK FORMATION - C                                                                                                                                            | es on<br>IULAR                                                     | drilling disturbance.<br>36,10 Medium nodular flints<br>and some drilling<br>disturbance.                                                                                                     |                                                  |                             |                                         |
| 36.50 - 36.80                                                                                             |                                          | 50<br>120                                    | C 12                                                                                                                          |                              |                        |                                                                                                                                                                                                                                             |                                                                    | 36.80 Large nodular carious<br>flint.<br>36.80-37.05 NIDD, Highly                                                                                                                             |                                                  |                             |                                         |
| <sup>77</sup><br>36.50 - 38.00                                                                            | 100<br>41<br>36                          | 200                                          |                                                                                                                               |                              |                        |                                                                                                                                                                                                                                             |                                                                    | fractured                                                                                                                                                                                     |                                                  |                             |                                         |
| 38 -                                                                                                      |                                          |                                              |                                                                                                                               |                              |                        |                                                                                                                                                                                                                                             |                                                                    | 37,80 Medium nodular flint.<br>38.00 Horizontal fracture with-<br>orange staining on surface.                                                                                                 |                                                  |                             |                                         |
| 38.00 - 38.75                                                                                             | 97<br>63<br>32                           |                                              |                                                                                                                               |                              |                        | Vary this had (25mm) of                                                                                                                                                                                                                     | light grou                                                         | 38.25-38.35 NIDD. Highly<br>fractured with orange<br>speckling throughout core<br>possible sponge bed),<br>38.40-38.85 Vertical fracture                                                      | -<br>-<br>-<br>-<br>                             | '<br>'<br>'<br>'<br>'<br>2' |                                         |
| 38.60 - 38.74                                                                                             |                                          |                                              | C 13                                                                                                                          |                              |                        | Very thin bed (25mm) of<br>CLAY incorporating a thii<br>lamination (10mm) of sot<br>clay. (Possibly SHOREH<br>NO 1, LEWES NODULA<br>FORMATION)<br>Weak medium density w<br>with occasional flints. Fra                                      | ck<br>ft brown<br>AM MARL<br>R CHALK<br>hite CHALK                 | with slight black speckling.<br>38,52-38,53 Very thin bed<br>(25mm) of light grey clay<br>incorporating thick lamination<br>(10mm) of soft brown clay.<br>(Possibly SHOREHAM<br>MARL NO 1)    | Jai I                                            |                             |                                         |
| 38.75 - 39.50                                                                                             | 97<br>44<br>17                           | 50<br>120<br>200                             |                                                                                                                               |                              |                        | horizontal and subvertica<br>closely to closely spaced<br>(50/120/200mm) closed<br>occasional black speckle<br>surfaces. (LEWES NOD<br>CHALK FORMATION - C                                                                                  | al very<br>I<br>with<br>es on<br>PULAR                             | 39.10 Medium nodular flints,                                                                                                                                                                  | 6                                                |                             |                                         |
| 39.90 - 40.05<br><sup>49</sup>                                                                            |                                          |                                              | C 14                                                                                                                          |                              |                        |                                                                                                                                                                                                                                             |                                                                    | 39.65 Ors ye stained lens<br>30mm ong                                                                                                                                                         | -                                                |                             |                                         |
| roundwater Entrie<br>No. Depth Strike                                                                     |                                          | arks                                         |                                                                                                                               | Depth Sea                    | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                 |                                                                    |                                                                                                                                                                                               | Hard Boring<br>Depths (m)                        | Duration (n                 | nins)Tools used                         |
| otes: For explanatio<br>obreviations see Ke<br>Il depths and reduce<br>ickness given in bra<br>Scale 1:25 | y to Explo<br>ed levels i<br>ackets in c | oratory H<br>in metre<br>depth co<br>(c) ESG | Hole Records,<br>s, Stratum<br>plumn. AGS                                                                                     | ect<br>ect No.<br>ed out for | D60                    | ersham Tunnel (Chiltern) Area<br>177-16<br>h Speed Two (HS2) Limited                                                                                                                                                                        | ıC                                                                 |                                                                                                                                                                                               | Borehole<br>MLO                                  | 32-R                        |                                         |



| necked MM<br>oproved MM<br>amples and | End<br>07/11/2<br>d Tes | 20 <b>1</b> 6 E  | 0m./Rotary core drilled fro<br>ingineer's instruction. | m 20m to e                 | John. Terr             | minated at 65m on     20.00       Strata Description                                                                                                                                                                                                                                                                                                      | 65.00 <b>146</b>                                                                                                                                                                                                                                                          | National Grid                            |                          | 192155.04                 |
|---------------------------------------|-------------------------|------------------|--------------------------------------------------------|----------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------|---------------------------|
| Depth<br>(m)                          | TCR<br>SCR<br>RQD       | lf               | Records/Samples                                        | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                                                                                      | Detail                                                                                                                                                                                                                                                                    | Depth, Level<br>(m) (mbgl)<br>(Thickness | Legend <sup>Wa</sup> str | <sup>ater-</sup> Backfill |
| 39.50 - 41.00                         | 67<br>23<br>18          | NA<br>NA<br>NA   |                                                        |                            |                        | Weak medium density white CHALK<br>with occasional flints. Fractures are<br>horizontal and subvertical very<br>closely to closely spaced<br>(50/120/200mm) closed with<br>occasional black speckles on<br>surfaces. (LEWES NODULAR<br>CHALK FORMATION - Grade A3)<br>AZCL. Driller's description. CHALK.<br>(LEWES NODULAR CHALK<br>FORMATION - Ungraded) | 40.30-40.50 NIDD, recovered<br>as angular gravel of chalk.<br>40.50-41.00 AZCL                                                                                                                                                                                            | 40.50 +58.94                             |                          |                           |
| 1<br>41.00 - 41.50                    | 68<br>12<br>0           | 50<br>120        |                                                        |                            |                        | Weak medium density white CHALK<br>with occasional flints. Fractures are<br>horizontal and subvertical very<br>closely to closely spaced<br>(50/120/200mm) closed with<br>occasional black speckles on<br>surfaces. (LEWES NODULAR<br>CHALK FORMATION - Grade A3)                                                                                         | 41.00 Medium nodular flints. —<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                             | 41.00 +58.44                             |                          |                           |
| 41.80 - 42.00<br>241.50 - 42.50       | 100<br>20<br>11         | 200              | C 15<br>50<br>120<br>200                               |                            |                        | Weak medium density white CHALK.<br>Fractures are horizontal and vertical<br>(50/120/20mm) open with heavy<br>orange staining and slight clay (up to<br>1mm) infill on surfaces. (LEWES<br>NODULAR CHALK FORMATION -                                                                                                                                      | 41.70 Subvertical fracture,<br>undulating rough with black<br>speckling and slight orange<br>staining on surface.<br>42.00-42.50 Vertical fracture<br>with some clay coating,<br>42.05 Horizontal fracture with<br>orange surface staining.<br>42.30 Small nodular flint. | 42.05 +57.38<br><br>42.35 +57.09         |                          |                           |
| 42.80 - 43,10<br>3<br>42.50 - 44.00   | 100<br>53<br>47         | 50<br>120<br>200 | 120                                                    |                            |                        | Grade C3)<br>Weak medium density white CHALK<br>with occasional flints. Fractures are<br>horizontal very close to closely<br>spaced (50/120/200mm) and<br>occasionally subvertical undulating<br>rough. (LEWES NODULAR CHALK<br>FORMATION - Grade A3/4)                                                                                                   | 42.50 Medium nodular flint.<br>43.00-44.00 Occasional grey<br>wispy marl seams.<br>43.20 Small nodular flints.                                                                                                                                                            |                                          |                          |                           |
| 4 -                                   | 45                      | NA<br>NA<br>NA   |                                                        |                            |                        | AZCL, Driller's description: CHALK,<br>(LEWES NODULAR CHALK<br>FORMATION - Ungraded)                                                                                                                                                                                                                                                                      | 43.90 Horizontal fracture with<br>orange staining on surface.<br>43.90-44.10 NIDD, recovered<br>as angular gravel of chalk.                                                                                                                                               | 44,00 +55.44                             |                          |                           |
| 44.00 - 45.50                         | 21<br>13                |                  |                                                        |                            |                        | Weak medium density white CHALK<br>with occasional flints. Fractures are<br>horizontal very close to closely<br>spaced and occasionally subvertion                                                                                                                                                                                                        | 2. ACU                                                                                                                                                                                                                                                                    | 44.75 +54.69                             |                          |                           |
| oundwater Entrie<br>No. Depth Strike  |                         | arks             |                                                        | Depth Sea                  | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                           | Hard Boring<br>Depths (m)                | Duration (mins           | s)Tools used              |



| Drilled LG/NK<br>Logged CM<br>Checked MM<br>Approved MM                                                       | Start<br>31/10/2<br>End<br>07/11/2       | 2016 (<br>H<br>2<br>2016 <sup>E</sup>          | quipment, Methods and Ren<br>Comacchio 305<br>Iand dug inspection pit fro<br>Om./Rotary core drilled fro<br>Engineer's instruction. | m GL to 1,2                                                                                    | 2m. Rota<br>35m. Teri                                                                                                                                                                                                                                                                             |                                                                         | to         Dlameter         Casing Depth           (m)         (mm)         (m)           2.50         200         2.50           20.00         160         20.00           65.00         146         146 | Ground Level<br>Coordinates (m)<br>National Grid | E 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44 mOD<br>1450.85<br>2155.04 |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Samples an<br>Depth                                                                                           | d Tes                                    | ts<br>#                                        | Records/Samples                                                                                                                     | Date &<br>Casing                                                                               | Time &<br>Water                                                                                                                                                                                                                                                                                   | Strata Description                                                      | Detail                                                                                                                                                                                                    | Depth, Level<br>(m) (mbgl)                       | Legend Water-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Backfill                     |
| (m)<br>45,50 - 45,65                                                                                          | RQD                                      |                                                | C 17                                                                                                                                | (mbgl)                                                                                         | (m)                                                                                                                                                                                                                                                                                               | undulating rough. (LEWES<br>NODULAR CHALK FORMATION -<br>Grade A3/4)    |                                                                                                                                                                                                           | (Thickness<br>)(m)<br>                           | 1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1           1         1         1 |                              |
| <b>45.50 - 46.25</b><br>46                                                                                    | 64<br>16<br>13                           | 50<br>120<br>230                               |                                                                                                                                     |                                                                                                |                                                                                                                                                                                                                                                                                                   |                                                                         | 46.00-46.25 AZCL —<br>46.00-46.30 AZCL<br>46.05-46.25 AZCL<br>46.10 Medium nodular flints.<br>46.25-46.50 AZCL<br>46.30 Medium nodular flints.                                                            | -<br>                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| 46.45 - 46.60<br>46.25 - 47.00                                                                                | 57<br>19<br>19                           |                                                | C 18                                                                                                                                |                                                                                                |                                                                                                                                                                                                                                                                                                   |                                                                         | 47.00 Orange staining                                                                                                                                                                                     | 47.00 +52.44                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| 47.10 - 47.40<br>47.00 - 47.50                                                                                | 100<br>100<br>100                        |                                                | 50                                                                                                                                  | occasional light<br>Fractures are h<br>occasionally ver<br>medium spaced<br>with slight vertic | Weak medium to high density white<br>CHALK with occasional flints and<br>occasional light grey marl seams.<br>Fractures are horizontal and<br>occasionally vertical closely to<br>medium spaced (85/150/300mm)<br>with slight vertical specks. (LEWES<br>NODULAR CHALK FORMATION -<br>Grade A2/3) | throughout core (possible<br>sponge bed)<br>47.65 Medium nodular flint. |                                                                                                                                                                                                           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| 48 <b>47.50 - 48.5</b> 0                                                                                      | 97<br>55<br>55                           | NIDD<br>150<br>300                             |                                                                                                                                     |                                                                                                |                                                                                                                                                                                                                                                                                                   |                                                                         | 47.70-47.80 Very weak low<br>density CHALK with<br>occasional small nodular<br>flints.<br>48.30-48.50 NIDD                                                                                                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| 49 <b>48</b> .50 <b>- 4</b> 9.50                                                                              | 100<br>65<br>44                          |                                                |                                                                                                                                     |                                                                                                |                                                                                                                                                                                                                                                                                                   |                                                                         | 48.50-48.70 Medium nodular –<br>flints (with white cortex).<br>49.00 Small nodular flint.                                                                                                                 | No.                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| 49.35 <b>-</b> 49.50                                                                                          |                                          |                                                | C 20                                                                                                                                |                                                                                                |                                                                                                                                                                                                                                                                                                   |                                                                         | ccept                                                                                                                                                                                                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| 49.50 - 50.00<br>50                                                                                           | 76<br>60<br>48                           |                                                |                                                                                                                                     |                                                                                                |                                                                                                                                                                                                                                                                                                   |                                                                         | 45.90-50.00 AZCL<br>49.95 Sheet flint 3mm thick.                                                                                                                                                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| Groundwater Entrie<br>No. Depth Strike                                                                        |                                          | harks                                          | 1                                                                                                                                   | Depth Sea                                                                                      | led (m)                                                                                                                                                                                                                                                                                           | Depth Related Remarks<br>Depths (m) Remarks                             | <u> </u>                                                                                                                                                                                                  | Hard Boring<br>Depths (m)                        | Duration (mins)Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ools used                    |
| Notes: For explanatio<br>abbreviations see Ke<br>All depths and reduce<br>hickness given in bra<br>Scale 1:25 | y to Explo<br>ed levels i<br>ackets in o | oratory H<br>in metres<br>depth col<br>(c) ESG | Stratum                                                                                                                             |                                                                                                | D60                                                                                                                                                                                                                                                                                               | rsham Tunnel (Chiltern) Area C<br>177-16<br>h Speed Two (HS2) Limited   |                                                                                                                                                                                                           |                                                  | 32-RC0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06                           |



| hecked MM<br>pproved MM                                             | End<br>07/11/2  | 2<br>2016 <sup>E</sup> | 0m./Rotary core drilled fro<br>ngineer's instruction. |                   |                 |                                                                                                                                                                                                                                                              | 20.00 160 20.00<br>65.00 146                                                                        | National Grid              | N 19              | 92155.04          |
|---------------------------------------------------------------------|-----------------|------------------------|-------------------------------------------------------|-------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------|-------------------|-------------------|
| Depth                                                               | TCR<br>SCR      | rs<br>If               | Records/Samples                                       | Date &            | Time &<br>Water | Strata Description                                                                                                                                                                                                                                           | Detail                                                                                              | Depth, Level<br>(m) (mbgl) | Water             | Backfill          |
| (m)                                                                 | RQD             |                        | Records/Samples                                       | Casing<br>(mbgl)  | (m)             | Weak medium to high density white                                                                                                                                                                                                                            | Bellow 49.20m slight gritty                                                                         | (Thickness<br>) (m)        | Legend strike     |                   |
| 50.30 - 50.60<br>50.00 - 50.75                                      | 100<br>71<br>27 |                        | C 14A                                                 |                   |                 | CHALK with occasional flints and<br>occasional light grey marl seams.<br>Fractures are horizontal and<br>occasionally vertical closely to<br>medium spaced (85/150/300mm)<br>with slight vertical specks. (LEWES<br>NODULAR CHALK FORMATION -<br>Grade A2/3) | texture.<br>50.20 Small nodular flints.                                                             |                            |                   |                   |
|                                                                     |                 |                        |                                                       |                   |                 |                                                                                                                                                                                                                                                              | 50.75 Medium nodular flints.                                                                        | -<br>-<br>-<br>-<br>-<br>- |                   |                   |
| <sup>51</sup><br>50.75 - 51.50<br>51.25 - 51.40                     | 96<br>75<br>64  |                        | C 21                                                  |                   |                 | Very weak to weak high density<br>white nodular CHALK with<br>occasional light grey wispy marl<br>seams and light grey mottling.<br>Fractures are horizontal to 30<br>degrees closely spaced<br>(80/150/200mm) undulating rough,                             | 51.20 Horizontal to 30<br>degree fractures with 5mm of<br>soft comminuted chalk infill.             | 51.10 +48.34               |                   |                   |
| 51.70 - 52.00                                                       |                 |                        | C 22                                                  |                   |                 | occasionally with 5mm infill of<br>comminuted chalk. (LEWES<br>NODULAR CHALK FORMATION -<br>Grade A3/4, locally C3/4)                                                                                                                                        |                                                                                                     |                            |                   |                   |
| 5251.50 - 52.50                                                     | 100<br>85<br>60 |                        |                                                       |                   |                 |                                                                                                                                                                                                                                                              |                                                                                                     |                            |                   |                   |
| 52.50 - 53.00                                                       | 100<br>58<br>20 |                        |                                                       |                   |                 |                                                                                                                                                                                                                                                              | 52.60-52.65 NIDD.                                                                                   |                            |                   |                   |
| 53 -                                                                |                 | NIDD<br>150<br>200     |                                                       |                   |                 |                                                                                                                                                                                                                                                              | fracture.<br>53.00 Medium nodular flint.<br>53.10-53.35 AZCL                                        |                            |                   |                   |
| 53.00 - 54.00                                                       | 75<br>33<br>33  |                        |                                                       |                   |                 |                                                                                                                                                                                                                                                              | 53.35-53.60 Small and<br>medium nodular flints<br>surrounded by NIDD chalk,<br>recovered as gravel. |                            |                   |                   |
| 5454.00 - 54.30                                                     |                 |                        | C 23                                                  |                   |                 |                                                                                                                                                                                                                                                              | -                                                                                                   | Jan 1                      |                   | e lo              |
| 54.00 - 54.50                                                       | 80<br>60<br>60  |                        |                                                       | 03/11/16<br>20.00 | 1800<br>54.00   |                                                                                                                                                                                                                                                              | 54,40 Orangish brov r                                                                               | 0                          |                   |                   |
|                                                                     |                 |                        |                                                       | 04/11/16<br>20.00 | 0800<br>47.00   |                                                                                                                                                                                                                                                              | 54.50 Medium nocu ar flints.                                                                        | -                          |                   | 0///              |
| <del>55<b>54.50 - 55</b>.50</del>                                   |                 |                        |                                                       |                   |                 |                                                                                                                                                                                                                                                              | 54.90 Horizontal fracture -<br>infilled 5mm with comminuted 5<br>chalk.                             | -                          | <u></u>           | $\langle \rangle$ |
| roundwater Entrie<br>No. Depth Strike                               |                 | arks                   |                                                       | Depth Sea         | led (m)         | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                  |                                                                                                     | Hard Boring<br>Depths (m)  | Duration (mins)To | ools used         |
| otes: For explanatio<br>bbreviations see Ke<br>Il depths and reduce | y to Explo      | oratory He             | Stratum                                               | t No.             |                 | ersham Tunnel (Chiltern) Area C<br>77-16                                                                                                                                                                                                                     |                                                                                                     | Borehole                   | 32-RC0            |                   |



| orilled LG/NK<br>ogged GC/<br>CM<br>Checked MM                                                                | Start<br>31/10/<br>End<br>07/11/         | 2016 (<br>12<br>2016 <sup>E</sup>              | Equipment, Methods and Rem<br>Comacchio 305<br>Hand dug inspection pit fror<br>20m./Rotary core drilled fror<br>Engineer's instruction. | n GL to 1.2      | 2m, Rota<br>35m, Ter | minated at 65m on                                                                                                                                                                                                    | Depth from<br>(m)<br>0.00<br>2.50<br>20.00            | to         Dlamete           (m)         (mm)           2.50         200           20.00         160           65.00         146 | r Casing Depth<br>(m)<br>2.50<br>20.00 | Ground Level<br>Coordinates (n<br>National Grid | n)         | E 501    | 4 mOD<br>450.85<br>155.04 |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|------------|----------|---------------------------|
| amples an                                                                                                     | d Tes                                    | ts<br>⊮                                        | Records/Samples                                                                                                                         | Date &<br>Casing | Time &<br>Water      | Strata Descriptio                                                                                                                                                                                                    | n                                                     | Deta                                                                                                                             |                                        | Dep <del>t</del> h, Lev<br>(m) (mbg             |            | Water-   | Backfill                  |
| (m)<br>55.20 - 55.50                                                                                          | RQD<br>100<br>62<br>50                   |                                                | C 24                                                                                                                                    | (mbgl)           | (m)                  | Very weak to weak high<br>white nodular CHALK wi<br>occasional light grey wis<br>seams and light grey mo<br>Fractures are horizontal<br>degrees closely spaced<br>(80/150/200mm) undulat<br>occasionally with 5mm ir | th<br>by marl<br>ttling.<br>to 30<br>ing rough,       |                                                                                                                                  |                                        | (Thickness<br>) (m)                             |            | strike   | 111                       |
| 55.50 - 56.00                                                                                                 | 100<br>40<br>40                          |                                                |                                                                                                                                         |                  |                      | comminued chalk, (LEV<br>NODULAR CHALK FOR<br>Grade A3/4, locally C3/4                                                                                                                                               | VES<br>MATION -                                       | 55.50 Medium n<br>55.68 Small shel<br>(3mm thick).<br>55.80 Small nod                                                            | l fragments                            |                                                 |            |          | 111                       |
| 5656,00 - 56,10                                                                                               | 00                                       |                                                | C 25                                                                                                                                    |                  |                      | Weak high density white<br>with many flints. Fracture<br>probably horizontal and {<br>undulating rough, occasi                                                                                                       | es are<br>30 degrees<br>onally with                   | 56.00 Medium n<br>56.15 Medium n<br>56.15-56.30 Rec<br>gravel with sligh<br>staining and blac<br>on surfaces.                    | odular flint.<br>overed as<br>orange   | 56.20 + <b>4</b> 3.                             | 24<br>     |          |                           |
| 56.00 - 57.00                                                                                                 | 98<br>26<br>10                           | NIDD<br>NIDD<br>120                            |                                                                                                                                         |                  |                      | black speckling on surfac<br>Generally NIDD, due to f<br>recovered as gravel. Fra<br>spacing not assessed. Fl<br>small and medium nodul<br>NODULAR CHALK FOR<br>Possibly Grade A3)                                   | ces.<br>lints,<br>cture<br>ints are<br>ar. (LEVVES    |                                                                                                                                  |                                        |                                                 |            |          | 1111                      |
| 57.00 - 57.50                                                                                                 | 100<br>0<br>0                            |                                                |                                                                                                                                         |                  |                      |                                                                                                                                                                                                                      |                                                       | 57.35 Medium n                                                                                                                   | odular flint.                          |                                                 |            |          | 11                        |
| 57.55 - 57.75<br>57.50 - 58.25<br><sup>58</sup>                                                               | 100<br>67<br>17                          |                                                | C 26                                                                                                                                    |                  |                      | Weak medium to high de<br>CHALK. Fractures are pr<br>horizontal occasionally 8<br>closely spaced (60/120/2<br>undulating rough with lig<br>mottling. (LEWES NODL<br>CHALK FORMATION - C                              | edominantly<br>0 degrees<br>:00mm)<br>nt grey<br>ILAR | 57.80 15mm Thi                                                                                                                   | ck sheet flint.                        | 57.50 +41.                                      |            |          | KIII                      |
| 58.25 - 59.00<br>59                                                                                           | 93<br>47<br>47                           | NIDD<br>120<br>200                             |                                                                                                                                         |                  |                      |                                                                                                                                                                                                                      |                                                       | 59.00 Large nod                                                                                                                  | ular flint and —                       | ja,                                             |            |          |                           |
| 59.45 - 59.55<br>59.00 - 60.00                                                                                | 100<br>0<br>0                            |                                                | C 27                                                                                                                                    |                  |                      |                                                                                                                                                                                                                      |                                                       | NIDD chalk.<br>59.40-60.40 Mai<br>recovered as an<br>of chalk and finu<br>drilling in treed).<br>59.60 Lar, e nod                | urar gravel<br>(probably               |                                                 |            |          | 11/1/1                    |
| <sup>60</sup><br>roundwater Entrie<br>No. Depth Strike                                                        |                                          | narks                                          |                                                                                                                                         | Depth Sea        | led (m)              | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                          | ,000                                                  | 60.00 Large nod                                                                                                                  | ular flint.                            | Hard Boring<br>Depths (m)                       | Duration ( | mins)Toc | ols used                  |
| lotes: For explanations<br>bbreviations see Ke<br>II depths and reduce<br>hickness given in bra<br>Scale 1:25 | y to Explo<br>ed levels i<br>ackets in o | oratory H<br>in metres<br>depth col<br>(c) ESG | s. Stratum                                                                                                                              |                  | D60                  | ersham Tunnel (Chiltern) Area<br>177-16<br>h Speed Two (HS2) Limited                                                                                                                                                 | i C                                                   |                                                                                                                                  |                                        | Borehole<br>ML                                  | 032-R      |          | 6                         |



| Drilled LG/NK<br>Logged GC/<br>CM<br>Checked MM                                                  | Start<br>31/10/<br>End<br>07/11/     | 2016 C<br>H<br>2<br>2016 E                         | equipment, Methods and Ren<br>Comacchio 305<br>Hand dug inspection pit fro<br>Om./Rotary core drilled fro<br>Engineer's instruction. | m GL to 1.2                   |                                |                                                                                                                                                                                                            | Depth from<br>(m)<br>0.00<br>2.50<br>20.00              | to [<br>(m)<br>2.50<br>20.00<br>65.00           | Dlameter<br>(mm)<br>200<br>160<br>146 | Casing Depth<br>(m)<br>2.50<br>20.00  | Ground Le<br>Coordinate<br>National G | es (m)           |               | E 50             | 44 mOD<br>1450.85<br>2155.04 |
|--------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|------------------|---------------|------------------|------------------------------|
| Samples an                                                                                       | TCR                                  |                                                    |                                                                                                                                      | Date &                        | Time &                         | Strata Descriptio                                                                                                                                                                                          | n                                                       |                                                 |                                       |                                       |                                       | Level<br>mbgl)   |               |                  |                              |
| Depth<br>(m)                                                                                     | SCR<br>RQD                           | lf                                                 | Records/Samples                                                                                                                      | Casing<br>(mbgl)              | Water<br>(m)                   | Main                                                                                                                                                                                                       |                                                         |                                                 | Detail                                |                                       | (Thickness                            | inibgi)          | Legend        | Water-<br>strike | Backfill                     |
| 60.00 - 60.50                                                                                    | 100<br>20<br>0                       |                                                    |                                                                                                                                      |                               |                                | Weak medium to high de<br>CHALK. Fractures are pr<br>horizontal occasionally 8<br>closely spaced (60/120/2)<br>undulating rough with ligh<br>mottling. (LEWES NODU<br>CHALK FORMATION - C                  | edominantly<br>0 degrees<br>:00mm)<br>nt grey<br>ILAR   |                                                 |                                       |                                       |                                       |                  |               |                  | 1111                         |
| 61                                                                                               |                                      |                                                    |                                                                                                                                      |                               |                                |                                                                                                                                                                                                            |                                                         | 60.65 Hor<br>20mm thie<br>density w<br>60.80 Me | ck band o<br>hite cha <b>l</b> k      |                                       |                                       |                  |               |                  | 111                          |
| 60.50 - 62.00<br>61.30 - 61.50                                                                   | 100<br>61<br>27                      |                                                    | C 28                                                                                                                                 |                               |                                |                                                                                                                                                                                                            |                                                         | 61.30 Lar<br>NIDD cha                           |                                       |                                       |                                       |                  |               |                  | 111                          |
| 62                                                                                               |                                      |                                                    |                                                                                                                                      |                               |                                |                                                                                                                                                                                                            |                                                         | NIDD cha                                        | i <b>l</b> k.<br>20 Zooph             | r flint and<br>ycos trace<br>spy marl |                                       |                  |               |                  | 1111                         |
| 62.00 - 63.50                                                                                    | 98<br>74                             | NIDD<br>NIDD<br>120                                | -                                                                                                                                    |                               |                                | Moderately strong very h<br>gritty white CHALK with o<br>glauconitic nodules (<30)<br>rare orange staining. (LE<br>NODULAR CHALK FOR<br>Ungraded, Possibly<br>HARDGROUNDS - BEA<br>Weak high density white | occasional<br>mm) and<br>WES<br>MATION -<br>CHY HEAD) , |                                                 |                                       |                                       | ·<br>· · · ·                          | +37.14<br>+36.79 |               |                  | 111                          |
| 6363,00 - 63,35                                                                                  | 36                                   |                                                    | C 29                                                                                                                                 |                               |                                | with light grey mottling. F<br>horizontal closely to med<br>(80/120/250mm). (LEWE<br>NODULAR CHALK FOR<br>Grade A2/3)                                                                                      | ium spaced<br>ES                                        | 62.85-62.<br>conjugate                          |                                       |                                       |                                       |                  |               |                  | N.                           |
| 63.60 - 63.90                                                                                    |                                      |                                                    | C 30                                                                                                                                 | 04/11/16<br>20,00<br>07/11/16 | 1400<br>49.00<br>0800<br>47.00 |                                                                                                                                                                                                            |                                                         |                                                 |                                       | -<br>-<br>-<br>-<br>-<br>-<br>-       |                                       |                  |               |                  |                              |
| 6463.50 - 64.50                                                                                  | 96<br>80<br>80                       | 80<br>120<br>250                                   |                                                                                                                                      | 20.00                         | 47.00                          |                                                                                                                                                                                                            |                                                         | 63.90 Sm                                        | all nodula                            | r flint                               | 0                                     | ž                |               |                  | 111                          |
| 64.50 - 65.00                                                                                    | 100<br>92<br>0                       |                                                    |                                                                                                                                      | 07/11/16                      | 1630                           |                                                                                                                                                                                                            |                                                         | 64.30 Ligi<br>seam.<br>64.45 Ligi<br>seam.      |                                       | OX -                                  |                                       |                  |               |                  | 1111                         |
| 65                                                                                               |                                      |                                                    |                                                                                                                                      | 20.00                         | 47.00                          |                                                                                                                                                                                                            |                                                         | 64.95 Slig                                      | ght orange                            | -<br>-<br>e staining                  | 65.00                                 | +34.44           |               |                  | 11                           |
| roundwater Entrie<br>No. Depth Strike                                                            |                                      | arks                                               | 1                                                                                                                                    | Depth Sea                     | led (m)                        | END OF EXPLORATO                                                                                                                                                                                           | DRY HOL                                                 | /                                               |                                       |                                       | Hard Bori<br>Depths (m                |                  | Duration (n   | nins)To          | ols used                     |
| Notes: For explanations between the see Ke All depths and reduce hickness given in brackale 1:25 | y to Explo<br>ed levels<br>ackets in | oratory Ho<br>in metres<br>depth coli<br>(c) ESG 1 | Stratum<br>umn. Project                                                                                                              |                               | D60                            | ersham Tunnel (Chiltern) Area<br>177-16<br>h Speed Two (HS2) Limited                                                                                                                                       | i C                                                     |                                                 |                                       |                                       | Borehole<br>M                         |                  | <b>32-R</b> ( |                  | )6                           |



| led LR/MR                                                              |                  |                                                            |                              |                      |                                                                                                                                                                                                                                                                                                                         |                                                         |        |                             |                                 |             |                  |               |
|------------------------------------------------------------------------|------------------|------------------------------------------------------------|------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------|-----------------------------|---------------------------------|-------------|------------------|---------------|
| gged /CM C                                                             | 08/11/2016       | Equipment, Methods and Rem<br>Comacchio 305                |                              |                      |                                                                                                                                                                                                                                                                                                                         | Depth from to<br>(m) (m)<br>0.00 1.20                   | (mm)   | Casing Depth<br>(m)<br>1.20 | Ground Level<br>Coordinates (m) |             |                  | mOD<br>327.84 |
| ecked MM                                                               | End              | Hand dig inspection pit from<br>1.20m to 20.00m./Rotary co | GL to 1.20<br>re drilling fr | m. Rotar<br>om 20.00 | y open hole drilling from<br>Om to 65.00m.                                                                                                                                                                                                                                                                              | 1.20 20.00<br>20.00 65.00                               | 0 160  | 20.00                       | National Grid                   |             | N 1923           |               |
|                                                                        | 14/11/2016       |                                                            |                              |                      | Strata Description                                                                                                                                                                                                                                                                                                      |                                                         |        |                             |                                 |             |                  |               |
| mples and                                                              |                  |                                                            | Date &                       |                      | Strata Description                                                                                                                                                                                                                                                                                                      |                                                         |        |                             | Depth, Level                    |             |                  |               |
| Depth (m) F                                                            | SCR If<br>RQD    | Records/Samples                                            | Casing<br>(mbgl)             | Water<br>(m)         | Maln                                                                                                                                                                                                                                                                                                                    |                                                         | Detall |                             | (Thickness)                     | Legend      | Water-<br>strike | Backfi∎       |
| Depth<br>(m)                                                           | TCR<br>RQD If    | Records/Samples                                            |                              |                      | Main (TOPSOIL) Dark brown gravelly silty fin coarse SAND with frequent Gravel is subangular to sub (predominantly fine to medil coarse of fint. Sandy CLAY with flint grave (Driller's description) (Possil WITH FLINTS) Sandy CLAY with flint grave returns are yellow. (Driller's description) (Possibly CLAY FLINTS) | rootlets.<br>rounded<br>um) fine to<br>its.<br>bly CLAY | Detall |                             | (m) (mbgl)                      |             | Water-           |               |
|                                                                        |                  |                                                            |                              |                      | Hole continues on next sh                                                                                                                                                                                                                                                                                               | ien C                                                   | ACCE   |                             |                                 |             |                  |               |
| oundwater Entries<br>o. Depth Strike (m                                | n) Remarks       |                                                            | Depth Sea                    | led (m)              | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                                                             | 0.                                                      |        |                             | Hard Boring<br>Depths (m)       | Duration (m | nins) Tool       | s used        |
|                                                                        | of symbols and a |                                                            |                              | Ame                  | rsham Tunnel (Chiltern) Area C                                                                                                                                                                                                                                                                                          |                                                         |        |                             | Borehole                        |             |                  |               |
| S. For explanation of<br>Key to Exploratory H<br>ced levels in metres. |                  |                                                            |                              |                      |                                                                                                                                                                                                                                                                                                                         |                                                         |        |                             |                                 | 32-R0       |                  |               |



|                                        |                         |                       | Brinnig Ex                                                 |                            |                        |                                                |                           |                                                              |                               |                       |               |                  |                     |
|----------------------------------------|-------------------------|-----------------------|------------------------------------------------------------|----------------------------|------------------------|------------------------------------------------|---------------------------|--------------------------------------------------------------|-------------------------------|-----------------------|---------------|------------------|---------------------|
| lled LR/MR<br>gged /CM                 | <b>Start</b><br>08/11/2 |                       | Equipment, Methods and Rem<br>Comacchio 305                | arks                       |                        |                                                | Depth from<br>(m)<br>0.00 | to Diameter Casing I<br>(m) (mm) (m)<br>1.20 200 1.20        | Depth Ground<br>)<br>Coordina |                       |               | 99.99<br>E 5013  | mOD                 |
| ecked MM                               | End                     | ł                     | Hand dig inspection pit from<br>1.20m to 20.00m./Rotary co | GL to 1.20                 | m, Rotar               | y open hole drilling from<br>Om to 65.00m      | 1.20<br>20.00             | (m) (mm) (m)<br>1.20 200 1.20<br>20.00 160 20.0<br>65.00 146 | National                      |                       |               | N 1923           |                     |
| roved MM                               | 14/11/2                 |                       | 1.20m to 20.00m shouly be                                  | ie aniing i                | 0111 20.00             |                                                | 20100                     |                                                              |                               |                       |               |                  |                     |
| mples an                               | d Test                  | s                     |                                                            |                            |                        | Strata Description                             | <u>n</u>                  |                                                              |                               |                       |               |                  |                     |
| Depth<br>(m)                           | TCR<br>SCR<br>RQD       | H                     | Records/Samples                                            | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                           |                           | Detall                                                       | Depth,<br>(m)<br>(Thicknes    | Level<br>(mbgl)<br>S) |               | Water-<br>strike | Backfi              |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | _                             |                       |               |                  | $\langle \rangle$   |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  | $\langle   \rangle$ |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  | $\langle   \rangle$ |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  | $\langle   \rangle$ |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  | $\langle   \rangle$ |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | =                             |                       |               |                  | $\langle   \rangle$ |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | _                             |                       |               |                  |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | _                             |                       |               |                  |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               | Į,               |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | _                             |                       |               |                  |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               | _                | $\mathbf{N}$        |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | _                             |                       |               |                  |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               | ~                |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | _                             |                       |               | ~                |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  | 10                  |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  | JK                  |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       | 34            | ~                |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              |                               | 5                     |               | $\sim$           |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | E S                           |                       |               | ~                |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | Z                             |                       |               | $\sim$           |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           | ×                                                            | 24                            |                       |               | $\sim$           |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               |                  |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           |                                                              | -                             |                       |               | ~                |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                |                           | Accept                                                       |                               |                       |               | ~                |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                | -                         |                                                              |                               |                       |               | $\sim$           |                     |
|                                        |                         |                       |                                                            |                            |                        |                                                | <u> </u>                  |                                                              | _                             |                       |               |                  |                     |
| undwater Entrie                        |                         |                       |                                                            |                            |                        | Hole continues on nex<br>Depth Related Remarks | <u>त she भ</u>            | 1                                                            | Hard Be                       | oring                 | <u></u>       | ~                | ιk                  |
| . Depth Strike                         |                         | arks                  |                                                            | Depth Sea                  | iled (m)               | Depths (m) Remarks                             | 5                         |                                                              | Depths                        |                       | Duration (m   | ins) Tool        | s used              |
| s: For explanation<br>Key to Explorato | ry Hole Re              | cords, A              | II depths and                                              |                            | Ame                    | ersham Tunnel (Chiltern) Area                  | C                         |                                                              | Borehol                       |                       |               |                  |                     |
| ced levels in me<br>tets in depth col  | tres, Stratu            | ım thickr             | ness given in                                              | No.                        | D60                    | 77-16                                          |                           |                                                              |                               | MLO                   | )32-R(        | 2003             | )                   |
| ale 1:25                               | Print                   | (c) ESG<br>Date 19/05 | www.esg.co.uk AGS<br>5/2017 16:12:24 Carried               | out for                    | Higl                   | h Speed Two (HS2) Limited                      |                           |                                                              |                               |                       | Sheet 2 of 13 | 5                |                     |



| ged /CM 08/11/2016 Comacchio 305<br>Hand dig inspection p<br>1.20m to 20.00m./Ro<br>mples and Tests<br>Depth TCR RQD If Records/Sampl | pit from GL to 1.20m. Rotary open hole drilling from<br>tary core drilling from 20.00m to 65.00m.<br>Strata Descripti       oles     Date &<br>Casing<br>(mbgl) | 20.00 65.00 <b>146</b> | Coordinates (m) E 501327.84<br>National Grid N 192333.19 |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------|
| mples and Tests                                                                                                                       | Strata Descripti                                                                                                                                                | ion                    | Depth, Level<br>(m) (mbgi) Legend Water-<br>Backfill     |
|                                                                                                                                       | Date & Time &<br>Casing Water Maln                                                                                                                              |                        | (m) (mbgl) Legend Water- Backfi                          |
| Depth CCR<br>RQD H Records/Samp                                                                                                       | oles Casing Water Maln                                                                                                                                          | Detali                 | (m) (mbgl) Legend Water- Backfi                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 | ×2                     |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 | Accepte                |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
|                                                                                                                                       |                                                                                                                                                                 |                        |                                                          |
| Indwater Entries<br>Depth Strike (m) Remarks                                                                                          | Hole continues on<br>Depth Related Remarks<br>Depth Sealed (m) Depths (m) Remarks                                                                               | 0                      | Hard Boring                                              |
| Sound and the relians                                                                                                                 | Depth Sealed (m) Depths (m) Remarks                                                                                                                             |                        | Depths (m) Duration (mins) Tools used                    |
| Key to Exploratory Hole Records, All depths and                                                                                       | Project Amersham Tunnel (Chiltern) A                                                                                                                            | rea C                  | Borehole                                                 |
| ced levels in metres. Stratum thickness given in<br>kets in depth column.                                                             | Project No. D6077-16<br>Carried out for High Speed Two (HS2) Limited                                                                                            |                        | ML032-RC009<br>Sheet 3 of 13                             |



|                                         |                                       |                                                            | -                            |                        |                                                 | <del></del>               |                                                  |                            |                                 |               |                  |                   |
|-----------------------------------------|---------------------------------------|------------------------------------------------------------|------------------------------|------------------------|-------------------------------------------------|---------------------------|--------------------------------------------------|----------------------------|---------------------------------|---------------|------------------|-------------------|
| illed LR/MR<br>gged /CM                 | Start<br>08/11/2016                   | Equipment, Methods and Rem<br>Comacchio 305                | arks                         |                        |                                                 | Depth from<br>(m)<br>0.00 | to Diameter Casing<br>(m) (mm) (i<br>1.20 200 1. | g Depth<br>m)<br>20<br>.00 | Ground Level<br>Coordinates (m) |               | 99.99<br>E 5013  |                   |
| ecked MM                                | End                                   | Hand dig inspection pit from<br>1.20m to 20.00m./Rotary co | GL to 1.20<br>re drilling fr | m. Rotar<br>om 20.0    | y open hole drilling from<br>Om to 65.00m.      | 1.20                      | 20.00 <b>160</b> 20<br>65.00 <b>146</b>          | .00                        | National Grid                   |               | N 1923           |                   |
| proved MM                               | 14/11/2016                            | ,,                                                         |                              |                        |                                                 |                           |                                                  |                            |                                 |               |                  |                   |
| mples an                                |                                       |                                                            | 1                            |                        | Strata Description                              | <u>n</u>                  |                                                  |                            | Depth, Level                    |               |                  |                   |
| Depth<br>(m)                            | TCR<br>SCR If<br>RQD                  | Records/Samples                                            | Date &<br>Casing<br>(mbgl)   | Time &<br>Water<br>(m) | Main                                            |                           | Detall                                           |                            | (m) (mbgl)<br>(Thickness)       | Legend        | Water-<br>strike | 3ackfi <b>l</b>   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | _                          | fant.                           |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | _                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | _                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  | $\langle \rangle$ |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | _                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | _                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | _                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               | 3                | 8)                |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | _                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               |                  |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          |                                 |               | ~                |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | -                          | NIC.                            |               | ~                |                   |
|                                         |                                       |                                                            |                              |                        | CHALK (Driller's descript<br>(SEAFORD CHALK FOR |                           |                                                  | δ                          | 19.0 +80.99                     | للصلي         | ~                |                   |
|                                         |                                       |                                                            |                              |                        | Ungraded).                                      |                           | *                                                | 0-                         |                                 |               | $\overline{\}$   | 11                |
|                                         |                                       |                                                            |                              |                        |                                                 |                           | <u>_0</u>                                        | -                          |                                 |               |                  | 11                |
|                                         |                                       |                                                            |                              |                        |                                                 |                           |                                                  | _                          | (1.00)                          |               | $\sim$           |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           | NC Y                                             | _                          | ()                              |               | ~                |                   |
|                                         |                                       |                                                            |                              |                        |                                                 |                           | N.                                               | -                          |                                 |               | $\overline{\}$   |                   |
|                                         |                                       |                                                            |                              |                        |                                                 | <u></u> ງ                 |                                                  | -                          |                                 |               |                  |                   |
| indwater Entrie                         | s                                     |                                                            |                              |                        | Hole continues on nex                           | d shert                   | ,<br>                                            | _                          | 20.00 +79.99                    | h, h,         | ~                | ιk                |
| undwater Entrie<br>. Depth Strike       |                                       |                                                            | Depth Sea                    | lled (m)               | Depth Related Remarks<br>Depths (m) Remarks     |                           |                                                  |                            | Hard Boring<br>Depths (m)       | Duration (m   | ins) Tools       | s used            |
| s: For explanation<br>Key to Explorator | on of symbols and<br>ry Hole Records. | d abbreviations Project<br>All depths and                  |                              | Am                     | ersham Tunnel (Chiltern) Area                   | C                         |                                                  |                            | Borehole                        |               |                  |                   |
| ced levels in met<br>tets in depth colu | tres, Stratum thic                    | kness given in                                             | No.                          | D60                    | 77-16                                           |                           |                                                  |                            | ML0                             | 32-R(         | 2005             | )                 |
| le 1:25                                 | (c) ES                                | G www.esg.co.uk<br>/05/2017 16:12:24<br>Carried            | out for                      | Hig                    | h Speed Two (HS2) Limited                       |                           |                                                  |                            |                                 | Sheet 4 of 13 | 5                |                   |



| <b>j</b>                                                                                      |                          |                       |                                              | 3                          |                        |                                                                                                                                                                                                                                                       |                                                                                               |                                                                                                                                                                                                       |                                                  |               |                            |
|-----------------------------------------------------------------------------------------------|--------------------------|-----------------------|----------------------------------------------|----------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|----------------------------|
| rilled LR/MR                                                                                  | Start                    |                       | Equipment, Methods and Rema<br>Comacchio 305 | arks                       |                        |                                                                                                                                                                                                                                                       | Depth from<br>(m)                                                                             | to Diameter Casing Depth<br>(m) (mm) (m)                                                                                                                                                              |                                                  |               | 99.99 mOD                  |
| ogged /CM<br>hecked MM                                                                        | 08/11/.<br>End           |                       | Hand dig inspection pit from                 |                            |                        |                                                                                                                                                                                                                                                       | 0.00 1.20                                                                                     | 1.20         200         1.20           20.00         160         20.00           65.00         146                                                                                                   | Coordinates (m)<br>National Grid                 |               | E 501327.84<br>N 192333.19 |
| proved MM                                                                                     | 14/11/                   |                       | 1.20m to 20.00m./Rotary co                   | e aniling tr               | om 20.00               | Jm to 65.00m.                                                                                                                                                                                                                                         | 20.00                                                                                         | 65.00 <b>146</b>                                                                                                                                                                                      |                                                  |               | 102000.10                  |
| amples and                                                                                    | d Tes                    | ts                    |                                              |                            |                        | Strata Description                                                                                                                                                                                                                                    | n                                                                                             |                                                                                                                                                                                                       |                                                  |               |                            |
| Depth<br>(m)                                                                                  | TCR<br>SCR<br>RQD        | H                     | Records/Samples                              | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                  |                                                                                               | Detail                                                                                                                                                                                                | Depth, Level<br>(m) (mbgl)<br>(Thickness)<br>(m) | v             | <sup>Vater-</sup> Backfi∎  |
| 20.50 - 20.80                                                                                 |                          |                       | C 1                                          |                            |                        | Weak medium to high de<br>CHALK with occasional o<br>speckling. Fractures are I<br>and 75 degrees very clos<br>medium spaced (60/120/<br>black speckling and oran<br>on surfaces. (SEAFORD<br>FORMATION - Grade A3                                    | orange<br>horizontal<br>ely to<br>250mm) with<br>ge staining<br>CHALK                         | 20.05-20.15 Medium nodular<br>flint and highly fractured chalk<br>(probably NIDD).                                                                                                                    |                                                  |               |                            |
| 20.00 - 21.50<br>M                                                                            | 100<br>55<br>37          |                       |                                              |                            |                        |                                                                                                                                                                                                                                                       |                                                                                               | 20.80 Horizontal fractures<br>with brown clay smear on<br>surfaces and penetrative<br>weakening (10mm) to<br>comminuted chalk.<br>21.15 Occasional orange<br>speckles.<br>21.35 Grey wispy marl seam. |                                                  |               |                            |
|                                                                                               |                          | 50<br>120<br>250      |                                              |                            |                        |                                                                                                                                                                                                                                                       |                                                                                               | 21.45 Grey wispy marl seam.<br>21.60 Medium nodular flint<br>and fractured chalk (probably<br>NIDD).                                                                                                  | (3.10)                                           |               |                            |
| 2222.00 - 22.25<br>21.50 - 23.00                                                              | 100<br>35<br>31          |                       | C 2                                          |                            |                        |                                                                                                                                                                                                                                                       |                                                                                               | 21.90 Shell fragment 4mm<br>thick with a fibrous texture on<br>broken ends.                                                                                                                           |                                                  |               |                            |
|                                                                                               |                          |                       |                                              |                            |                        |                                                                                                                                                                                                                                                       |                                                                                               | 22.50 Small nodular flints.                                                                                                                                                                           |                                                  |               |                            |
| 23<br>23.20 - 23.40                                                                           |                          | 50<br>110<br>130      | С 3                                          |                            |                        | Weak high density noduli<br>CHALK with numerous g<br>marl seams. Fractures ar<br>to 15 degrees very closed<br>spaced (50/110/130mm)<br>occasionally vertical. All f<br>undulating rough with bla<br>and occasional orange st<br>surfaces. (SEAFORD CH | rey wispy<br>e horizontal<br>y to closely<br>and<br>ractures are<br>ck speckling<br>aining on | thick.                                                                                                                                                                                                | 23.10 +76.85<br>(0.60)                           |               |                            |
| 23.00 - 24.50<br>24                                                                           | 100<br>80<br>67          |                       |                                              |                            |                        | FORMATION - Grade A3<br>Weak medium to high de<br>CHALK with occasional c<br>speckling. Fractures are<br>very closely to medium si<br>(50/150/300mm) with slig<br>speckling on surfaces. (S<br>CHALK FORMATION - G                                    | )<br>nsity white<br>orange<br>horizontal<br>paced<br>ht black<br>EAFORD                       | 23.95 Small and medium<br>nodular flints.                                                                                                                                                             | 23.70 +76.26                                     |               |                            |
| 24.90 - 25.20<br><del>25</del><br>Froundwater Entries                                         | 5                        |                       | C 4                                          |                            |                        | Hole continues on nex<br>Depth Related Remarks                                                                                                                                                                                                        | t sheet 2                                                                                     | 24,75 Large nodular flint.                                                                                                                                                                            | Hard Boring                                      |               |                            |
| No. Depth Strike                                                                              |                          |                       |                                              | Depth Sea                  |                        | Depths (m) Remarks                                                                                                                                                                                                                                    | 5                                                                                             |                                                                                                                                                                                                       | Depths (m)                                       | Duration (min | ns) Tools used             |
| otes: For explanation<br>ee Key to Explorator<br>duced levels in metr<br>ackets in depth colu | y Hole Re<br>res, Strati | ecords, A<br>um thick | Il depths and<br>ness given in<br>AGS        |                            | D60                    | ersham Tunnel (Chiltern) Area<br>77-16                                                                                                                                                                                                                | C                                                                                             |                                                                                                                                                                                                       |                                                  | 32-RC         | :009                       |
| Scale 1:25                                                                                    | Print                    | Date 19/0             | 5/2017 16:12:24 Carried                      | out for                    | Hig                    | h Speed Two (HS2) Limited                                                                                                                                                                                                                             |                                                                                               |                                                                                                                                                                                                       |                                                  | Sheet 5 of 13 |                            |



| illed LR/MR<br>gged /CM<br>necked MM<br>pproved MM                                           | Start<br>08/11/2<br>End<br>14/11/2 | ł                     | Comacchio 305<br>Hand dig inspection pit from<br>1.20m to 20.00m./Rotary cor | GL to 1.20<br>e drilling fre | m. Rotar<br>om 20.00   | y open hole drilling from                                               | Depth from<br>(m)<br>0.00<br>1.20<br>20.00 | to         Diameter         Casing Depth           (m)         (mm)         (m)           1.20         200         1.20           20.00         160         20.00           65.00         146 | Coordinates (m)<br>National Grid                 |             | 99.99 mOD<br>E 501327.84<br>N 192333.19 |
|----------------------------------------------------------------------------------------------|------------------------------------|-----------------------|------------------------------------------------------------------------------|------------------------------|------------------------|-------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------|-----------------------------------------|
| amples and                                                                                   |                                    |                       |                                                                              |                              |                        | Strata Description                                                      |                                            |                                                                                                                                                                                               |                                                  |             |                                         |
| Depth<br>(m)                                                                                 | TCR<br>SCR<br>RQD                  | ŀf                    | Records/Samples                                                              | Date &<br>Casing<br>(mbgl)   | Time &<br>Water<br>(m) | Main                                                                    |                                            | Detail                                                                                                                                                                                        | Depth, Level<br>(m) (mbgl)<br>(Thickness)<br>(m) | Legend      | Water-<br>strike Backfi                 |
| 24.50 - 26.00                                                                                | 100<br>97<br>82                    |                       |                                                                              |                              |                        |                                                                         |                                            | 25.25 Zoophycos trace fossil.<br>25.35 Small nodular flint.                                                                                                                                   |                                                  |             |                                         |
|                                                                                              |                                    |                       |                                                                              |                              |                        |                                                                         |                                            | 25.70 Grey wispy marl seam. –<br>25.90 Shell fragment. –                                                                                                                                      |                                                  |             |                                         |
| 6                                                                                            |                                    |                       | C 5                                                                          |                              |                        |                                                                         |                                            | 26.05 Small nodular flint.                                                                                                                                                                    |                                                  |             |                                         |
| 26.00 - 27.50<br>7                                                                           | 100<br>90<br>90                    |                       |                                                                              |                              |                        |                                                                         |                                            | 26.80 Zoophycos trace fossil.                                                                                                                                                                 |                                                  |             |                                         |
| 27.70 - 27.90                                                                                |                                    | 50<br>150<br>300      | C 6                                                                          |                              |                        |                                                                         |                                            | 27.30-27.50 Numerous grey<br>wispy marl seams.<br>27.45 Horizontal fracture with<br>heavy black speckling on<br>surfaces.<br>27.70 Medium nodular flint.                                      | (7.20)                                           |             |                                         |
| 8 27.50 - 29.00                                                                              | 99<br>82<br>77                     |                       |                                                                              |                              |                        |                                                                         |                                            | 27.95 Medium nodular flint.<br>                                                                                                                                                               |                                                  |             |                                         |
|                                                                                              |                                    |                       |                                                                              | 09/11/16<br>20.00            | 1800<br>2.40           |                                                                         |                                            | wispy marl seams<br>28.35 Horizontal fracture with<br>orange staining on surface                                                                                                              | N <sub>i</sub> ,                                 |             |                                         |
| 9 -                                                                                          |                                    |                       |                                                                              | 10/11/16<br>20.00            | 0800                   |                                                                         |                                            |                                                                                                                                                                                               | N.                                               |             |                                         |
| 29.30 - 29.65                                                                                | 93<br>41<br>41                     |                       | C7                                                                           |                              |                        |                                                                         |                                            | 29.25 Medium nodular rait<br>surrounded by chark with<br>slight orange spece ng                                                                                                               |                                                  |             |                                         |
| 29.00 - 30.50                                                                                |                                    |                       |                                                                              |                              |                        |                                                                         |                                            | 20.00 Lerge podu or first                                                                                                                                                                     |                                                  |             |                                         |
| o<br>oundwater Entries<br>Io. Depth Strike                                                   |                                    | arks                  |                                                                              | Depth Sea                    | led (m)                | Hole continues on next s<br>Depth Related Remarks<br>Depths (m) Remarks |                                            | <del>'90.00 Large nodu ar f int.</del>                                                                                                                                                        | Hard Boring<br>Depths (m)                        | Duration (m | ins) Tools used                         |
| tes: For explanation<br>e Key to Exploratory<br>duced levels in metr<br>ackets in depth colu | y Hole Re<br>res, Stratu           | cords. A<br>um thickr | II depths and                                                                | No.                          |                        | ersham Tunnel (Chiltern) Area C<br>77-16                                |                                            |                                                                                                                                                                                               | Borehole<br>ML(                                  | )32-R(      | 2009                                    |



| lled LR/MR<br>gged /CM                    | <b>Start</b><br>08/11/2 | 016              | Equipment, Methods and Remai<br>Comacchio 305<br>Hand dig inspection pit from ( |                            | m. Roter               | y open hole drilling from 1.20                                                                                                                                                                                                                                                                                                                                   | to         Diameter         Casing Depth           (m)         (mm)         (m)           1.20         200         1.20           20.00         160         20.00 | Coordinates (m)                                  |               | 99.99 mOD<br>E 501327.84  |
|-------------------------------------------|-------------------------|------------------|---------------------------------------------------------------------------------|----------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|---------------------------|
| ecked MM<br>proved MM                     | End<br>14/11/2          | 1                | 1.20m to 20.00m./Rotary core                                                    |                            |                        |                                                                                                                                                                                                                                                                                                                                                                  | 65.00 <b>146</b>                                                                                                                                                  | National Grid                                    |               | N 192333.19               |
| amples and                                |                         |                  |                                                                                 |                            |                        | Strata Description                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                   |                                                  |               |                           |
| Depth<br>(m)                              | TCR<br>SCR<br>RQD       | lf               | Records/Samples                                                                 | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                                                                                             | Detail                                                                                                                                                            | Depth, Level<br>(m) (mbgl)<br>(Thickness)<br>(m) | v             | <sup>Water-</sup> Backfi∎ |
| -                                         |                         |                  |                                                                                 |                            |                        |                                                                                                                                                                                                                                                                                                                                                                  | 30.30-31.00 Highly fractured<br>(probably drilling induced).<br>30.40 Medium nodular flint.<br>30.50-30.60 NIDD.                                                  |                                                  |               |                           |
| 31.20 - 31.50<br>30.50 - 32.00            | 99<br>35<br>29          |                  | C 8                                                                             |                            |                        | Weak medium to high density white<br>CHALK, Fractures are horizontal and<br>45 degrees closely spaced<br>(80/150/2c0omm) with slight black<br>speckling on surfaces. Occasional<br>grey wispy marl seams. (SEAFORD<br>CHALK FORMATION - Grade A3)                                                                                                                | 31.05 Medium nodular flint.                                                                                                                                       | 30.90 +69.0s                                     |               |                           |
| 32.10 - 32.37                             |                         | 80<br>150<br>250 | C 9                                                                             |                            |                        |                                                                                                                                                                                                                                                                                                                                                                  | 32.00 Large nodular flints.                                                                                                                                       | (2.65)                                           |               |                           |
| 32.00 - 33.50                             | 80<br>69<br>53          |                  |                                                                                 |                            |                        |                                                                                                                                                                                                                                                                                                                                                                  | 33.20 Orange speckling and<br>lenses <20mm in diameter.                                                                                                           |                                                  |               |                           |
| 33.50 - 35.00                             | 100 0                   |                  |                                                                                 |                            |                        | Thick lamination (10mm) of grey<br>CLAY, (Probably SHOREHAM MARL<br>No 2, LEWES NODULAR CHALK<br>FORMATION)<br>Weak medium density white CHALK.<br>Fractures are 75 degrees and<br>randomly orientated very closely to<br>closely spaced (40/60/100mm).<br>Heavy black specking on some<br>fracture surfaces, (LEWES<br>NODULAR CHALK FORMATION -<br>Grade A3/4) | 33.50 Medium nodular flint.<br>33.55-33.56 Thick lamination<br>(10mm) of day. (Probably<br>Shoreham Marl No 2)<br>34.00 Small tubular flint.<br>(Shoreham Flints) | 33.55(0.00) +66.44                               |               |                           |
| 34.50                                     | 0                       |                  | D 10                                                                            |                            |                        |                                                                                                                                                                                                                                                                                                                                                                  | 35.00 Medium nodu ar fint.                                                                                                                                        |                                                  |               |                           |
| oundwater Entries<br>o. Depth Strike (    |                         | irks             |                                                                                 | Depth Sea                  | led (m)                | Hole continues on next skiel<br>Depth Related Remarks<br>Depths (m) Remarks<br>35.00 - 65.00 No flucturet installed w 35m.                                                                                                                                                                                                                                       |                                                                                                                                                                   | Hard Boring<br>Depths (m)                        | Duration (mir | ns) Tools used            |
| es: For explanation<br>Key to Exploratory | y Hole Rec              | ords, Al         |                                                                                 |                            |                        | ersham Tunnel (Chiltern) Area C<br>77-16                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                   | Borehole                                         | 32-RC         |                           |



| lled LR/MR<br>gged /CM<br>ecked MM<br>proved MM                  | Start<br>08/11/2<br>End<br>14/11/2                       | 2016<br>2016                                  | Equipment, Methods and Rema<br>Comacchio 305<br>Hand dig inspection pit from<br>1.20m to 20.00m./Rotary cor | GL to 1.20       | om 20.00        | 0m to 65.00m. 20.00                                                                                                                                                                                                                                                                                                                                                                                                                   | to         Diameter         Casing Depth           (m)         (mm)         (m)           1.20         200         1.20           20.00         160         20.00           65.00         146         20.00                                                                | Coordinates (m)<br>National Grid           | 99.99 mOD<br>E 501327.84<br>N 192333.19 |
|------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|
| amples and                                                       | TCR<br>SCR                                               | IS If                                         | Records/Samples                                                                                             | Date &<br>Casing | Time &<br>Water | Strata Description                                                                                                                                                                                                                                                                                                                                                                                                                    | Detail                                                                                                                                                                                                                                                                     | Depth, Level<br>(m) (mbgl)                 | Vater- Boold                            |
| (m)<br>35.00 - 36.50                                             | RQD<br>100<br>20<br>8                                    | 40<br>60<br>100                               |                                                                                                             | (mbgl)           | (m)             |                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35.80 Medium nodular flint.                                                                                                                                                                                                                                                | (Thickness)<br>(m)<br>(2.95)               |                                         |
| 36.38 - 36.50<br>36.70 - 37.00                                   |                                                          |                                               | C 11<br>C 12                                                                                                |                  |                 | Moderately weak high density white<br>CHALK with occasional light grey<br>mottling and marly seams. Fractures<br>are horizontal closely spaced<br>(90/150/200mm) with occasional<br>black speckling on surfaces. (LEWES<br>NODULAR CHALK FORMATIONS<br>Grade A3)                                                                                                                                                                      | 36.25 Medium sized nodular<br>flints surrounded by<br>comminuted chalk (probably<br>drilling induced).                                                                                                                                                                     | 36.50 +63.49<br>(0.70)                     |                                         |
| 36.50 - 38.00                                                    | 83<br>19<br>0                                            | 90<br>150<br>200                              |                                                                                                             |                  |                 | Very thin bed (30mm) of very weak<br>light grey MUDSTONE. (Probably<br>SHOREHAM MARL No 1, LEWES<br>NODULAR CHALK FORMATION)<br>Moderately weak high density white<br>CHALK with occasional light grey<br>mottling and marty seams. Fractures<br>are honzontal closely spaced<br>(90/150/200mm) with occasional<br>black speckling on surfaces. (LEWES<br>NODULAR CHALK FORMATIONS<br>Grade A3)<br>No core recovery. CHALK (Driller's | 37.20-37.23 Very thin bed<br>(30mm) of very weak light<br>grey mudstone. (Shoreham<br>Marl No 1)<br>37.65-37.68 Orange speckles<br>and very thin horizontal<br>bands.<br>37.65-37.69 Orange speckles<br>and very thin horizontal<br>orange bands (possible<br>sponge bed). | 37.20(0.00) +62.7<br>(0.80)<br>38.00 +61.9 |                                         |
| 38.00 - 38.50                                                    | 0<br>0<br>0<br>28                                        | NA<br>NA<br>NA                                |                                                                                                             |                  |                 | description), (LEWES NODULAR<br>CHALK FORMATION - Ungraded)                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                            | (0.86)                                     |                                         |
| 38.50 - 39.00<br><sup>39</sup><br>39.00 - 39.50                  | 0<br>0<br>100<br>16<br>0                                 |                                               | -                                                                                                           |                  |                 | Medium density white CHALK. NIDD,<br>recovered as angular gravel and<br>cobbles. Occasional black and<br>orange speckling on surfaces.<br>(LEWES NODULAR CHALK<br>FORMATIONS - Ungraded)                                                                                                                                                                                                                                              | 39.10 Medium nodular flints.                                                                                                                                                                                                                                               | 38.86 -61.13                               |                                         |
| 39.50 - 40.25<br>39.90 - 40.25<br>19<br>19<br>roundwater Entries | 100<br>60<br>47                                          |                                               | C 13                                                                                                        |                  |                 | Hole continues on next sheet                                                                                                                                                                                                                                                                                                                                                                                                          | ACU                                                                                                                                                                                                                                                                        | (1.39)                                     |                                         |
| No. Depth Strike                                                 | (m) Rem<br>n of symb<br>y Hole Re<br>res, Stratu<br>imn. | ols and a<br>cords, A<br>um thickn<br>(c) ESG | II depths and                                                                                               |                  | Ame<br>D60      | Peptin Readed Remarks<br>Depths (m) Remarks<br>ersham Tunnel (Chiltern) Area C<br>77-16<br>In Speed Two (HS2) Limited                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                            | Depths (m)<br>Borehole                     | Duration (mins) Tools used              |



| ged /CM                        | 08/11/2           | F            | Comacchio 305<br>land dig inspection pit from 0 |                            |                        |                                                                                                          | (m) (mm) (m)<br>1.20 200 1.20<br>20.00 160 20.00            | Coordinates (m)                                  |              | E 501327.84              |
|--------------------------------|-------------------|--------------|-------------------------------------------------|----------------------------|------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|--------------|--------------------------|
| cked MM<br>proved MM           | End<br>14/11/:    |              | .20m to 20.00m./Rotary core                     | e drilling fr              | om 20.00               | Om to 65.00m. 20.00                                                                                      | 65.00 <b>146</b>                                            | National Grid                                    |              | N 192333.19              |
| mples and                      | d Test            | s            |                                                 |                            |                        | Strata Description                                                                                       |                                                             |                                                  | <u> </u>     |                          |
| Depth<br>(m)                   | TCR<br>SCR<br>RQD | lf           | Records/Samples                                 | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                     | Detail                                                      | Depth, Level<br>(m) (mbgl)<br>(Thickness)<br>(m) | المستحد ال   | Water-<br>strike Backfi∎ |
|                                |                   | NIDD<br>NIDD |                                                 |                            |                        |                                                                                                          | -                                                           | -                                                |              |                          |
| _                              |                   | NIDD         | -                                               |                            |                        | Moderately weak high density white                                                                       |                                                             | 40.25 +59.7                                      | 4            |                          |
|                                |                   |              |                                                 |                            |                        | CHALK. Fractures are predominantly<br>horizontal closely spaced                                          | -                                                           | -                                                |              |                          |
|                                | 100               |              |                                                 |                            |                        | (90/160/200mm) and occasionally 75 degrees. All fractures undulating                                     |                                                             | -                                                |              |                          |
| 40.60 - 40.85<br>40.25 - 41.00 | 87<br>45          |              | C 14                                            |                            |                        | rough with slight black speckling on<br>surfaces. (LEWES NODUALR<br>CHALK FORMATION - Grade A3)          | 40.60 Medium nodular flints.                                | -                                                | h h          |                          |
|                                |                   | 90           |                                                 |                            |                        | CHALKE ONWATION - Orace A0)                                                                              | -                                                           | -                                                |              |                          |
|                                |                   | 160<br>200   |                                                 |                            |                        |                                                                                                          | -                                                           | (1.30)                                           |              |                          |
|                                |                   |              |                                                 |                            |                        |                                                                                                          | -                                                           | -                                                |              |                          |
|                                |                   |              |                                                 |                            |                        |                                                                                                          | -                                                           | -                                                |              |                          |
|                                |                   |              |                                                 |                            |                        |                                                                                                          | 41.30 Medium nodular flint -<br>surrounded by chalk with    | -                                                |              |                          |
|                                |                   |              |                                                 |                            |                        |                                                                                                          | orange speckles.                                            | 41.55 +58.4                                      |              |                          |
|                                | 37                |              |                                                 |                            |                        | AZCL. CHALK (Driller's description)<br>(LEWES NODULAR CHALK<br>FORMATION - Ungraded)                     | -                                                           |                                                  |              |                          |
| 1.00 - 42.50                   | 5<br>0            |              |                                                 |                            |                        | FORMATION - Originated)                                                                                  |                                                             | -                                                |              |                          |
|                                |                   |              |                                                 |                            |                        |                                                                                                          | -                                                           | -                                                |              |                          |
|                                |                   |              |                                                 |                            |                        |                                                                                                          |                                                             | -                                                |              |                          |
|                                |                   | NA           |                                                 |                            |                        |                                                                                                          | -                                                           |                                                  |              |                          |
|                                |                   | NA<br>NA     |                                                 | 10/11/16<br>20.00          | 1430<br>26.50          |                                                                                                          | -                                                           | (1.45)                                           |              |                          |
| -                              |                   |              | -                                               |                            |                        |                                                                                                          | 42.50-42.65 NIDD -                                          | -                                                |              |                          |
|                                |                   |              |                                                 | 11/11/16<br>20.00          | 0630<br>22.90          |                                                                                                          | -                                                           | -                                                |              |                          |
|                                |                   |              |                                                 | 20.00                      | 22.00                  |                                                                                                          | -                                                           | -                                                |              |                          |
| 2.90 <b>- 4</b> 3.00           |                   |              | C 15                                            |                            |                        |                                                                                                          |                                                             | -                                                |              |                          |
|                                |                   |              |                                                 |                            |                        | Weak medium density white CHALK.<br>Fractures are mainly horizontal                                      |                                                             | 43.00 +56.9                                      | 94           |                          |
| 12.50 - 44.00                  | 67<br>9           |              |                                                 |                            |                        | closely spaced (70/90/150mm)<br>occasionally vertical. All fractures are                                 | -                                                           | -                                                |              |                          |
| 2.00 11.00                     | Ő                 |              |                                                 |                            |                        | undulating rough with slight black<br>speckling on surfaces. (LEWES<br>NODULAR CHALK FORMATION -         |                                                             | -                                                |              |                          |
|                                |                   |              |                                                 |                            |                        | Grade A3)                                                                                                | 40.55 Omell and des flinte                                  | -                                                |              |                          |
|                                |                   | 70           |                                                 |                            |                        |                                                                                                          | 43.55 Small nodular flints.                                 | -                                                | ŢŢ           |                          |
|                                |                   | 90<br>150    |                                                 |                            |                        |                                                                                                          | 43.70 NIDD                                                  | (1.40)                                           |              |                          |
|                                |                   |              |                                                 |                            |                        |                                                                                                          |                                                             | NIC                                              | The          |                          |
| -                              |                   |              |                                                 |                            |                        |                                                                                                          | 44.00 Medium nodular flints.                                |                                                  |              |                          |
| 4.20 - 44.35                   |                   |              | C 16                                            |                            |                        |                                                                                                          | 44.15-44.20 Orange speck in a throughout (possible spins a) | 1                                                |              |                          |
|                                |                   |              |                                                 |                            |                        |                                                                                                          | bed).<br>44.35 NIDD, recovered us                           | 44.40 +55.5                                      | ┉╨╖          |                          |
| 4.00 - 45.00                   | 100<br>18         |              |                                                 |                            |                        | Weak medium density white CHALK<br>with orange speckling throughout.                                     | medium nodu ar Vinti.                                       | +++,+v +55,5                                     |              |                          |
|                                | 0                 | NIDD         |                                                 |                            |                        | NIDD, generally recovered as chalk<br>gravel with occasional flints. (LEWES<br>NODULAR CHALK FORMATION - | 44.60 14 72 NDD, recovered -<br>as sm. " nodular flints and | -                                                |              |                          |
|                                |                   | NIDD<br>NIDD |                                                 |                            |                        | Ungraded)                                                                                                | cha·k g, avel.                                              | (0.95)                                           |              |                          |
|                                |                   |              |                                                 |                            |                        | (                                                                                                        | 44.95 Medium nodular flints.                                | (0.85)                                           |              |                          |
| undwater Entries               |                   |              |                                                 |                            |                        | Hole continues on next shert                                                                             |                                                             | Hard Boring                                      |              | <u> </u>                 |
| . Depth Strike (               | (m) Rem           | arks         |                                                 | Depth Sea                  | iled (m)               | Depths (m) Remarks                                                                                       |                                                             | Depths (m)                                       | Duration (mi | ns) Tools used           |
| s: For explanation             |                   |              |                                                 |                            | Ame                    | ersham Tunnel (Chiltern) Area C                                                                          |                                                             | Borehole                                         |              |                          |
| (ey to Exploratory             |                   |              | l depths and<br>ess given in                    |                            |                        |                                                                                                          |                                                             | 1 NAL 2                                          | )32-RC       |                          |



|                                                                       |                                    | T         |                                                                                                               | -                          |                        |                                                                                                                                                                                                                                                                                     |                                                                                                     |                                                                                                                                                                                      |                                                  |              |                                         |
|-----------------------------------------------------------------------|------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------|-----------------------------------------|
| rilled LR/MR<br>ogged /CM<br>hecked MM<br>pproved MM                  | Start<br>08/11/2<br>End<br>14/11/2 | 2016      | Equipment, Methods and Rema<br>Comacchio 305<br>Hand dig inspection pit from 1<br>1.20m to 20.00m./Rotary com | GL to 1.20                 |                        |                                                                                                                                                                                                                                                                                     | Depth from<br>(m)<br>0.00<br>1.20<br>20.00                                                          | to Diameter Casing Depth<br>(m) (mm) (m)<br>1.20 200 1.20<br>20.00 160 20.00<br>65.00 146                                                                                            | Ground Level<br>Coordinates (m)<br>National Grid |              | 99.99 mOD<br>E 501327.84<br>N 192333.19 |
| amples and                                                            |                                    |           |                                                                                                               |                            |                        | Strata Descriptior                                                                                                                                                                                                                                                                  | <u>ו</u>                                                                                            |                                                                                                                                                                                      |                                                  |              |                                         |
| Depth<br>(m)                                                          | TCR<br>SCR<br>RQD                  | lf        | Records/Samples                                                                                               | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                |                                                                                                     | Detail                                                                                                                                                                               | Depth, Level<br>(m) (mbgl)<br>(Thickness)<br>(m) | Legend       | <sup>Water-</sup> strike Backfi∎        |
| 45.40 - 45.65<br>45.00 - 46.50                                        | 100<br>73<br>62                    |           | C 17                                                                                                          |                            |                        | Weak medium to high der<br>CHALK with occasional li-<br>wispy marl seams and gr<br>zones. Fractures are prec<br>horizontal closely to medi<br>(60/120/250mm) and occ<br>degrees. All fractures und<br>rough with slight black sp<br>surfaces. (LEWES NODL<br>CHALK FORMATION - G    | ght grey<br>ey mottled<br>dominately<br>um spaced<br>asionally 80<br>ulating<br>eckling on<br>ILAR  | 46.10 Medium nodular flints.                                                                                                                                                         | 45.25 +54.7                                      |              |                                         |
| 46.50 - 46.70 -                                                       |                                    | 60<br>120 | C 18                                                                                                          |                            |                        |                                                                                                                                                                                                                                                                                     |                                                                                                     | 46.30 Large nodular flints and<br>locally NIDD.                                                                                                                                      | (2.75)                                           |              |                                         |
| 47<br>46.50 - 48.00                                                   | 100<br>32<br>32                    | 250       |                                                                                                               |                            |                        |                                                                                                                                                                                                                                                                                     |                                                                                                     | 46.75-46.85 Occasional<br>orange speckling throughout<br>core.<br>47.00-47.30 Numerous small<br>nodular flints recovered as<br>gravel (drilling disturbed),<br>(Possible sponge bed) |                                                  |              |                                         |
| 48 -                                                                  | 100<br>50<br>40                    |           |                                                                                                               |                            |                        | Weak medium to high dei<br>grey to white CHALK with<br>light grey mottling and oc<br>flints. Fractures are pred<br>horizontal closely to medi<br>(80/100/300mm) and occ<br>degrees. All fractures are<br>rough with slight black sp<br>surfaces. (LEWES NODL<br>CHALK FORMATION - G | occasional<br>casional<br>minantly<br>um spaced<br>asionally 80<br>undulating<br>eckling on<br>ILAR | 48.50-48.55 NIDD, recovered<br>as fine gravel.<br>48.70 Medium nodular flint.                                                                                                        | 48.00 +51,9                                      |              | 1                                       |
| 49 <b>4</b> 9.00 - <b>4</b> 9.30<br>-                                 |                                    |           | C 19                                                                                                          |                            |                        |                                                                                                                                                                                                                                                                                     |                                                                                                     | 48.90-49.00 NIDD recovered<br>as angular gravel.<br>49.60 Occasional orange                                                                                                          | WIL                                              |              |                                         |
| 49.95 - 50.20                                                         |                                    |           | C 20                                                                                                          |                            |                        |                                                                                                                                                                                                                                                                                     |                                                                                                     | speckles and locally NIDD<br>around flints.                                                                                                                                          | 1                                                |              |                                         |
| roundwater Entries<br>No. Depth Strike                                |                                    | arks      |                                                                                                               | Depth Sea                  | iled (m)               | Hole continues on nex<br>Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                | shen C                                                                                              | 49.95 Small nodular flint                                                                                                                                                            | Hard Boring<br>Depths (m)                        | Duration (mi | ns) Tools used                          |
| otes: For explanation<br>ee Key to Exploratory                        | of symb                            | ols and a | abbreviations Project                                                                                         |                            | Ame                    | ersham Tunnel (Chiltern) Area                                                                                                                                                                                                                                                       | с                                                                                                   |                                                                                                                                                                                      | Borehole                                         |              |                                         |
| e Key to Exploratory<br>duced levels in metr-<br>ackets in depth colu | es, Stratu                         | m thickr  | hess given in AGS                                                                                             | lo.                        | D60                    | 77-16                                                                                                                                                                                                                                                                               |                                                                                                     |                                                                                                                                                                                      | MLO                                              | 32-R(        | 009                                     |
|                                                                       |                                    |           | www.esg.co.uk                                                                                                 | out for                    |                        | h Speed Two (HS2) Limited                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                      |                                                  |              |                                         |



| orilled LR/MR                           | Start                        |            | Equipment, Methods and Rem                    | arks              |               | Depth from<br>(m)                                                     |                                                             | Ground Level                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.99 mOD                           |
|-----------------------------------------|------------------------------|------------|-----------------------------------------------|-------------------|---------------|-----------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| ogged /CMI                              | 08/11/                       |            | Comacchio 305<br>Hand dig inspection pit from | GL to 1.20        | m. Rotar      | 0.00                                                                  | (m) (mm) (m)<br>1.20 200 1.20<br>20.00 160 20.00            | Coordinates (m)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E 501327.84                         |
| necked MM                               | End                          | ŕ          | 1.20m to 20.00m./Rotary co                    |                   |               |                                                                       | 65.00 <b>146</b>                                            | National Grid                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N 192333.19                         |
| amples an                               | 14/11/<br>d Tes <sup>.</sup> |            |                                               |                   |               | Strata Description                                                    |                                                             | 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                         | TCR                          |            |                                               | Date &            | Time &        |                                                                       |                                                             | Depth, Level                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| Depth<br>(m)                            | SCR<br>RQD                   | lf         | Records/Samples                               | Casing<br>(mbgl)  | Water<br>(m)  | Main                                                                  | Detail                                                      | (m) (mbgl)<br>(Thickness)<br>(m) | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>Water-</sup> Backfi∎<br>strike |
|                                         |                              |            |                                               |                   |               |                                                                       | -                                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| 49.50 - 51.00                           |                              |            |                                               |                   |               |                                                                       |                                                             | -                                | The Party of the P |                                     |
| 40.00 - 01.00                           |                              |            |                                               |                   |               |                                                                       | 50.30 Grey wispy marl seam.                                 | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                         | 100<br>87                    |            |                                               |                   |               |                                                                       | -                                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                         | 60                           |            |                                               |                   |               |                                                                       | -                                                           | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŏĘ                                  |
|                                         |                              |            |                                               |                   |               |                                                                       | -                                                           | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oHo                                 |
|                                         |                              |            |                                               |                   |               |                                                                       | 50.80 Medium nodular flints.                                | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oHa                                 |
|                                         |                              |            |                                               |                   |               |                                                                       |                                                             | (0.00)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ď                                   |
| 1                                       |                              | 1          |                                               |                   |               |                                                                       | -                                                           | (6.00)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| 51.15 - 51.45                           |                              |            | C 21                                          |                   |               |                                                                       | -                                                           | -                                | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |
|                                         |                              |            |                                               |                   |               |                                                                       | -                                                           |                                  | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oĦa                                 |
|                                         |                              |            |                                               |                   |               |                                                                       | -                                                           | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | `Ħ                                  |
|                                         |                              |            |                                               |                   |               |                                                                       | 51.50 Medium nodular flints. –                              | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŏĘ                                  |
|                                         | 100                          |            |                                               |                   |               |                                                                       | -                                                           | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2H                                  |
| 51.00 - 52.50                           | 60<br><b>4</b> 8             |            |                                               |                   |               |                                                                       |                                                             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                         |                              | NIDD       |                                               |                   |               |                                                                       | 51.90 Medium nodular flints -<br>surrounded by chalk with   | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | °H°                                 |
| 2                                       |                              | 100<br>300 |                                               |                   |               |                                                                       | orange speckles throughout.<br>52.00 Medium nodular flints. | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f                                   |
|                                         |                              |            |                                               |                   |               |                                                                       | 52,20-53,10 Orange -                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oH<br>oH                            |
|                                         |                              |            |                                               | 11/11/16          | 1730          |                                                                       | speckling.<br>52.25 5mm thick sheet flint.                  | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oĦ                                  |
|                                         |                              |            |                                               | 20.00             | 23.00         |                                                                       | -                                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | οĦ                                  |
|                                         |                              | 1          |                                               |                   |               |                                                                       | -                                                           | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - A                                 |
|                                         | 100                          |            |                                               | 14/11/16<br>20.00 | 0800<br>45.80 |                                                                       | -                                                           |                                  | The second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oE                                  |
| 52.50 - 53.00                           | 100<br>72                    |            |                                               |                   |               |                                                                       | -                                                           | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                         |                              |            |                                               |                   |               |                                                                       | 52.95 Grey wispy marl seam                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oHo                                 |
| 3                                       |                              | 1          |                                               |                   |               |                                                                       |                                                             | -                                | <u>a, tr, tr</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |
| 53.15 - 53.40                           |                              |            | C 22                                          |                   |               |                                                                       | 53.10 10mm thick sheet flint.                               | -                                | <u>a, b, b</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |
|                                         |                              |            |                                               |                   |               |                                                                       | 53.25-53.45 AZCL -                                          | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ ₽₽                                |
|                                         | 65                           |            |                                               |                   |               |                                                                       | 53.45 Large nodular flints.                                 | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| 53.00 - 54.00                           | 26<br>0                      |            |                                               |                   |               |                                                                       | 53.50-53.65 AZCL                                            | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                         | -                            |            |                                               |                   |               |                                                                       | 53.65 Small nodular flints.                                 | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - E                                 |
|                                         |                              |            |                                               |                   |               |                                                                       | -<br>-<br>53.80 45 degree fracture with -                   | <i>N</i> <sub>2</sub> .          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | οĘ                                  |
|                                         |                              |            |                                               |                   |               |                                                                       | occasional black speckling on surface.                      | JIV.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oE                                  |
| 54.00 - 54.25                           |                              |            | - C 23                                        |                   |               | Weak medium to high density white                                     | 53.85 Small nodular flints.                                 | 54.0 +45.99                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | οĘ                                  |
|                                         |                              |            |                                               |                   |               | CHALK with occasional light grey<br>mottling and rare grey wispy marl |                                                             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B                                   |
|                                         |                              |            |                                               |                   |               | seams. Fractures are horizontal<br>stepped rough with slight black    | 54.30 Medium nodu ir tint -                                 | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                         | 100                          |            |                                               |                   |               | speckling on surfaces. (LEWES<br>NODULAR CHALK FORMATION -            | surrounded by chark with orange specking.                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| 5 <b>4</b> .00 <b>-</b> 55.00           | 47<br>25                     |            |                                               |                   |               | Grade A3)                                                             | 54.35 5mm T. ick sheet flint.                               | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oĦo                                 |
|                                         |                              |            |                                               |                   |               |                                                                       | 54.70-1 4.90 Large nodular                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | `طٍ                                 |
|                                         |                              |            |                                               |                   |               |                                                                       | fint surrounded by angular                                  | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŏ                                   |
|                                         |                              |            |                                               |                   |               | (                                                                     | cha k gravel (NIDD).                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| 5<br>oundwater Entra                    | -                            |            |                                               |                   |               | Hole continues on next shert                                          | 1 -                                                         | line of D                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OH (                                |
| oundwater Entrie<br>Io. Depth Strike    |                              | narks      |                                               | Depth Sea         | iled (m)      | Depth Related Remarks<br>Depths (m) Remarks                           |                                                             | Hard Boring<br>Depths (m)        | Duration (mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns) Tools used                      |
| es: For explanatio                      | n of symb                    | ols and a  | abbreviations Project                         |                   | Am            | ersham Tunnel (Chiltern) Area C                                       |                                                             | Borehole                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| Key to Explorator<br>uced levels in met | y Hole Re<br>res, Strati     | ecords, A  | II depths and                                 |                   |               | 77-16                                                                 |                                                             |                                  | 32-RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2009                                |
| kets in depth colu<br>ale 1:25          |                              | (c) ESG    | www.esg.co.uk AGS                             | No.<br>out for    |               | 177-16<br>h Speed Two (HS2) Limited                                   |                                                             |                                  | Sheet 11 of 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |
| /uju 1.20                               | Print                        | Date 19/05 | 5/2017 16:12:24                               |                   | g             |                                                                       |                                                             |                                  | Sheer II UI IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |



| illed: LR/MR<br>gged: /CM               | <b>Start</b><br>08/11/2 |           | Equipment, Methods and Rer<br>Comacchio 305 | narks                      |                        | De                                                 | epth from<br>(m) | to Diameter Casing Depth<br>(m) (mm) (m)<br>1.20 200 1.20 |                                           |                | 99.99 mOD<br>501327.84   |
|-----------------------------------------|-------------------------|-----------|---------------------------------------------|----------------------------|------------------------|----------------------------------------------------|------------------|-----------------------------------------------------------|-------------------------------------------|----------------|--------------------------|
| gged /CM<br>ecked MM                    | End                     |           | Hand dig inspection pit from                |                            |                        |                                                    |                  | 20.00 160 20.00                                           | Coordinates (m)<br>National Grid          |                | 192333.19                |
| proved MM                               | 14/11/2                 | 2016      | 1.20m to 20.00m./Rotary c                   | ore aniling tr             | om 20.0                | Jm to 65.00m.                                      | 20.00            | 65.00 <b>146</b>                                          |                                           | ,              | 102000.10                |
| mples an                                | d Test                  | s         |                                             |                            |                        | Strata Description                                 |                  |                                                           |                                           |                |                          |
| Depth<br>(m)                            | TCR<br>SCR<br>RQD       | lf        | Records/Samples                             | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                               |                  | Detail                                                    | Depth, Level<br>(m) (mbgl)<br>(Thickness) | Legend St      | <sup>ater-</sup> Backfi∎ |
|                                         |                         |           |                                             |                            |                        |                                                    |                  |                                                           | (m)                                       |                |                          |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | 55.20 Medium nodular flint. –                             |                                           |                | 0-0                      |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | -                                                         |                                           |                |                          |
|                                         | 100                     |           |                                             |                            |                        |                                                    |                  | -                                                         |                                           |                | B                        |
| 5.00 - 56.00                            | 84<br>73                |           |                                             |                            |                        |                                                    |                  | -                                                         |                                           |                | 00                       |
| 5.70 - 56.00                            |                         |           | C 24                                        |                            |                        |                                                    |                  | =                                                         |                                           |                | 000                      |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | -                                                         |                                           |                | 0 (                      |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | 56.00 Large nodular flint.                                |                                           | The            | 0                        |
|                                         |                         |           |                                             |                            |                        |                                                    |                  |                                                           |                                           |                | $\sim$                   |
| 56.20 <b>-</b> 56.45                    |                         |           | C 25                                        |                            |                        |                                                    |                  |                                                           |                                           |                | $\sim$                   |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | =                                                         |                                           |                |                          |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | -                                                         |                                           |                | $\sim$                   |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | –<br>–<br>56.65 Orange staining though                    |                                           | <u>, pp</u>    |                          |
| 6.00 - 57.50                            | 9 <b>4</b><br>70        |           |                                             |                            |                        |                                                    |                  | core (possible sponge bed).                               |                                           |                |                          |
|                                         | 56                      |           |                                             |                            |                        |                                                    |                  | -                                                         |                                           |                | $\sim$                   |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | _                                                         |                                           |                | $\sum$                   |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | 57.10 10mm thick sheet flint                              |                                           |                |                          |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | -                                                         | (6.60)                                    |                | $\sim$                   |
|                                         |                         | NIDD      |                                             |                            |                        |                                                    |                  | -                                                         | (0.00)                                    |                | $\mathcal{N}$            |
|                                         |                         | 90<br>270 |                                             |                            |                        |                                                    |                  | 57.50 Light brown staining. –                             |                                           |                |                          |
|                                         |                         | 210       |                                             |                            |                        |                                                    |                  | -                                                         |                                           |                | $\mathcal{N}$            |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | -                                                         |                                           |                | $\sum$                   |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | 57.90 Light brown staining. –                             |                                           | <u> </u>       |                          |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | 58.00 Large nodular flint.                                |                                           |                |                          |
|                                         | 100                     |           |                                             |                            |                        |                                                    |                  | -                                                         |                                           |                |                          |
| 57.50 - 59.00                           | 62<br>31                |           |                                             |                            |                        |                                                    |                  | -                                                         |                                           |                |                          |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | -                                                         |                                           |                |                          |
| 8.60 - 58.85                            |                         |           | C 26                                        |                            |                        |                                                    |                  | =                                                         |                                           |                | $\mathcal{N}$            |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | 58.70 Light brown staining. –                             | $\sim$                                    |                |                          |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | 58.80 Large nodular flint. –                              | $\langle U_{j_i} \rangle$                 |                | $\sim$                   |
| 9.00 - 59.25                            |                         |           | C 27                                        |                            |                        |                                                    |                  |                                                           | 2.                                        | للصليك         | $\left( \right)$         |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | ć                                                         |                                           |                | $\sum$                   |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | 59.30 Medium nodu ir i n                                  |                                           |                |                          |
|                                         | 100                     |           |                                             |                            |                        |                                                    |                  | 59.40 30 degree fracture                                  |                                           |                | $\sum$                   |
|                                         | 100<br>72<br>48         |           |                                             |                            |                        |                                                    |                  | 59.50 Orange staining.                                    |                                           | <u></u>        | $(\mathbf{X})$           |
|                                         | -0                      |           |                                             |                            |                        |                                                    |                  |                                                           |                                           |                | $\sum$                   |
| 59.00 <b>-</b> 60.50                    |                         |           |                                             |                            |                        |                                                    |                  | 59.75 Medium nodular flint –<br>surrounded by highly –    |                                           |                | $\sum$                   |
|                                         |                         |           |                                             |                            |                        |                                                    |                  | fractured chalk (NIDD).                                   |                                           |                | $\sum$                   |
| undwater Entrie                         |                         |           |                                             |                            |                        | Hole continues on next sa<br>Depth Related Remarks | <u>e</u> n       |                                                           | Hard Boring                               |                |                          |
| . Depth Strike                          |                         | arks      |                                             | Depth Sea                  | lled (m)               | Depths (m) Remarks                                 | у <b>с</b>       |                                                           | Depths (m)                                | Duration (mins | :) Tools used            |
| s: For explanatio<br>Key to Explorator  | n of symb               | ols and   | abbreviations Projec                        | t                          | Am                     | ersham Tunnel (Chiltern) Area C                    |                  |                                                           | Borehole                                  |                |                          |
| ced levels in met<br>tets in depth colu | res, Stratu             | um thick  | ness given in Project                       | t No.                      | D60                    | 77-16                                              |                  |                                                           | MLO                                       | 32-RC          | 009                      |
|                                         |                         | (c) ESG   | www.esg.co.uk AGS Carrie                    | d out for                  | Lia                    | h Speed Two (HS2) Limited                          |                  |                                                           |                                           | Sheet 12 of 13 |                          |



| rilled LR/MR                                | Start             | E                     | Equipment, Methods and Rema                   | arks                       |                        |                                                                                     | Depth from              |                                                  | Ground Level                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                | 9 mOD                   |
|---------------------------------------------|-------------------|-----------------------|-----------------------------------------------|----------------------------|------------------------|-------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|
| ogged /CM                                   | 08/11/            | ŀ                     | Comacchio 305<br>Hand dig inspection pit from |                            |                        |                                                                                     | (m)<br>0.00<br>1.20     | (m) (mm) (m)<br>1.20 200 1.20<br>20.00 160 20.00 | Coordinates (m)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 1327.84                 |
| hecked MM<br>pproved MM                     | End<br>14/11/     |                       | 1.20m to 20.00m./Rotary cor                   | e drilling fr              | om 20.00               | 0m to 65.00m.                                                                       | 20.00                   | 65.00 <b>146</b>                                 | National Grid                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N 192            | 2333.19                 |
| amples an                                   | d Tes             | ts                    |                                               | 1                          |                        | Strata Description                                                                  | ้า                      |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                         |
| Depth<br>(m)                                | TCR<br>SCR<br>RQD | H                     | Records/Samples                               | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                |                         | Detail                                           | Depth, Level<br>(m) (mbgl)<br>(Thickness)<br>(m) | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Water-<br>strike | Backfi∎                 |
|                                             |                   |                       |                                               |                            |                        |                                                                                     |                         |                                                  | _                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                         |
|                                             |                   |                       |                                               |                            |                        |                                                                                     |                         |                                                  | -                                                | րիր                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | $\sum$                  |
|                                             |                   |                       |                                               |                            |                        |                                                                                     |                         |                                                  | -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                | $\mathcal{I}$           |
|                                             |                   |                       |                                               |                            |                        |                                                                                     |                         |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | $\mathcal{N}$           |
|                                             |                   |                       |                                               |                            |                        | Moderately strong very hi<br>white nodular CHALK. Oc                                | casional                |                                                  | - 60.60 +39.39                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ą                | $\mathcal{N}$           |
|                                             |                   | NIDD<br>NIDD          |                                               |                            |                        | orange speckling through<br>glauconitic nodules up to<br>diameter. Generally NIDE   | 20mm                    |                                                  | (0.50)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                | $\langle \cdot \rangle$ |
| 31                                          |                   | 100                   |                                               |                            |                        | as gravel. Fractures are p<br>horizontal and two mutua                              | orobably<br>Ily         | _                                                | -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a                | 1                       |
|                                             | 100               |                       | -                                             |                            |                        | perpendicular sets at app<br>45 degrees. Black speckl<br>surfaces. (LEWES NODL      | ing on                  |                                                  | 61.10 +38.89                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | / /                     |
| 60.50 - 62.00                               | 80<br>54          |                       |                                               |                            |                        | CHALK FORMATION Un<br>Possibly HARDGROUND                                           | graded.                 |                                                  | -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 11                      |
|                                             |                   |                       |                                               |                            |                        | ROCK)<br>Weak medium to high de                                                     |                         |                                                  | -                                                | 1   L   L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | /                       |
| 6 <b>1</b> .55 <b>-</b> 6 <b>1</b> .82      |                   |                       | C 28                                          |                            |                        | CHALK with light grey mo<br>occasional thin grey mark<br>Fractures are horizontal o | seams.                  |                                                  | -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                         |
|                                             |                   |                       |                                               |                            |                        | medium spaced (50/200/<br>stepped rough, (LEWES                                     | 300)<br>NODULAR         |                                                  | -                                                | 1 1 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                | $\mathcal{N}$           |
|                                             |                   | 50<br>200             |                                               |                            |                        | CHALK FORMATION - G                                                                 | rade A2/3)              | 61.90 Medium nodular flint.                      | (1.65)                                           | r p p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | X.                      |
| 52                                          |                   | 300                   |                                               |                            |                        |                                                                                     |                         | -                                                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                | $\mathcal{I}$           |
|                                             |                   |                       |                                               |                            |                        |                                                                                     |                         |                                                  | -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                | //                      |
| CO 40 CO 70                                 |                   |                       | 0.00                                          |                            |                        |                                                                                     |                         | 60.40 Small particles flipt                      | -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                | / /                     |
| 62. <b>4</b> 0 <b>-</b> 62.70               |                   |                       | C 29                                          |                            |                        |                                                                                     |                         | 62.40 Small nodular flint.                       | -                                                | , h h h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | 11                      |
|                                             | 100               |                       |                                               |                            |                        |                                                                                     |                         |                                                  | -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 11                      |
| 62.00 - 63.50                               | 95<br>53          |                       | NDP<br>NDP                                    |                            |                        | Moderately strong high do<br>with light grey mottling no                            |                         |                                                  | 62.75 +37.24                                     | h h h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | $\sum$                  |
| 63                                          |                   |                       | NDP                                           |                            |                        | CHALK. (LEWES NODUL<br>FORMATION - Ungraded                                         | LAR CHALK<br>. Possibly |                                                  | (0.25)<br>63,00 +36,99                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                         |
|                                             |                   |                       |                                               |                            |                        | HARDGROUNDS - TOP<br>Moderately weak high de<br>CHALK with light grey mo            | nsity white             | 1                                                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | X                       |
|                                             |                   |                       |                                               |                            |                        | Fractures are horizontal of medium spaced (50/150/                                  | closely to<br>300)      |                                                  | _                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | Q.                      |
|                                             |                   |                       |                                               |                            |                        | stepped rough. (LEWES<br>CHALK FORMTION - Gra                                       | NODULAR<br>ade A2/3)    | 63.35 Orange staining.                           | _                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ר ו              |                         |
|                                             |                   |                       |                                               |                            |                        |                                                                                     |                         | -<br>63.60 Medium nodular flint.                 | _                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | / /                     |
|                                             |                   |                       |                                               |                            |                        |                                                                                     |                         |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 11                      |
|                                             |                   |                       |                                               |                            |                        |                                                                                     |                         |                                                  |                                                  | <u> <u>p</u>ripresente en la seconda de la seconda </u> |                  | $\sum$                  |
| 64                                          |                   | 50<br>150<br>300      |                                               |                            |                        |                                                                                     |                         | 5                                                | (2.00)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | $\mathcal{N}$           |
|                                             | 97                | 300                   |                                               |                            |                        |                                                                                     |                         | 64.20 Medium nodular in                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                | $\mathcal{N}$           |
| 63.50 - 65.00                               | 91<br>69          |                       |                                               |                            |                        |                                                                                     |                         |                                                  | -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                | $\langle \cdot \rangle$ |
|                                             |                   |                       |                                               |                            |                        |                                                                                     |                         |                                                  | -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                | 1/                      |
|                                             |                   |                       |                                               |                            |                        |                                                                                     |                         | <b>N</b> CC                                      | -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                | / /                     |
|                                             |                   |                       |                                               | 14/11/16                   | 1800                   |                                                                                     |                         | 1                                                | -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 11                      |
|                                             |                   |                       |                                               | 20.00                      | 31.70                  |                                                                                     |                         |                                                  |                                                  | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | //                      |
| 5<br>roundwater Entrie<br>No. Depth Strike  |                   | narks                 |                                               | Depth Sea                  | led (m)                | END OF EXPLORATO<br>Depth Related Remarks                                           | RY YO'F                 | •                                                | 65.00 34.90<br>Hard Boring                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ing) T           |                         |
| Deparounte                                  | , Aeli            |                       |                                               | Depth dea                  | (111)                  | Depths (m) Remarks                                                                  | 5                       |                                                  | Depths (m)                                       | Duration (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ins) To          | ois used                |
| otes: For explanatio<br>e Key to Explorator |                   |                       |                                               |                            | Ame                    | ersham Tunnel (Chiltern) Area                                                       | С                       |                                                  | Borehole                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                         |
| luced levels in met<br>ackets in depth colu | res, Strat        | um thickn             | ess given in Project                          | No.                        | D60                    | 77-16                                                                               |                         |                                                  | MLO                                              | 32-R(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C00              | 9                       |
| cale 1:25                                   | Print             | (c) ESG<br>Date 19/05 | www.esg.co.uk<br>5/2017 16:12:24 Carried      | out for                    | Higl                   | h Speed Two (HS2) Limited                                                           |                         |                                                  |                                                  | Sheet 13 of 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                |                         |



| Drilled PC17<br>NH<br>Logged CM<br>Checked MM<br>Approved MM                                               | Start<br>30/11/20<br>End<br>07/12/20         | 016 C<br>⊢<br>1                              | quipment, Methods and Re<br>comacchio 305<br>land dug inspection pit fro<br>.20m to 20.00m./Rotary of | m GL to 1.2      | 20m. Op<br>from 20.1 | en hole rotary drilling from (m)<br>0.00<br>20.00<br>20.00                                                                                                                               | to Dlameter Casing Dept<br>(m) (mm) (m)<br>20.00 200 10.50<br>64.50 146 | h Ground Level<br>Coordinates (m)<br>National Grid                                          |                       | 98.58<br>E 50156<br>N 1921            | 58.53    |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------|---------------------------------------|----------|
| Samples an                                                                                                 | d Test                                       | s                                            |                                                                                                       | Date &           | Time &               | Strata Description                                                                                                                                                                       |                                                                         | Depth, Level                                                                                |                       |                                       |          |
| Depth<br>(m)                                                                                               | SCR<br>RQD                                   | lf                                           | Records/Samples                                                                                       | Casing<br>(mbgl) | Water<br>(m)         | Main                                                                                                                                                                                     | Detail                                                                  | (m) (mbgl)<br>(Thickness<br>) (m)                                                           | Legend                | Water-<br>strike                      | Backfill |
|                                                                                                            |                                              |                                              |                                                                                                       |                  |                      | (TOPSOIL) Grass over soft brown<br>gravelly CLAY with abundant<br>rootlets.<br>Brown sandy angular to subrounded<br>fine to coarse GRAVEL of flint.<br>(Probably BEACONSFIELD<br>GRAVEL) | -                                                                       |                                                                                             |                       | · · · · · · · · · · · · · · · · · · · |          |
|                                                                                                            |                                              |                                              |                                                                                                       |                  |                      | SAND and GRAVEL, (Driller's<br>description), (Probably<br>BEACONSFIELD GRAVEL)                                                                                                           | -                                                                       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                       | 11111                                 |          |
|                                                                                                            |                                              |                                              |                                                                                                       |                  |                      |                                                                                                                                                                                          | -                                                                       |                                                                                             |                       | 111111                                |          |
|                                                                                                            |                                              |                                              |                                                                                                       |                  |                      |                                                                                                                                                                                          |                                                                         |                                                                                             |                       | 111111                                |          |
|                                                                                                            |                                              |                                              |                                                                                                       |                  |                      |                                                                                                                                                                                          |                                                                         |                                                                                             | C)                    |                                       |          |
|                                                                                                            |                                              |                                              |                                                                                                       |                  |                      |                                                                                                                                                                                          | ccept                                                                   |                                                                                             |                       | 111111                                |          |
| <del>s</del><br>roundwater Entrie                                                                          | 5                                            |                                              |                                                                                                       |                  |                      | Depth Related Remarks                                                                                                                                                                    | L.P                                                                     | Hard Boring                                                                                 |                       |                                       |          |
| No. Depth Strike                                                                                           | (m) Rema                                     |                                              | le                                                                                                    | Depth Sea        |                      | Depths (m)         Remarks           4.00 - 4.00         No flush r sturns colow 4.00r           4.00 - 4.00         No flush r sturns below 4.00r                                       | n.<br>n.                                                                | Depths (m)                                                                                  | Duration (n           | nins)Tools                            | used     |
| otes: For explanatio<br>bbreviations see Ke<br>Il depths and reduce<br>lickness given in bra<br>Scale 1:25 | y to Explora<br>ed levels in<br>ackets in de | atory Ho<br>metres,<br>epth colu<br>c) ESG v | Stratum<br>umn. AGS                                                                                   |                  | D60                  | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                    |                                                                         |                                                                                             | 32-R(<br>Sheet 1 of 1 |                                       | •        |



| rilled PC17<br>NH<br>GC/<br>ogged CM<br>hecked MM                                     | Start<br>30/11/2<br>End   | 2016 (                 | Equipment, Methods and Rem<br>Comacchio 305<br>Hand dug inspection pit from | n GL to 1.2                | 20m. Ope               | en hole rotary drilling from                                                                                                                                  | Depth from<br>(m)<br>0.00<br>20.00               | to<br>(m)<br>20.00<br>64.50 | Dlameter<br>(mm)<br>200<br>146 | Casing Depth<br>(m)<br>10.50 | Ground Level<br>Coordinates (m<br>National Grid | )           | E 501            | 8 mOD<br>568.53<br>113.17               |
|---------------------------------------------------------------------------------------|---------------------------|------------------------|-----------------------------------------------------------------------------|----------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------|--------------------------------|------------------------------|-------------------------------------------------|-------------|------------------|-----------------------------------------|
| pproved MM                                                                            | 07/12/:                   |                        | 1.20m to 20.00m./Rotary co                                                  | ore drilling f             | from 20.0              | 00m to 64.50m.                                                                                                                                                |                                                  |                             |                                |                              | National Gru                                    |             | N 192            | 13.17                                   |
| amples an                                                                             | d Tes                     | ts                     |                                                                             |                            |                        | Strata Descriptio                                                                                                                                             | n                                                | 1                           |                                |                              |                                                 | . 1         |                  |                                         |
| Depth<br>(m)                                                                          | TCR<br>SCR<br>RQD         | lf                     | Records/Samples                                                             | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                          |                                                  |                             | Detail                         |                              | Depth, Leve<br>(m) (mbgl<br>(Thickness          | Legend      | Water-<br>strike | Backfill                                |
|                                                                                       |                           |                        |                                                                             |                            |                        | SAND and GRAVEL. (Dr<br>description). (Probably<br>BEACONSFIELD GRAV                                                                                          |                                                  |                             |                                |                              |                                                 |             |                  |                                         |
| 3                                                                                     |                           |                        |                                                                             |                            |                        | Possible CHALK. (Driller<br>description). (SEAFORD<br>FORMATION - Ungrader<br>notes: 'Casing advancing<br>with slight pump pressur<br>would indicate cohesive | CHALK<br>d). Driller<br>g easier and<br>e, which | _                           |                                |                              | 6.00 +92.5                                      |             |                  | /////////////////////////////////////// |
| 7                                                                                     |                           |                        |                                                                             |                            |                        |                                                                                                                                                               |                                                  |                             |                                |                              |                                                 |             |                  | 1111111                                 |
| 8                                                                                     |                           |                        |                                                                             |                            |                        |                                                                                                                                                               |                                                  |                             |                                |                              | Ň                                               |             |                  | 1111                                    |
| 9                                                                                     |                           |                        |                                                                             | 30/11/16<br>10.50          | 1800<br>Dry            |                                                                                                                                                               |                                                  | n'                          | PCC                            | e ci                         | 9 m                                             |             |                  | /////////////////////////////////////// |
| 10                                                                                    |                           |                        |                                                                             |                            |                        |                                                                                                                                                               | 2                                                |                             |                                |                              |                                                 |             |                  |                                         |
| oundwater Entrie<br>No. Depth Strike                                                  |                           | arks                   |                                                                             | Depth Sea                  | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                   | .00                                              |                             |                                |                              | Hard Boring<br>Depths (m)                       | Duration (r | nins)Too         | ls used                                 |
| otes: For explanation<br>breviations see Ke<br>depths and reduc<br>ckness given in br | y to Explo<br>ed levels i | pratory H<br>in metres | ole Records.<br>s, Stratum                                                  |                            |                        | ersham Tunnel (Chiltern) Area<br>77-16                                                                                                                        | a C                                              |                             |                                |                              | Borehole<br>ML(                                 | )32-R       | C01              | 4                                       |



| orilled PCT/<br>NH<br>ogged GC/<br>CM<br>Checked MM                                                       | Start<br>30/11/2016<br>End<br>07/12/2016                           | Hand dug inspection pit fro<br>1.20m to 20.00m./Rotary of | om GL to 1.2               | 20m. Op<br>from 20.0   | en hole rotary drilling from<br>00m to 64.50m.                                                                                                               | Depth from<br>(m)<br>0.00<br>20.00                 | to<br>(m)<br>20.00<br>64.50 | Dlameter<br>(mm)<br>200<br>146 | Casing Depth<br>(m)<br>10.50 | Ground Level<br>Coordinates (m)<br>National Grid | 1                    | 98.58<br>E 50156<br>N 19211 | 8.53    |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|----------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|--------------------------------|------------------------------|--------------------------------------------------|----------------------|-----------------------------|---------|
| Samples an                                                                                                |                                                                    |                                                           |                            |                        | Strata Descriptio                                                                                                                                            | n                                                  |                             |                                |                              |                                                  |                      |                             |         |
| Depth<br>(m)                                                                                              | TCR<br>SCR If<br>RQD                                               | Records/Samples                                           | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                         |                                                    |                             | Detail                         |                              | Depth, Level<br>(m) (mbgl)<br>(Thickness         | Legend               | Water-<br>strike E          | ackfill |
| 11                                                                                                        |                                                                    |                                                           | 01/12/16                   | 0800<br>Dry            | Possible CHALK. (Driller<br>description). (SEAFORD<br>FORMATION - Ungrade<br>notes: 'Casing advanciny<br>with slight pump pressur<br>would indicate cohesive | ) CHALK<br>d). Driller<br>g easier and<br>e, which |                             |                                |                              |                                                  |                      | 1111111111111               |         |
| 12                                                                                                        |                                                                    |                                                           |                            |                        |                                                                                                                                                              |                                                    |                             |                                |                              |                                                  |                      | 1111111111111               |         |
| 14                                                                                                        |                                                                    |                                                           |                            |                        |                                                                                                                                                              |                                                    | n                           | PC                             | .eX                          | 10 Mai                                           |                      | 111111111                   |         |
| <del>15</del>                                                                                             |                                                                    |                                                           |                            |                        |                                                                                                                                                              |                                                    |                             |                                |                              |                                                  | <u>I</u> F I         | 1                           |         |
| roundwater Entrie<br>No. Depth Strike                                                                     | (m) Remarks                                                        | ·                                                         | Depth Sea                  |                        | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                  | .000                                               |                             |                                |                              | Hard Boring<br>Depths (m)                        | Duration (n          | nins)Tools                  | used    |
| otes: For explanatio<br>bbreviations see Ke<br>Il depths and reduce<br>ickness given in bra<br>Scale 1:25 | ey to Exploratory<br>ed levels in met<br>ackets in depth<br>(c) ES | r Hole Records.<br>res. Stratum<br>column.                |                            | D60                    | ersham Tunnel (Chiltern) Are<br>177-16<br>h Speed Two (HS2) Limited                                                                                          | a C                                                |                             |                                |                              | Borehole<br>MLC                                  | 32-R<br>Sheet 3 of 1 |                             |         |



| Drilled PC17<br>NH<br>.ogged CC/<br>CM<br>Checked MM                                                        | Start<br>30/11/2016<br>End<br>07/12/2016          | Equipment, Methods and Ren<br>Comacchio 305<br>Hand dug inspection pit fro<br>1.20m to 20.00m./Rotary co | m GL to 1.20               | 0m. Opi<br>om 20.0     | en hole rotary drilling from<br>00m to 64.50m.                                                                                                               | Depth from<br>(m)<br>0.00<br>20.00                 | to<br>(m)<br>20.00<br>64.50 | Dlameter<br>(mm)<br>200<br>146 | Casing Depth<br>(m)<br>10.50 | Ground Level<br>Coordinates (m)<br>National Grid | )                       | 98.58 r<br>E 50156<br>N 19211 | 8.53    |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|--------------------------------|------------------------------|--------------------------------------------------|-------------------------|-------------------------------|---------|
| Samples an                                                                                                  |                                                   |                                                                                                          |                            |                        | Strata Descriptio                                                                                                                                            | n                                                  |                             |                                |                              |                                                  |                         |                               |         |
| Depth<br>(m)                                                                                                | TCR<br>SCR If<br>RQD                              | Records/Samples                                                                                          | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                         |                                                    |                             | Detail                         |                              | Depth, Level<br>(m) (mbgl)<br>(Thickness         |                         | Water-<br>strike B            | ackfill |
| 16                                                                                                          |                                                   |                                                                                                          |                            |                        | Possible CHALK. (Dniler<br>description). (SEAFORD<br>FORMATION - Ungrader<br>notes: 'Casing advancing<br>with slight pump pressur<br>would indicate cohesive | ) CHALK<br>d). Driller<br>g easier and<br>e, which |                             |                                |                              |                                                  |                         | 111111111111                  |         |
| 17                                                                                                          |                                                   |                                                                                                          |                            |                        |                                                                                                                                                              |                                                    |                             |                                |                              |                                                  |                         | 1111111                       |         |
| 18                                                                                                          |                                                   |                                                                                                          |                            |                        |                                                                                                                                                              |                                                    |                             |                                |                              | ja,                                              |                         |                               |         |
| 19                                                                                                          |                                                   |                                                                                                          |                            |                        |                                                                                                                                                              |                                                    | r                           | PC                             | چې                           | 8                                                |                         |                               |         |
| 20<br>Froundwater Entrie<br>No. Depth Strike                                                                |                                                   |                                                                                                          | Depth Seal                 | ed (m)                 | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                  | . 000                                              |                             |                                |                              | 20.00 +78.5<br>Hard Boring<br>Depths (m)         | Buration (m             | nins)Tools                    | used    |
| lotes: For explanatic<br>bbreviations see Ke<br>II depths and reduce<br>nickness given in bra<br>Scale 1:25 | ed levels in metri<br>ackets in depth c<br>(c) ES | Hole Records,<br>es, Stratum<br>olumn. AGS                                                               |                            | D60                    | ersham Tunnel (Chiltern) Area<br>177-16<br>h Speed Two (HS2) Limited                                                                                         | a C                                                |                             |                                |                              | Borehole<br>MLC                                  | )32-R(<br>Sheet 4 of 1: |                               |         |



| Drilled PC17<br>NH<br>GC/<br>CM<br>Checked MM                                                                | Start<br>30/11/2<br>End<br>07/12/2       | 2016 C<br>H<br>1                                   | quipment, Methods and Ren<br>Comacchio 305<br>land dug inspection pit fro<br>.20m to 20.00m./Rotary co | m GL to 1.2                |                        | en hole rotary drilling from 0.00<br>20.00<br>20.00                                                                                                                                                                                                                                                                                                                                                                                                                         | to Dlameter Casing Depth<br>(m) (mm) (m)<br>20.00 200 10.50<br>64.50 146                                                                                                                                                                                                                 | Ground Level<br>Coordinates (m)<br>National Grid | 98.58 mOD<br>E 501568.53<br>N 192113.17                    |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|
| Samples an                                                                                                   |                                          |                                                    |                                                                                                        |                            |                        | Strata Description                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                  |                                                            |
| Depth<br>(m)                                                                                                 | TCR<br>SCR<br>RQD                        | lf                                                 | Records/Samples                                                                                        | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Detail                                                                                                                                                                                                                                                                                   | Depth, Level<br>(m) (mbgl)<br>(Thickness         | d <sup>Water-</sup> Backfill                               |
| 20.00 - 20.10                                                                                                | 100<br>55<br>55                          | NIDD<br>50<br>400                                  | C 1                                                                                                    |                            |                        | Weak low density white CHALK with<br>a purplish hue and occasional<br>orange speckles. Fractures are<br>horizontal very closely to medium<br>spaced and locally non-intact<br>(NIDD/50/400). (SEAFORD CHALK<br>FORMATION - Grade A3/4. locally<br>C3/4)<br>Weak medium density white CHALK<br>with occasional grey mottling and<br>occasional finits. Fractures are<br>horizontal and vertical closely to<br>medium spaced and locally non-<br>intact (NI/50/300) rough and | 20,15 Orange Speckling.<br>20,55 Subhorizontal fracture<br>infiled with 60mm of soft<br>comminuted chalk.<br>20,80-20,95 NIDD, recovered<br>as angular gravel.<br>20,95 Medium nodular flint.                                                                                            |                                                  |                                                            |
| 21,00 - 22.00<br>21.70 - 21.95                                                                               | 100<br>70<br>66                          | NIDD<br>150<br>300                                 | C 1A                                                                                                   |                            |                        | undulating with slight black<br>speckling. (SEAFORD CHALK<br>FORMATION - Grade A3)                                                                                                                                                                                                                                                                                                                                                                                          | 21.50 Small nodular flint.<br>21.50-21.60 NIDD, recovered<br>as angular gravel.<br>21.65 Grey wispy marl seam.<br>21.95 Grey wispy marl seam.                                                                                                                                            |                                                  | н н н н н н н н н н<br>/ / / / / / / / / /                 |
| 22.00 - 23.00                                                                                                | 100<br>12<br>12                          |                                                    | -                                                                                                      |                            |                        | Weak medium density white CHALK<br>with occasional wispy marl seams<br>and flints. Fractures are horizontal,<br>vertical and 45 degrees very closely<br>to closely spaced and locally non-<br>intact (NI/50/150) rough undulating<br>with black speckling on surfaces.<br>(SEAFORD CHALK FORMATION -<br>Grade A3/4)                                                                                                                                                         | 22.25-22.35 NIDD, recovered<br>as angular gravel.<br>22.68 Occasional orange<br>speckling.<br>22.95 Small shell fragments.                                                                                                                                                               |                                                  | н н н н н н н н<br>- / / / / / / / / / / / / / / / / / / / |
| 23.20 - 23.42<br>23.00 - 24.00                                                                               | 100<br>30<br>24                          | NIDD<br>50<br>150                                  | C 2                                                                                                    |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23.10 Crinoid fossil<br>fragments.<br>23.55 Medium nodular flint<br>surrounded by comminuted<br>chalk (probably NIDD).<br>23.90-24.00 NIDD, recovered                                                                                                                                    |                                                  |                                                            |
| 24.25 - 24.52<br>24.00 - 25.00                                                                               | 100<br>30<br>30                          |                                                    | С 3                                                                                                    |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | as very weak low density<br>chalk.<br>24.00 Small nodular flint.<br>24.05 Subhorizontal fracture<br>with heavy black speckling<br>on surface.<br>24.60 Hc. conc. rracture with<br>heavy bra. speckling on<br>surface.<br>24.60-24.70 Orange<br>sp sck-ing through core<br>(sp snge bed). |                                                  |                                                            |
| 25<br>Froundwater Entrie<br>No. Depth Strike                                                                 |                                          | harks                                              |                                                                                                        | Depth Sea                  | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                          | Hard Boring<br>Depths (m) Duration               | (mins)Tools used                                           |
| lotes: For explanatic<br>bbreviations see Ke<br>III depths and reduce<br>nickness given in bra<br>Scale 1:25 | y to Explo<br>ed levels i<br>ackets in o | oratory Ho<br>in metres<br>depth coli<br>(c) ESG 1 | . Stratum<br>umn. Project                                                                              |                            | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                          | Borehole<br>ML032-F<br>Sheet 5 o                 |                                                            |



| Drilled PC17<br>NH<br>Logged CM<br>Checked MM                                                               | Start<br>30/11/2<br>End<br>07/12/2       | 2016 (                                       | Equipment, Methods and Ren<br>Comacchio 305<br>Hand dug inspection pit froi<br>L20m to 20.00m./Rotary co | m GL to 1.2      |              |                                                                                                                                                                                                                                                                                                                         | m to Dlameter Casing Depti<br>(m) (mm) (m)<br>20.00 200 10.50<br>64.50 146                                                                                                                                                                                                          | h Ground Level<br>Coordinates (m)<br>National Grid | 98.58 mOD<br>E 501568.53<br>N 192113.17 |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|
| Samples an<br><sub>Depth</sub>                                                                              | TCR                                      |                                              |                                                                                                          | Date &           | Time &       | Strata Description                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                     | Depth, Level<br>(m) (mbgl)                         | Water-                                  |
| (m)                                                                                                         | SCR<br>RQD                               | lf                                           | Records/Samples                                                                                          | Casing<br>(mbgl) | Water<br>(m) | Main<br>Weak medium density white CHAL                                                                                                                                                                                                                                                                                  | Detail<br>K                                                                                                                                                                                                                                                                         | (Thickness ) (m)                                   | Water-<br>strike Backfill               |
| 25.00 - 25.50<br>25.50 - 25.70                                                                              | 100<br>16<br>0                           |                                              | C 4                                                                                                      |                  |              | with occasional wispy mark seams<br>and flints. Fractures are horizontal<br>vertical and 45 degrees very close<br>to closely spaced and locally non-<br>intact (NI/50/150) rough undulating<br>with black speckling on surfaces.<br>(SEAFORD CHALK FORMATION<br>Grade A3/4)                                             | 25.10 Horizontal fracture with<br>heavy black speckling on<br>y surface.<br>25.10-25.40 NIDD.<br>25.35 Small medium nodular<br>flint                                                                                                                                                |                                                    |                                         |
| 2625,50 - 26,50                                                                                             | 100<br>55<br>35                          |                                              |                                                                                                          |                  |              |                                                                                                                                                                                                                                                                                                                         | 25.85-25.95 NIDD.<br>26.05-26.15 NIDD.<br>26.15-26.30 Vertical fracture<br>with orange staining on<br>surface.<br>26.30 Horizontal fracture<br>infilled with comminuted<br>chalk 10mm thick.                                                                                        |                                                    |                                         |
| 26.50 <b>-</b> 27.00                                                                                        | 94<br>28<br>28                           |                                              | -                                                                                                        |                  |              | Weak medium to high density white                                                                                                                                                                                                                                                                                       | 26.50-26.59 AZCL<br>26.50-26.85 NIDD, recovered<br>as angular gravel and<br>cobbles.<br>26.59-26.94 NIDD, recovered<br>as angular gravel and<br>cobbles.<br>26.90 Occasional orange                                                                                                 | 27.00 +71.58                                       |                                         |
| 27.35 - 27.60                                                                                               |                                          |                                              | C 5                                                                                                      |                  |              | CHALK with occasional light grey<br>bioturbated areas, wispy marl sear<br>and filnts. Fractures are horizontal<br>and vertical closely to medium<br>spaced and locally non-intact<br>(NI/150/400) rough and undulating<br>with slight black speckling on<br>surfaces. (SEAFORD CHALK<br>FORMATION - Grade A3, locally C | <ol> <li>speckles.</li> <li>27.60 Grey wispy marl seam.</li> </ol>                                                                                                                                                                                                                  |                                                    |                                         |
| 27.00 - 28.50<br>28                                                                                         | 100<br>63<br>34                          |                                              |                                                                                                          |                  |              |                                                                                                                                                                                                                                                                                                                         | <ul> <li>27.65 Horizontal fracture with<br/>slight orangish brown<br/>staining on surface.</li> <li>27.65-27.75 NIDD, recovered<br/>as highly fractured chalk.</li> <li>27.70 Small nodular flint.</li> <li>28.15 Horizontal fracture with<br/>slight brown clay infill.</li> </ul> |                                                    |                                         |
| 28.80 - 28.93<br><sup>29</sup>                                                                              | 100                                      |                                              | C 6                                                                                                      |                  |              |                                                                                                                                                                                                                                                                                                                         | 28.85 Shell fragments.<br>28.90 Grey wispy marl seam.<br>28.95-29.00 Occasional<br>orange speckling.                                                                                                                                                                                |                                                    |                                         |
| 28.50 - 30.00                                                                                               | 39<br>20                                 |                                              |                                                                                                          |                  |              |                                                                                                                                                                                                                                                                                                                         | 29.45 Medium no autar fint.<br>29.50 Small no du ar fint.<br>29.85 Orange speckling.<br>29.95 Small nodular flint.<br>30.00-30.09 AZCL                                                                                                                                              |                                                    |                                         |
| Groundwater Entrie<br>No. Depth Strike                                                                      |                                          | arks                                         | ·                                                                                                        | Depth Sea        | led (m)      | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                     | Hard Boring<br>Depths (m) Duration                 | (mins)Tools used                        |
| lotes: For explanatic<br>bbreviations see Ke<br>II depths and reduce<br>nickness given in bra<br>Scale 1:25 | y to Explo<br>ed levels i<br>ackets in c | ratory H<br>n metres<br>lepth col<br>(c) ESG | , Stratum                                                                                                |                  | D60          | rsham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                     | Borehole<br>ML032-R<br>Sheet 6 of                  |                                         |



| orilled PC17<br>NH<br>GC/<br>CM<br>Checked MM   | Start<br>30/11/<br>End | 2016 (                             | quipment, Methods and Rem<br>Comacchio 305<br>Hand dug inspection pit froi<br>.20m to 20.00m./Rotary co | n GL to 1,2                | 20m. Op<br>from 20.0   | en hole rotary drilling from<br>00m to 64.50m,                                                                                                                                                                                                                                     | Depth from<br>(m)<br>0.00<br>20.00                                                    | to         Dlameter         Casing Degram           (m)         (mm)         (m)           20.00         200         10.50           64.50         146                                                                                                                                                                                                                                            | oth Ground Level<br>Coordinates (m)<br>National Grid | 98.58 mOD<br>E 501568.53<br>N 192113.17 |
|-------------------------------------------------|------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------|
| pproved MM<br>amples an                         | 07/12/<br>d Tes        |                                    |                                                                                                         |                            |                        | Strata Descriptio                                                                                                                                                                                                                                                                  | n                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                    |                                         |
| Depth<br>(m)                                    | TCR<br>SCR<br>RQD      | lf                                 | Records/Samples                                                                                         | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                               |                                                                                       | Detail                                                                                                                                                                                                                                                                                                                                                                                            | Depth, Level<br>(m) (mbgl)<br>(Thickness             | l<br>) Legend Water-<br>strike Backfill |
| 30.00 - 31.50<br>30.85 - 31.00<br><sup>31</sup> | 94<br>22<br>10         | NIDD<br>150                        | C 7                                                                                                     |                            |                        | Weak medium to high de<br>CHALK with occasional I<br>bioturbated areas, wispy<br>and flints, Fractures are I<br>and vertical closely to me<br>spaced and locally non-ir<br>(NI/150/400) rough and u<br>with slight black specklin<br>surfaces, (SEAFORD CH<br>FORMATION - Grade A3 | ight grey<br>marl seams<br>horizontal<br>edium<br>htact<br>undulating<br>g on<br>IALK | <ul> <li>30.40 Small nodular flints,</li> <li>30.40-30.50 NIDD,</li> <li>30.65 Medium nodular flint,</li> <li>30.70 Slight orange speckling,</li> <li>30.85 Medium nodular flint,</li> <li>30.95 Light grey bioturbated marl laminae,</li> <li>31.05 Slight orange speckling,</li> <li>31.20 Thin grey (2mm) marl seam.</li> <li>31.20-31.30 NIDD.</li> <li>31.55 Small nodular flint.</li> </ul> |                                                      |                                         |
| <sup>32</sup><br>31.50 - 33.00<br>32.55 - 32.78 | 100<br>72<br>72        | 400                                | C 8                                                                                                     |                            |                        |                                                                                                                                                                                                                                                                                    |                                                                                       | 32.10 Horizontal fracture with<br>10mm comminuted chalk infi<br>and 2mm brown clay infill.<br>32.50 Medium nodular flint.                                                                                                                                                                                                                                                                         |                                                      |                                         |
| 33                                              |                        |                                    | NA<br>NA<br>NA                                                                                          |                            |                        |                                                                                                                                                                                                                                                                                    |                                                                                       | 33.00-33.10 AZCL<br>33.00-33.30 AZCL<br>33.25 Large nodular flint.                                                                                                                                                                                                                                                                                                                                |                                                      |                                         |
| 33,00 - 34,50<br><sup>34</sup>                  | 80<br>23<br>10         | NIDD<br>150<br>400                 |                                                                                                         |                            |                        |                                                                                                                                                                                                                                                                                    |                                                                                       | 34.00-34.50 NIDD.<br>34.10 Medium nodular flint.                                                                                                                                                                                                                                                                                                                                                  | No No                                                |                                         |
| 34.66 - 34.83                                   |                        |                                    | NA<br>NA<br>NA<br>C 9                                                                                   |                            |                        |                                                                                                                                                                                                                                                                                    |                                                                                       | 34.50-34.71 AZC                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                                         |
| <del>3534.50 - 35.50</del><br>roundwater Entrie | c                      |                                    |                                                                                                         |                            |                        |                                                                                                                                                                                                                                                                                    | <u> </u>                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                                         |
| No. Depth Strike                                | (m) Ren                | bols and<br>pratory H<br>in metres | , Stratum                                                                                               |                            | Ame<br>D60             | Depth Related Remarks<br>Depths (m) Remarks<br>ersham Tunnel (Chiltern) Area<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                                                                 | )<br>nc                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   | Hard Boring<br>Depths (m)<br>Borehole                | Duration (mins)Tools used               |



| Drilled PC17<br>NH<br>Logged CM<br>Checked MM<br>Approved MM                                                  | Start<br>30/11/2<br>End<br>07/12/2       | 2016 C<br>H<br>1                              | quipment, Methods and Ren<br>Comacchio 305<br>Iand dug inspection pit fro<br>.20m to 20.00m./Rotary c | m GL to 1.2                | 20m. Ope<br>from 20.0  | en hole rotary drilling from 0.00<br>20.00<br>20.00                                                                                                                                                                                                                                                                        | to         Dlameter         Casing Depth           (m)         (mm)         (m)           20.00         200         10.50           64.50         146 | Ground Level<br>Coordinates (m)<br>National Grid | 98.58 mOD<br>E 501568.53<br>N 192113.17 |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|
| Samples an                                                                                                    |                                          |                                               |                                                                                                       |                            |                        | Strata Description                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                                                  |                                         |
| Depth<br>(m)                                                                                                  | TCR<br>SCR<br>RQD                        | lf                                            | Records/Samples                                                                                       | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                                                       | Detail                                                                                                                                                | Depth, Level<br>(m) (mbgl)<br>(Thickness         | Water-<br>strike Backfill               |
|                                                                                                               | 79<br>15<br>15                           | NIDD<br>150<br>400                            | NA                                                                                                    |                            |                        | Weak medium to high density white<br>CHALK with occasional light grey<br>bioturbated areas, wispy marl seams<br>and flints. Fractures are horizontal<br>and vertical closely to medium<br>spaced and locally non-intact<br>(NI/150/400) rough and undulating<br>with slight black speckling on<br>surfaces. (SEAFORD CHALK | 35,10 Medium nodular flint.<br>35,45 Horizontal fracture<br>infilled with 8mm of soft                                                                 |                                                  |                                         |
| 35.50 - 36.00<br><sup>36</sup>                                                                                | 88<br>26<br>26                           |                                               | - NA<br>NA                                                                                            | 01/12/16<br>10,50          | 1715<br>35.90          | FORMATION - Grade A3, locally C3)                                                                                                                                                                                                                                                                                          | brown clay.<br>35.50-35.56 AZCL<br>35.55 Medium nodular flint.                                                                                        |                                                  |                                         |
|                                                                                                               |                                          | NIDD<br>150<br>400                            |                                                                                                       | 02/12/16<br>10.50          | 0800<br>Dry            |                                                                                                                                                                                                                                                                                                                            | 36.25-36.75 NIDD.<br>36.50 Medium nodular flint.                                                                                                      |                                                  |                                         |
| 36.65 - 36.80<br>36.00 - 37.50                                                                                | 53<br>19<br>0                            |                                               | C 11                                                                                                  |                            |                        | AZCL. Driller's description: CHALK.                                                                                                                                                                                                                                                                                        |                                                                                                                                                       | 37.00 +61.58                                     |                                         |
|                                                                                                               |                                          | NA<br>NA<br>NA                                | _                                                                                                     | 02/12/16<br>10.50          | 1700<br>35.66          | (SEAFORD CHALK FORMATION -<br>Ungraded).                                                                                                                                                                                                                                                                                   |                                                                                                                                                       |                                                  |                                         |
| <sup>.</sup> 3838.00 - 38.20                                                                                  |                                          |                                               | C 10                                                                                                  | 06/12/16<br>10.50          | 0745<br>Dry            | with flint. Recovered non-intact as<br>gravel in a matrix of comminuted<br>chalk, Occasional orange stained<br>areas, (Possibly SEAFORD CHALK<br>FORMATION - Ungraded)                                                                                                                                                     | 37.61 Small nodular flints,<br>38.05 Horizontal fracture<br>along grey wispy marl seam.                                                               |                                                  |                                         |
| 37,50 - 39,00                                                                                                 | 93<br>51<br>35                           | NIDD                                          |                                                                                                       |                            |                        |                                                                                                                                                                                                                                                                                                                            | 38.10 Grey wispy mart seam.<br>38.25 Orange speckling.                                                                                                |                                                  |                                         |
| · 39                                                                                                          |                                          | 150<br>400                                    |                                                                                                       |                            |                        |                                                                                                                                                                                                                                                                                                                            | 38.90-39.00 AZCL.                                                                                                                                     |                                                  |                                         |
| 39. <b>4</b> 5 - 39.76                                                                                        | 100<br>60<br>53                          |                                               | C 12                                                                                                  |                            |                        |                                                                                                                                                                                                                                                                                                                            | Accept                                                                                                                                                |                                                  |                                         |
| 39.00 - 40.50                                                                                                 |                                          |                                               |                                                                                                       |                            |                        |                                                                                                                                                                                                                                                                                                                            | 29,80-39,95 Vertical fracture<br>with orange staining on<br>surface                                                                                   |                                                  |                                         |
| Groundwater Entrie<br>No. Depth Strike                                                                        |                                          | arks                                          |                                                                                                       | Depth Sea                  | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                                                                | ,                                                                                                                                                     | Hard Boring<br>Depths (m) Duration (r            | mins)Tools used                         |
| Notes: For explanatic<br>abbreviations see Ke<br>All depths and reduce<br>hickness given in bra<br>Scale 1:25 | y to Explo<br>ed levels i<br>ackets in o | n metres<br>I metres<br>Iepth coli<br>(c) ESG | . Stratum<br>umn. AGS Projec                                                                          |                            | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>n Speed Two (HS2) Limited                                                                                                                                                                                                                                                      |                                                                                                                                                       | Borehole<br>ML032-R<br>Sheet 8 of 1              |                                         |



| Drilled PCT7<br>NH<br>Logged CM<br>Checked MM<br>Approved MM                                                   | Start<br>30/11/<br>End<br>07/12/    | 2016 (<br>H<br>1                               | Equipment, Methods and Ren<br>Comacchio 305<br>Hand dug inspection pit fro<br>J.20m to 20.00m./Rotary c | m GL to 1.2                | 20m. Op<br>from 20.    | en hole rotary drilling from<br>20.00<br>20.00<br>20.00                                                                                                                                                                                                                                                                                                                                                                                                                               | to Dlameter Casing Depth<br>(m) (mm) (m)<br>20.00 200 10.50<br>64.50 146                                                                                                                                                                                                                                                                                               | Ground Level<br>Coordinates (m)<br>National Grid | 98.58 mOD<br>E 501568.53<br>N 192113.17 |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|
| Samples an                                                                                                     |                                     | ts                                             |                                                                                                         |                            | 1                      | Strata Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                        | Depth, Level                                     |                                         |
| Depth<br>(m)                                                                                                   | TCR<br>SCR<br>RQD                   | lf                                             | Records/Samples                                                                                         | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Detail                                                                                                                                                                                                                                                                                                                                                                 | (m) (mbgl) Leger<br>(Thickness                   | nd <sup>Water-</sup> Backfill           |
|                                                                                                                |                                     |                                                | - NA<br>- NA                                                                                            |                            |                        | Very weak low density white CHALK<br>with flint. Recovered non-intact as<br>gravel in a matrix of comminuted<br>chalk. Occasional orange stained<br>areas. (Possibly SEAFORD CHALK<br>FORMATION - Ungraded)                                                                                                                                                                                                                                                                           | 40.25-40.50 Very closely<br>fractured locally with black<br>speckling on surfaces.<br>40.50-40.56 AZCL                                                                                                                                                                                                                                                                 |                                                  |                                         |
| 40.68 - 40.91<br>• 41                                                                                          |                                     |                                                | NA<br>C 13                                                                                              |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41.10 NIDD. Small nodular                                                                                                                                                                                                                                                                                                                                              |                                                  |                                         |
| 40.50 - 42.00                                                                                                  | 97<br>62<br>48                      | NIDD<br>150<br>400                             |                                                                                                         |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | flint surrounded by highly<br>fractured chalk.<br>41.20 Light grey marl lens<br>10mm thick and occasional<br>orange speckling.<br>41.30 NIDD. Small nodular<br>flint surrounded by highly<br>fractured chalk.<br>41.60 5mm thick sheet flint.                                                                                                                          |                                                  |                                         |
| - 42                                                                                                           |                                     | NIDD<br>150<br>400                             | NA<br>NA<br>NA                                                                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42.00-42.10 AZCL                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                         |
| 42.00 - 43.50<br>- 4343.00 - 43.18                                                                             | 93<br>45<br>27                      | NIDD                                           | C 14                                                                                                    |                            |                        | Horizontal thick lamination (10mm)<br>of soft brown CLAY. (Possibly<br>SHOREHAM MARL No2. LEWES<br>NODULAR CHALK FORMATION)<br>Weak medium to high density white<br>CHALK with occasional light grey<br>mottling, grey wispy mark seams<br>and flints. Fractures are horizontal<br>and occasional 45 degrees closely to<br>medium spaced and locally non-<br>intat (NI/150/250) with slight black<br>speckling on surfaces. (Possibly<br>LEWES NODULAR CHALK<br>FORMATION - Grade A3) | 42.45 Horizontal thick<br>lamination (10mm) of soft<br>brown clay. (Possibly<br>Shoreham Marl No2)<br>42.65 Grey wispy marl<br>seams.<br>42.80 NIDD. Medium nodular<br>flint surrounded by fractured<br>chalk.<br>42.80-42.90 NIDD. Medium<br>nodular flint surrounded by<br>fractured chalk.<br>43.20-43.30 3 horizontal<br>fractures (probably drilling<br>induced). |                                                  |                                         |
| 43.78 - 43.92<br>- 4443.50 - 44.50                                                                             | 100<br>48<br>29                     | 250                                            | C 15                                                                                                    |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43.40-43.50 Medium nodular<br>flints.<br>43.45 Small nodular flints.<br>43.75 NIDD. Small nodular<br>flint surrounded by chalk<br>gravel and comminuted<br>chalk.                                                                                                                                                                                                      |                                                  |                                         |
| 44.50 - 45.00                                                                                                  | 0<br>0<br>0                         | NA<br>NA<br>NA                                 | -                                                                                                       |                            |                        | No core recovery. Driller's<br>description: CHALK. (LEWES<br>NODULAR CHALK FORMATION -<br>Ungraded)                                                                                                                                                                                                                                                                                                                                                                                   | 2 ACCT                                                                                                                                                                                                                                                                                                                                                                 | 44.50 +54.08                                     |                                         |
| Groundwater Entrie<br>No. Depth Strike                                                                         |                                     | harks                                          | 1                                                                                                       | Depth Sea                  | lled (m)               | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>.</u>                                                                                                                                                                                                                                                                                                                                                               | Hard Boring<br>Depths (m) Duratio                | n (mins)Tools used                      |
| Notes: For explanatic<br>abbreviations see Ke<br>All depths and reduce<br>thickness given in bra<br>Scale 1:25 | y to Expl<br>ed levels<br>ackets in | oratory H<br>in metres<br>depth col<br>(c) ESG | umn.                                                                                                    |                            | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                        | Borehole<br>ML032-I<br>Sheet 9                   |                                         |



| amples an                            | 07/12/<br>d Tes                    |                                     |                 |                            |                        | Strata Description                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                | }                                         |                |                         |
|--------------------------------------|------------------------------------|-------------------------------------|-----------------|----------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------|-------------------------|
| Depth<br>(m)                         | TCR<br>SCR<br>RQD                  | lf                                  | Records/Samples | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                                                                                              | Detail                                                                                                                                                                         | Depth, Leve<br>(m) (mbgl<br>(Thickness    | 0 w            | ater-<br>trike Backfill |
|                                      |                                    |                                     | -               |                            |                        | No core recovery. Driller's<br>description: CHALK. (LEWES<br>NODULAR CHALK FORMATION -<br>Ungraded)                                                                                                                                                                                                                                                               | 45.25 Small nodular flints.                                                                                                                                                    |                                           |                |                         |
| 45.00 - 46.00<br>45.80 - 45.90       | 76<br>38<br>12                     | NIDD<br>150<br>250                  | C 16            |                            |                        | Horizontal thick lamination (8mm) of<br>soft brown CLAY. (Possibly<br>SHOREHAM MARL No 1, LEWES<br>NODULAR CHALK FORMATION).<br>Weak medium to high density white<br>CHALK with occasional light grey<br>motiling, grey wispy mark seams                                                                                                                          | 45.40 Horizontal thick<br>lamination (8mm) of soft<br>brown clay. (Possibly<br>Shoreham Marl No 1).<br>45.45 Medium nodular flint.                                             | . <b>4</b> 5.40 +53.1                     |                |                         |
| <sup>6</sup><br>46.00 - 46.50        | 60<br>28<br>20                     |                                     | NA<br>NA<br>NA  |                            |                        | and flints. Fractures are horizontal<br>and occasional 45 degrees closely to<br>medium spaced and locally non-<br>intact (N/150/250) with slight black<br>speckling on surfaces. (Possibly<br>LEWES NODULAR CHALK<br>FORMATION - Grade A3)                                                                                                                        | 46.00-46.20 AZCL                                                                                                                                                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                |                         |
| 46.50 - 46.69                        |                                    | NIDD<br>150<br>250                  | C 17            |                            |                        |                                                                                                                                                                                                                                                                                                                                                                   | 46.40-46.45 Grey marl seam.                                                                                                                                                    | 46.70                                     |                |                         |
| 746.50 - 47.50                       | 92<br>20<br>20                     |                                     |                 |                            |                        | Weak medium density white CHALK<br>with occasional nodular flints.<br>Recovered NI as gravel in a matrix<br>of comminuted chalk. (Possibly<br>LEWES NODULAR CHALK<br>FORMATION - Ungraded)                                                                                                                                                                        | 46.70 Small nodular flints.<br>47.00 Medium nodular flints.<br>47.00-47.30 Orange staining<br>throughout (possible sponge<br>bed).<br>47.30-47.50 Light brown                  | 46.70 +51.8                               |                |                         |
| 47.50 - 48.00<br><sup>18</sup>       | 100<br>12<br>0                     | NIDD<br>NIDD<br>60                  |                 |                            |                        |                                                                                                                                                                                                                                                                                                                                                                   | comminuted chalk in clay<br>matrix with some medium<br>nodular carious flints.<br>Probably fault gouge.<br>47.50-47.70 Small nodular<br>flints.<br>47.80 Small nodular flints. |                                           |                |                         |
| 48.00 - 49.00<br>48.67 - 48.81       | 90<br>44<br>24                     | NIDD<br>120<br>190                  | C 18            |                            |                        | Weak medium density white CHALK<br>with occasional flints and light grey<br>mottling, occasional wispy marl<br>seams and flints. Fractures are<br>horizontal and occasionally vertical<br>closely spaced and locally non-intact<br>(NI/120/190) with slight black<br>speckling on surfaces. (Possibly<br>LEWES NODULAR CHALK<br>FORMATION - Grade A3, locally C3) | 48.20 Medium nodular flints.<br>48.55 NIDD, Medium nodular<br>flints surrounded by<br>comminuted chalk.<br>48.90-49.50 NIDD, recovered                                         | 48.15 +50.4                               |                |                         |
| <sup>9</sup><br>49.00 - 49.50        | 80<br>6<br>0                       |                                     | NA<br>NA<br>NA  |                            |                        |                                                                                                                                                                                                                                                                                                                                                                   | as angular gravel of chalk.<br>49.05 Medium nodular flint.<br>49.05-49.15 AZCL                                                                                                 | 9 m                                       |                |                         |
| 240.50 50.50                         |                                    |                                     |                 |                            |                        |                                                                                                                                                                                                                                                                                                                                                                   | 49.60 Gr , wis, marl<br>seams.<br>49.90 Horizontal fracture on<br>mar seam with 20mm of                                                                                        |                                           |                |                         |
| oundwater Entrie<br>No. Depth Strike |                                    | arks                                |                 | Depth Sea                  | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                                                                                                       | angular chalk gravel.                                                                                                                                                          | Hard Boring<br>Depths (m)                 | Duration (min  | s)Tools used            |
|                                      | (m) Rem<br>on of sym<br>y to Explo | bols and<br>pratory Ho<br>in metres | . Stratum       | :                          | Am                     | Depth Related Remarks<br>Depths (m) Remarks<br>ersham Tunnel (Chiltern) Area C                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                | Depths (m)<br>Borehole                    | Duration (min: |                         |



| ihecked MM<br>pproved MM<br>Samples an                                                                      | End<br>07/12/             | 1<br>20 <b>1</b> 6      | and dug inspection pit fro<br>.20m to 20.00m./Rotary co | ore drilling t             | 20m, Op<br>from 20.1   | en hole rotary drilling from 20.00<br>20m to 64.50m.<br>Strata Description                                                                                                                                                                                                                                                                                        | 64.50 <b>146</b>                                                                                                                                             | National Grid                            | N 192113.17                    |
|-------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------|---------------------------------------------------------|----------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------|
| Depth<br>(m)                                                                                                | TCR<br>SCR<br>RQD         | lis<br>If               | Records/Samples                                         | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                                                                                              | Detail                                                                                                                                                       | Depth, Level<br>(m) (mbgl)<br>(Thickness | gend Water-<br>strike Backfill |
| 50.50 51.00                                                                                                 | 100<br>48<br>24<br>100    | NIDD<br>120<br>190      |                                                         | (                          |                        | Weak medium density white CHALK<br>with occasional flints and light grey<br>mottling, occasional wispy marl<br>seams and flints. Fractures are<br>horizontal and occasionally vertical<br>closely spaced and locally non-intact<br>(NI/120/190) with slight black<br>speckling on surfaces. (Possibly<br>LEWES NODULAR CHALK<br>FORMATION - Grade A3, locally C3) | 50,25 Occasional orange<br>speckling.<br>50.50 Small nodular flints.                                                                                         |                                          |                                |
| 50.50 - 51.00<br>50.84 - 51.00<br><sup>51</sup>                                                             | <b>44</b><br>28           |                         | C 19<br>NA<br>NA<br>NA                                  |                            |                        |                                                                                                                                                                                                                                                                                                                                                                   | 50.90 10mm thick sheet flint.<br>51.00-51.23 AZCL —                                                                                                          |                                          |                                |
| 51.00 - 52.50<br>51.84 - 52.00                                                                              | 85<br>52<br>39            | NIDD<br>120<br>190      | C 20                                                    |                            |                        |                                                                                                                                                                                                                                                                                                                                                                   | 51.50 Small nodular flints.<br>51.85 Zoophycos trace fossil.<br>51.95 Grey wispy marl seam.<br>52.00-52.30 NIDD, recovered                                   |                                          |                                |
|                                                                                                             |                           |                         | NDP<br>NDP<br>NDP                                       |                            |                        | Weak to medium strong high density<br>nodular CHALK with occasional marl<br>lenses. (Possible HARDGROUNDS -                                                                                                                                                                                                                                                       | as angular gravel and<br>cobbles.<br>52.65 Small nodular flint                                                                                               | 52.50 +46.08                             |                                |
| <sup>53</sup><br>52.50 - 54.00                                                                              | 100<br>66<br>47           | NIDD<br>160<br>300      |                                                         |                            |                        | LEWES NODULAR CHALK<br>FORMATION - Grade A3)<br>Weak medium density white CHALK<br>with occasional grey mottling, wispy<br>marl seams and flints. Fractures are<br>predominately horizontal<br>occasionally vertical closely to<br>medium spaced and locally non-<br>intact (NI/160/300). (LEWES<br>NODULAR CHALK FORMATION -<br>Grade A2/3, locally C2/3)        | surrounded by occasional<br>orange speckling.<br>52.75 Wispy marl seams.                                                                                     |                                          |                                |
| 53.70 - 53.90<br><sup>54</sup>                                                                              |                           |                         | C 21<br>NA                                              |                            |                        |                                                                                                                                                                                                                                                                                                                                                                   | 53.60 Medium nodular flints<br>surrounded by orange<br>staining.<br>53.75 Small nodular flints.<br>53.90 Small nodular flints.<br>54.00-54.30 Numerous wispy |                                          |                                |
| 54.23 - 54.45                                                                                               |                           |                         | NA<br>NA<br>C 22                                        |                            |                        |                                                                                                                                                                                                                                                                                                                                                                   | marl seams.<br>54.20 Small nodular flint.                                                                                                                    |                                          |                                |
| 54.00 - 55.50                                                                                               | 88<br>61<br>37            |                         |                                                         |                            |                        |                                                                                                                                                                                                                                                                                                                                                                   | 54.55 Zoophy os race fossil<br>54.70 Small nodular flint.<br>54.75 Small nodular flint.<br>54.75 MDD. Medium nodular                                         |                                          |                                |
| <sup>55</sup><br>roundwater Entrie<br>No. Depth Strike                                                      |                           | arks                    |                                                         | Depth Sea                  | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                                                                                                       | Fint surrounded by fractured                                                                                                                                 | Hard Boring<br>Depths (m) Durat          | tion (mins)Tools used          |
| lotes: For explanatic<br>bbreviations see Ke<br>II depths and reduce<br>lickness given in bra<br>Scale 1:25 | y to Explo<br>ed levels i | oratory Ho<br>in metres | Stratum                                                 |                            | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                                                                                                                                                                                             |                                                                                                                                                              | Borehole<br>ML032                        | -RC014                         |



| Drilled PC17<br>NH<br>.ogged CC/<br>Checked MM                                                              | Start<br>30/11/<br>End<br>07/12/ | 2016 C<br>H<br>1   | Equipment, Methods and Ren<br>Comacchio 305<br>Hand dug inspection pit fro<br>I.20m to 20.00m./Rotary co | m GL to 1.2                | 20m. Op<br>from 20.0   | en hole rotary drilling from<br>0.00<br>20.00<br>20.00                                                                                                                                                                                                                                                     | to Dlameter Casing Depth<br>(m) (mm) (m)<br>20.00 200 10.50<br>64.50 146                                                                                                                                                                                   | Ground Level<br>Coordinates (m)<br>Natjonal Grid | E 5                            | .58 mOD<br>01568.53<br>92113.17 |
|-------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------|----------------------------------------------------------------------------------------------------------|----------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------|---------------------------------|
| Samples an                                                                                                  |                                  |                    | 1                                                                                                        |                            |                        | Strata Description                                                                                                                                                                                                                                                                                         | T                                                                                                                                                                                                                                                          |                                                  |                                |                                 |
| Depth<br>(m)                                                                                                | TCR<br>SCR<br>RQD                | lf                 | Records/Samples                                                                                          | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                                                                                                                                                                       | Detail                                                                                                                                                                                                                                                     | Depth, Level<br>(m) (mbgl)<br>(Thickness         | Legend Water<br>strike         | , Backfill                      |
|                                                                                                             |                                  |                    |                                                                                                          |                            |                        | Weak medium density white CHALK<br>with occasional grey mottling, wispy<br>marf seams and flints. Fractures are<br>predominately horizontal<br>occasionally vertical closely to<br>medium spaced and locally non-<br>intact (NI/160/300), (LEWES<br>NODULAR CHALK FORMATION -<br>Grade A2/3, locally C2/3) | 55,10 Small nodular flint.<br>55.40 Medium nodular flint<br>surrounded by broken chalk.                                                                                                                                                                    | T<br>T<br>T<br>T<br>T                            |                                |                                 |
| 55.80 - 56.08                                                                                               |                                  | NIDD               | C 23                                                                                                     |                            |                        |                                                                                                                                                                                                                                                                                                            | 55.70 Medium nodular flint.                                                                                                                                                                                                                                |                                                  |                                |                                 |
| <sup>56</sup><br>55.50 - 57.00                                                                              | 100<br>61<br>32                  | 160<br>300         |                                                                                                          |                            |                        |                                                                                                                                                                                                                                                                                                            | 56.00 Grey wispy marl<br>seams.<br>56.15 Medium nodular flint.                                                                                                                                                                                             |                                                  |                                |                                 |
| 57 -                                                                                                        |                                  |                    | - NA<br>NA                                                                                               |                            |                        |                                                                                                                                                                                                                                                                                                            | 56.70 Small nodular flint.<br>56.80 Grey marl lens<br>(50mmx20mm).<br>56.90-57.00 Orange staining<br>throughout (possible sponge<br>bed).                                                                                                                  |                                                  |                                |                                 |
|                                                                                                             |                                  |                    | NA                                                                                                       |                            |                        |                                                                                                                                                                                                                                                                                                            | 57.15 Horizontal fracture<br>infilled with 10mm of<br>comminuted chalk.<br>57.20.57.30 Highly fractured<br>(probably drilling induced).                                                                                                                    |                                                  |                                |                                 |
| 57.00 - 58.50<br>58                                                                                         | 92<br>47<br>19                   |                    |                                                                                                          |                            |                        |                                                                                                                                                                                                                                                                                                            | 57.65 Large nodular flint.<br>57.75 Small nodular flint.<br>57.85 8mm thick sheet flint<br>(horizontal).                                                                                                                                                   |                                                  |                                |                                 |
| 58.35 - 58.50                                                                                               |                                  | NIDD<br>160<br>300 | C 24                                                                                                     | 06/12/16<br>10.50          | 1645<br>38.44          |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                  |                                |                                 |
| 59                                                                                                          |                                  |                    |                                                                                                          | 07/12/16<br>10.50          | 0800<br>Dry            |                                                                                                                                                                                                                                                                                                            | 58.80 Medium nodular flint.<br>58.95 20mm thick moderately<br>weak orange stained seam                                                                                                                                                                     |                                                  |                                |                                 |
| 59.18 - 59.35<br>58.50 - 60.00                                                                              | 100<br>72<br>57                  |                    | C 25                                                                                                     |                            |                        |                                                                                                                                                                                                                                                                                                            | with shell fragments (sponge<br>bed).<br>59.10 Light grey bioturbate<br>marl.<br>59.35 Grey wispy mar sent<br>with occasional oran se<br>speckles in surro inding<br>chalk.<br>59.50-59.55 Numerous grey<br>wispy mar seams.<br>59.70 Large nodular flint. | 59.75 +38.83                                     |                                |                                 |
| 60                                                                                                          |                                  |                    |                                                                                                          |                            |                        | Weak medium to high density white<br>CHALK with grey wispy marl seams<br>and bioturbation throughout.<br>Fractures are horizontal very close                                                                                                                                                               | pí -                                                                                                                                                                                                                                                       |                                                  |                                | 1                               |
| roundwater Entrie<br>No. Depth Strike                                                                       |                                  | harks              | '                                                                                                        | Depth Sea                  | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                          | Hard Boring<br>Depths (m) D                      | Ouration (mins)1               | ools used                       |
| lotes: For explanatio<br>bbreviations see Ke<br>II depths and reduce<br>nickness given in bra<br>Scale 1:25 | y to Explo                       | oratory He         | umn. AGS                                                                                                 |                            | D60                    | ersham Tunnel (Chiltern) Area C<br>77-16<br>h Speed Two (HS2) Limited                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                            |                                                  | <b>32-RC0</b><br>neet 12 of 13 | 14                              |



| rilled PC17<br>NH<br>ogged GC/<br>CM<br>hecked MM<br>pproved MM                                        | Start<br>30/11/2<br>End<br>07/12/2       | 2016 (<br>H<br>1                               | quipment, Methods and Rem<br>Comacchio 305<br>land dug inspection pit from<br>.20m to 20.00m./Rotary co | n GL to 1.2                |                        |                                                                                                                                                           | Depth from<br>(m)<br>0.00<br>20.00         | to         Dlameter         Casing Dept           (m)         (mm)         (m)           20.00         200         10.50           64.50         146 | h Ground Level<br>Coordinates (m)<br>National Grid                                          |               | 98.58 mOD<br>E 501568.53<br>N 192113.17 |
|--------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------|-----------------------------------------|
| amples an                                                                                              |                                          |                                                |                                                                                                         |                            |                        | Strata Descriptio                                                                                                                                         | n                                          |                                                                                                                                                      | -                                                                                           |               |                                         |
| Depth<br>(m)                                                                                           | TCR<br>SCR<br>RQD                        | lf                                             | Records/Samples                                                                                         | Date &<br>Casing<br>(mbgl) | Time &<br>Water<br>(m) | Main                                                                                                                                                      |                                            | Detail                                                                                                                                               | Depth, Level<br>(m) (mbgl)<br>(Thickness                                                    | Legend        | Water-<br>strike Backfill               |
| 60.20 - 60.45                                                                                          |                                          |                                                | C 26                                                                                                    |                            |                        | to medium spaced (50/1:<br>rough and stepped. (LEV<br>NODULAR CHALK FOR<br>Grade A2/3)                                                                    | NES                                        | 60.05 Slight orange staining<br>on horizontal fracture<br>surface.<br>60.10 Small nodular flint.                                                     |                                                                                             |               |                                         |
| 60.00 - 61.50                                                                                          | 91<br>65<br>59                           | 50<br>150<br>300                               |                                                                                                         |                            |                        |                                                                                                                                                           |                                            | 60,55 10mm thick sheet flint.<br>60,65 Orange speckling.                                                                                             |                                                                                             |               |                                         |
| <b>3</b> 1                                                                                             |                                          |                                                |                                                                                                         |                            |                        | Weak to medium strong<br>white with light grey mott<br>CHALK. Fractures are h<br>very closely to medium s<br>(NIDD/150/300). (Possib<br>HARDGROUNDS - LEW | tling nodular<br>orizontal<br>spaced<br>le | 61.27-61.50 AZCL                                                                                                                                     | 61.00 +37.58                                                                                |               |                                         |
|                                                                                                        |                                          | NA<br>NA<br>NA                                 |                                                                                                         |                            |                        | NODULAR CHALK FOR<br>Grade A2/3)                                                                                                                          |                                            | 61.50 Orange staining and<br>slight black speckling,<br>61.50-61.70 NIDD, recovered<br>as very high density chalk                                    | -                                                                                           |               |                                         |
| 61.77 - 62.03                                                                                          |                                          |                                                | C 27                                                                                                    |                            |                        |                                                                                                                                                           |                                            | (Possible HARDGROUNDS).<br>-<br>62.10-62.25 Grey wispy marl                                                                                          |                                                                                             |               |                                         |
| 61.50 - 63.00                                                                                          | 100<br>88<br>53                          | 50<br>150<br>300                               |                                                                                                         |                            |                        |                                                                                                                                                           |                                            | seams.                                                                                                                                               | -<br>-<br>-<br>-<br>-<br>-                                                                  |               |                                         |
|                                                                                                        |                                          |                                                |                                                                                                         |                            |                        |                                                                                                                                                           |                                            | 62.50 Medium nodular flint.                                                                                                                          |                                                                                             |               |                                         |
| 63                                                                                                     |                                          | 50<br>150<br>300                               |                                                                                                         |                            |                        |                                                                                                                                                           |                                            | -                                                                                                                                                    |                                                                                             |               |                                         |
| 63.00 - 64.50                                                                                          | 100<br>91                                |                                                |                                                                                                         |                            |                        |                                                                                                                                                           |                                            | 63.50 Striated fracture<br>(30mm long) - Possible<br>shear.<br>63.50-63.60 Very high<br>density chalk (Possible                                      |                                                                                             |               |                                         |
| <sup>54</sup><br>64.13 - 64.33                                                                         | 35                                       |                                                | C 28                                                                                                    |                            |                        |                                                                                                                                                           |                                            | HARDGROUNDS).<br>63.95-64.00 Very high<br>density chalk (Possible<br>HARDGROUNDS).                                                                   | d hai                                                                                       |               |                                         |
|                                                                                                        |                                          |                                                |                                                                                                         | 07/12/16<br>10.50          | 1730<br>37.20          | END OF EXPLORATO                                                                                                                                          | ORY HOLE                                   | 64.25 Grey wispy mark                                                                                                                                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |               |                                         |
| <del>65</del>                                                                                          |                                          |                                                |                                                                                                         |                            |                        |                                                                                                                                                           |                                            | 2.4                                                                                                                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-                                                             |               |                                         |
| roundwater Entrie<br>No. Depth Strike                                                                  |                                          | arks                                           | 1                                                                                                       | Depth Sea                  | led (m)                | Depth Related Remarks<br>Depths (m) Remarks                                                                                                               | ,00,0                                      | ,                                                                                                                                                    | Hard Boring<br>Depths (m)                                                                   | Duration (n   | nins)Tools used                         |
| otes: For explanatic<br>breviations see Ke<br>I depths and reduce<br>ckness given in bra<br>Scale 1:25 | y to Explo<br>ed levels i<br>ackets in o | oratory H<br>in metres<br>depth col<br>(c) ESG | . Stratum                                                                                               |                            | D60                    | ersham Tunnel (Chiltern) Are:<br>77-16<br>h Speed Two (HS2) Limited                                                                                       | a C                                        |                                                                                                                                                      |                                                                                             | <b>32-R</b> ( |                                         |

| <b>barn</b>                                                                                | E                                                                                                                                                        | BORE                                                                                       | HO             | LE L                                 | 00                       | 3      |       |                             |                                     |                                | MI                                              | _03                     | hole N<br>5-RC    | 2016        | 6                                |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------|--------------------------------------|--------------------------|--------|-------|-----------------------------|-------------------------------------|--------------------------------|-------------------------------------------------|-------------------------|-------------------|-------------|----------------------------------|
| ritchies<br>Project Name:<br>Project No:<br>Dient:<br>ingineer:                            | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd                                                             |                                                                                            |                | Survey Gr<br>Co-ordinat<br>Ground Le | id Syste<br>es:<br>evel: |        |       | 49928<br>19357              | SGB<br>7.56 m<br>72.49 m<br>72.86 m | nE Ch<br>nN Ap<br>nOD So<br>Lo | ble Type<br>lecked<br>proved<br>ale:<br>g Statu | e:<br>By:<br>By:<br>ıs: | <u>et 1 of</u>    | A           | F<br>B, C<br>PMc<br>1:25<br>FINA |
| Date Started:<br>Date Completed:                                                           | 23/01/2017<br>27/01/2017                                                                                                                                 |                                                                                            |                | Orientatior<br>Inclination           |                          |        |       |                             | de<br>90 d                          | •                              | int Date<br>nal Dep                             |                         |                   | 21/11<br>55 | /20′<br>5.50                     |
|                                                                                            | Stratum Description                                                                                                                                      | Legend (Thick-                                                                             | Level<br>(m)   | Depth                                | · ·                      |        |       | and h Si<br>Blows<br>(mins) |                                     | ng<br>Test Resu                | It   Inito                                      |                         |                   | water       | W<br>Ba                          |
|                                                                                            | oft brown slightly sandy slightly<br>. Gravel is angular to rounded fine to<br>and rare brick fragments.                                                 | r-<br>t<0.50)                                                                              |                | 0.30-0.50                            | В                        | (mm)   | )**%* | (mins)                      | Test                                | l est Resu                     |                                                 |                         | I( <del>MR)</del> |             | 2.Z<br>;;;<br>;;;<br>;;;<br>;;;  |
|                                                                                            | andy slightly gravelly clayey SILT.<br>rounded fine to coarse of flint and                                                                               | i ≤ X X t<0.50)<br>X X X t<0.50)<br>X X X t<0.50)<br>X X X X X X X X X X X X X X X X X X X | 72.36          | 0.50-0.70                            | В                        |        |       |                             |                                     |                                |                                                 |                         |                   |             |                                  |
| subangular flint cobb<br>rounded fine to coar<br>Alluvium]                                 | flint GRAVEL - flushed rotary casing                                                                                                                     |                                                                                            | 71.86<br>71.66 | 1.00 -1.20                           | В                        |        |       |                             |                                     |                                |                                                 |                         |                   |             |                                  |
| subrounded fine to c<br>subangular flint cobl<br>reduced by washing<br>[River Terrace Depo | osits]<br>pre loss. Poor recovery in granular                                                                                                            |                                                                                            | 70.36          | 2.50-3.00                            | RC                       | 102    |       |                             |                                     |                                |                                                 | 90                      | -<br>NA<br>-      | -           |                                  |
|                                                                                            |                                                                                                                                                          | tl1.05)<br>r-<br>r-<br>r-                                                                  |                | 3.00-4.50                            | RC                       | 102    |       |                             |                                     |                                |                                                 | 33<br>0<br>0            | NR<br>-           |             |                                  |
| coarse GRAVEL of n                                                                         | nn slightly clayey subangular fine to<br>nodular flint with high subangular flint<br>o 70mm). Fines content possibly<br>out during coring.               | .00<br>                                                                                    | 68.86          |                                      |                          |        |       |                             |                                     |                                |                                                 |                         | NĀ<br>-           | -           |                                  |
| Assumed zone of co<br>soils with rotary corin                                              | ore loss. <del>Poor recovery in granular</del><br>ng.                                                                                                    | * .50<br>50<br>t<1.00)                                                                     | 68.36          |                                      |                          |        |       |                             |                                     |                                |                                                 |                         |                   | _           |                                  |
| Groundwater levels<br>Explanation of symb                                                  | asured along borehole axis.<br>may be subject to seasonal, tidal and<br>bols and abbreviations given in 'Key to<br>n on appended 'Borehole Information : | Exploratory Ho                                                                             |                | ould not be                          | taken a                  | as con | l     |                             |                                     | <u> </u>                       |                                                 |                         |                   | 1           | _                                |

Office: BAM Ritchies, Glasgow Road, Kilsy1h, Glasgow G65 9BL

| •barn                                                                 | B                                                                                                                                                | BOR                                                                        | EHC                                  | DLE L                    | 00           | 3   |     |                            |                            |                  | M                              | _03           | hole N<br>5-RC<br>et 2 of          | 016   |                      |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--------------------------|--------------|-----|-----|----------------------------|----------------------------|------------------|--------------------------------|---------------|------------------------------------|-------|----------------------|
| Project Name:<br>Project No:                                          | Amersham Tunnel to Calvert                                                                                                                       |                                                                            |                                      | Survey Gr<br>Co-ordinat  | -            | em: |     | 49928                      | )SGB<br>37.56 r<br>72.49 r | nE Cł            | ole Type<br>necked<br>oproved  | By:           |                                    |       | R<br>B, C<br>PMc     |
| Client:<br>ngineer:<br>Date Started:                                  | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>23/01/2017                                                                                   |                                                                            |                                      | Ground Le<br>Orientatior |              |     |     | 7                          | 72.86 n<br>d               | Lo               | cale:<br>og Statu<br>rint Date |               |                                    |       | 1:25<br>FINA<br>/201 |
| Date Completed:                                                       | 27/01/2017                                                                                                                                       |                                                                            |                                      | Inclination              |              |     |     |                            | 90 c                       | •                | nal Dep                        |               | 1                                  | 55    | 5.50                 |
|                                                                       | Stratum Description                                                                                                                              | ne                                                                         | n)<br>pth<br>lick-Leve<br>(m)<br>(m) | I Depth<br>(m)           | Samp<br>Type | 1   | Rec | and h S<br>Blows<br>(mins) |                            | ing<br>Test Resu | lt Units                       |               | If min<br>If ave<br>If max<br>(mm) | Weter | W<br>Ba              |
| Assumed zone of co<br>soils with rotary corir                         | oreloss.Poorrecovery in granular<br>ng.                                                                                                          |                                                                            |                                      | 4.50-6.00                | RC           | 102 |     |                            |                            |                  |                                |               | -<br>NR<br>-                       |       |                      |
|                                                                       | n slightly sandy clayey subangular<br>/EL of flint with low subangular flint                                                                     | <>;-                                                                       | 50 67.36                             | ;                        |              |     |     |                            |                            |                  |                                | 33<br>0       | f                                  |       |                      |
| cobble content (up to                                                 | o 60mm). Sand is fine to coarse.                                                                                                                 | 11 -<br>1 0<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1 |                                      |                          |              |     |     |                            |                            |                  |                                | 0             | _                                  |       |                      |
| coring.<br>River Terrace Depo                                         | oly reduced by washing out during<br>sits]<br>notes flush returns of orange SAND.                                                                | <pre>&lt;</pre>                                                            | 50)<br>DO 66.8                       | 5                        |              |     |     |                            |                            |                  |                                |               | <u>-</u>                           | -     |                      |
| NO RECOVERY. Driner                                                   | notes nush returns of orange SAND.                                                                                                               | т.<br>т.<br>т.<br>т.<br>т.<br>т.<br>т.<br>т.                               |                                      |                          |              |     |     |                            |                            |                  |                                |               |                                    |       |                      |
|                                                                       |                                                                                                                                                  | H1.5                                                                       | 50>                                  | 6.00-7.50                | RC           | 102 |     |                            |                            |                  |                                | 0<br>0<br>0   |                                    |       |                      |
| lo recovery. Driller i                                                | notes flush returns of CHALK.                                                                                                                    | 7.:<br><br><br><br><br>                                                    | 50 65.36                             |                          |              |     |     |                            |                            |                  | _                              |               | NR<br>-                            |       |                      |
|                                                                       |                                                                                                                                                  | r-<br>r-<br>tf1.(<br>r-<br>f-<br>f-<br>f-                                  | 00)                                  | 7.50-8.50                | RC           | 102 |     |                            |                            |                  |                                | 0<br>0<br>0   |                                    | -     |                      |
|                                                                       | K composed of light yellowish white<br>dy SILT. Gravel is very weak, low                                                                         | r-<br>r-<br>r-<br>r-<br>f-                                                 | 50 64.3                              | 6                        |              |     |     |                            |                            |                  |                                |               |                                    |       |                      |
|                                                                       | white and subrounded to rounded.<br>rounded cobbles of rinded flint (up to<br>)                                                                  | 80.5                                                                       | 50)                                  | 8.70-8.80<br>8.50-9.00   | D<br>RC      | 102 |     |                            |                            |                  |                                | 100<br>0<br>0 | -<br>NI<br>-                       | -     |                      |
| assumed zone of co                                                    | oreloss.                                                                                                                                         | +C<br>                                                                     |                                      | 5                        |              |     |     |                            |                            |                  |                                |               | -<br>NR                            |       |                      |
| lightly sandy silty su<br>lasts are very weak<br>ght greyish white lo | K composed of light greyish white<br>ubangular to subrounded GRAVEL.<br>< to weak, low to medium density,<br>ically with orangish brown staining | r-<br>-<br>9.<br>-<br>-<br>-<br>-<br>-<br>-<br>-                           |                                      |                          |              |     |     |                            |                            |                  |                                | 73<br>0<br>0  |                                    |       |                      |
|                                                                       | ubrounded. With rare subangular fine<br>cobbles of flint. (Grade: De)<br>lk Formation]                                                           | f-                                                                         |                                      | 9.00 - 10.50             | RC<br>D      | 102 |     |                            |                            |                  |                                |               | -                                  |       |                      |

| ritchies                                                                                                                                    | -                                                                                                                                                                                               | BORE                                         |       |                            |         |                  |             |                 |         |                       |               | 5-RC<br>et 3 of  |             | _          |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------|----------------------------|---------|------------------|-------------|-----------------|---------|-----------------------|---------------|------------------|-------------|------------|
| Project Name:                                                                                                                               | Amersham Tunnel to Calvert                                                                                                                                                                      |                                              |       | Survey Gri<br>Co-ordinate  |         | em:              |             | DSGB<br>37.56 r | πE      | Hole Typ<br>Checked   |               |                  | Δ           | В,         |
| Project No:                                                                                                                                 | 1G063-AAZ.                                                                                                                                                                                      |                                              |       | CO-oruman                  | 55.     |                  |             | 72.49 r         |         | Approved              |               |                  |             | ь,<br>PN   |
| lient:                                                                                                                                      | High Speed 2 (HS2) Ltd                                                                                                                                                                          |                                              |       | Ground Le                  | vel:    |                  |             | 72.86 r         | nOD     | Scale:                |               |                  |             | 1:         |
| ngineer:<br>Date Started:                                                                                                                   | High Speed 2 (HS2) Ltd<br>23/01/2017                                                                                                                                                            |                                              |       | Orientation                |         |                  |             | d               | 90      | Log Star<br>Print Dat |               |                  | F<br>21/11/ | FIN<br>/20 |
| Date Completed:                                                                                                                             | 27/01/2017                                                                                                                                                                                      |                                              |       | Inclination:               |         |                  |             | 90 d            | •       | Final De              |               |                  | 55          |            |
|                                                                                                                                             |                                                                                                                                                                                                 | Depth<br>(Thick-                             | Level |                            | Samp    | ling, Corin      | ig and In S | Situ Tes        | ting    |                       | ŢĊŖ           | If min           |             | T          |
|                                                                                                                                             | Stratum Description                                                                                                                                                                             | Legend (THICK-<br>ness)<br>(m)               | (m)   | Depth<br>(m)               | Туре    | Dia Re<br>(mm) % | c Blows     | Test            | Test Re | esult Units           |               |                  | Weter       |            |
| slightly sandy silty s<br>Clasts are very wea<br>light greyish white lo<br>and subangular to s<br>to coarse gravel and<br>[Lewes Nodular Ch | -                                                                                                                                                                                               | (11)<br>f-<br>f-<br>0.50                     | 62.36 |                            |         |                  |             |                 |         |                       |               | NI<br>-          |             |            |
| Assumed zone of co                                                                                                                          | ore loss.                                                                                                                                                                                       | f-<br>r-<br>t<0.40)<br>f-                    |       |                            |         |                  |             |                 |         |                       |               | -<br>NR<br>-     |             |            |
| lightly sandy silty s<br>Clasts are very wea<br>ight greyish white lo                                                                       | K composed of light greyish white<br>ubangular to subrounded GRAVEL.<br>k toweak, low to medium density,<br>ceally with orangish brown staining                                                 | f-<br>f-<br>f-<br>f-<br>f-                   | 61.96 |                            |         |                  |             |                 |         |                       | 73<br>0       | f                |             |            |
|                                                                                                                                             | ubrounded. With rare subangular fine<br>d cobbles of flint. (Grade: De)<br>alk Formation]                                                                                                       | r-<br>r-<br>f-<br>t:<_1.10)<br>r-            |       | 10.50-12.00                | RC      | 102              |             |                 |         |                       | 0<br>0        | NI<br>-          |             |            |
|                                                                                                                                             |                                                                                                                                                                                                 | t-<br>t-<br>f-<br>f-<br>f-                   |       |                            |         |                  |             |                 |         |                       |               |                  |             |            |
| Assumed zone of c                                                                                                                           |                                                                                                                                                                                                 | 2.00                                         | 60.86 |                            |         |                  |             |                 |         |                       |               |                  |             |            |
|                                                                                                                                             | 12.00m : Lost flush returns.                                                                                                                                                                    | f-<br>f-<br>f-                               |       |                            |         |                  |             |                 |         |                       |               |                  |             |            |
|                                                                                                                                             |                                                                                                                                                                                                 | f-<br>f-<br>r-<br>f-                         |       |                            |         |                  |             |                 |         |                       |               | -<br>NR          |             |            |
|                                                                                                                                             |                                                                                                                                                                                                 | tf1.00)<br><sup>F-</sup><br>F-<br>f-         |       |                            |         |                  |             |                 |         |                       | 30            | -                |             |            |
|                                                                                                                                             |                                                                                                                                                                                                 | f-<br>f-<br>r-<br>r-                         |       | 12.00-13.50                | RC      | 102              |             |                 |         |                       | 0<br>0        |                  |             |            |
| white CHALK with ra<br>Fracture set 1 : horiz<br>(90/100/110), undul<br>set 2 : one 45 degree                                               | ery weak low density light greyish<br>are flintfragments (up to 70mm).<br>contal to 20 degrees dosely spaced<br>ating slightly rough, no infill. Fracture<br>fracture, planar rough, no infill. | r-<br>f-<br>f-<br>f-<br>f-<br>f-<br>r-<br>r- | 59.86 |                            |         |                  |             |                 |         |                       |               |                  |             |            |
| Lewes Nodular Cha<br>13.00 - 13.10m:                                                                                                        | alk Formation]<br>Flintfragments (up <i>to</i> 70mm), possible<br>flint band.                                                                                                                   | r.<br>r.<br>f.<br>f.<br>r.                   |       |                            |         |                  |             |                 |         | _                     | _             | -<br>NI<br>-     |             |            |
|                                                                                                                                             |                                                                                                                                                                                                 | f-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f-       |       | 13.90-14.00<br>13.50-14.50 | D<br>RC | 102              |             |                 |         |                       | 60<br>0<br>0  |                  |             |            |
| 14.20                                                                                                                                       | 0- 14.50m:Assumed zone of core loss.                                                                                                                                                            | f-<br>f-<br>f-<br>f-                         |       |                            |         |                  |             |                 |         |                       |               | -<br>NR<br>-     |             |            |
| 14.50- 14.58m:                                                                                                                              | Flintfragments (up <i>to</i> 90mm), possible<br>flint band.                                                                                                                                     | r<br>f-<br>f.<br>t.<br>t.<br>t.              |       | 14.50 - 15.00              | RC      | 102              |             |                 |         |                       | 100<br>0<br>0 | 90<br>100<br>110 |             |            |
|                                                                                                                                             |                                                                                                                                                                                                 | ;00                                          | 57.86 |                            |         |                  |             |                 |         |                       |               |                  |             |            |

| •barn                      | E                                                                           | SOR        | <b>E</b>                | HO           | LE L          | 00       | 3                  |        |                 |         |          |                    |              | 5-RC            |             |    |
|----------------------------|-----------------------------------------------------------------------------|------------|-------------------------|--------------|---------------|----------|--------------------|--------|-----------------|---------|----------|--------------------|--------------|-----------------|-------------|----|
| ritchies<br>Project Name:  | Amersham Tunnel to Calvert                                                  |            |                         |              | Survey Gr     | id Syste | em:                |        | о               | SGB     | F        | Hole Typ           |              | t 4 of          | 12          |    |
|                            |                                                                             |            |                         |              | Co-ordinat    | es:      |                    |        | 49928           | 7.56 n  | nE C     | Checked            | By:          |                 | AE          | ١, |
| Project No:                | 1G063-AAZ.                                                                  |            |                         |              | <b>.</b>      |          |                    |        |                 | '2.49 n |          | Approved           | d By:        |                 | F           |    |
| lient:                     | High Speed 2 (HS2) Ltd                                                      |            |                         |              | Ground Le     | evel:    |                    |        | 7               | '2.86 m |          | Scale:<br>.og Stat | tue          |                 | F           | 1: |
| ingineer:<br>Date Started: | High Speed 2 (HS2) Ltd<br>23/01/2017                                        |            |                         |              | Orientatior   |          |                    |        |                 | d       |          | Print Dat          |              |                 | ٦<br>/21/11 |    |
| Date Completed:            | 27/01/2017                                                                  |            |                         |              | Inclination   |          |                    |        |                 | 90 d    | •        | Final Dep          |              |                 | 55          |    |
| •                          |                                                                             |            | Depth                   |              |               |          | ing, C             | oring  | andh Sit        | u Testi | na       |                    | TCR          | Ifmin           |             | l  |
|                            | Stratum Description                                                         | Legend     | (Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)  | Туре     | ( <sup>Dia</sup> ) |        | Blows<br>(mins) | Test    | Test Res | sult Units         | SCR<br>Rଷ୍ଟପ | lfave<br>(mna)x | Weter I     |    |
| Assumed zone of co         | pre loss.                                                                   | f.         |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | r.         | <0.40)                  |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | r.         |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
| Very weak to weak,         | medium density, greyish white                                               |            | 15.40                   | 57.46        |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
| CHALK with occasio         | nal thin grey laminations (marl                                             | f.         | -                       |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
| to 30 degrees closel       | ed burrows. Fracture set 1: horizontal<br>y spaced (40/120/380), undulating |            |                         |              |               |          |                    |        |                 |         |          |                    | 73           |                 |             |    |
| slightly rough, with b     | black specks and no infill. Fracture                                        |            |                         |              | 15.00 - 16.50 | RC       | 102                |        |                 |         |          |                    | 4            |                 |             |    |
|                            | ees, medium spaced (579/650/3000), bugh, locally with dark yellow           |            |                         |              |               |          |                    |        |                 |         |          |                    | 0            |                 |             |    |
| staining, no infill. Fra   | acture set 3: three 80 degree<br>ugh, no infill. (Grade: A2/3)              |            |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
| [Lewes Nodular Cha         |                                                                             |            |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
| -                          | -                                                                           | r.<br>r.   |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             |            |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | F.         |                         |              |               |          |                    |        |                 |         |          |                    |              | NIDO            |             |    |
|                            |                                                                             | r.         | -                       |              |               |          |                    |        |                 |         |          |                    |              | 130             |             |    |
|                            |                                                                             | r.<br>r.   |                         |              |               |          |                    |        |                 |         |          |                    |              | 150             |             |    |
|                            |                                                                             | r.         |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | f.<br>f.   |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             |            |                         |              | 16.50 - 17.50 | RC       | 102                |        |                 |         |          |                    | 100<br>31    |                 |             |    |
|                            |                                                                             |            |                         |              | 10.00 - 17.00 |          | 102                |        |                 |         |          |                    | 12           |                 |             |    |
|                            |                                                                             | r.         |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | f.         |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             |            |                         |              | 17.40 - 17.50 | D        |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | r          | -                       |              | 17.30         | U        |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | - r.       | In cal                  |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             |            | le.so)                  |              | 17.50 - 18.00 | RC       | 102                |        |                 |         |          |                    | 100<br>20    |                 |             |    |
|                            |                                                                             | f.         |                         |              |               |          |                    |        |                 |         |          |                    | 0            |                 |             |    |
|                            |                                                                             |            |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
| 18.00 -                    | 18.07m : Flint fragments (up to 60mm).                                      |            |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | f-<br>f-   |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | - F-       |                         |              | 18.20 - 18.40 | c        |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | r.         |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | r          | -                       |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | f.<br>f.   | -                       |              |               |          |                    |        |                 |         |          |                    | 400          |                 |             |    |
|                            |                                                                             | f-         |                         |              | 18.00 - 19.50 | RC       | 102                |        |                 |         |          |                    | 100<br>60    |                 |             |    |
| 18.78- 18.90               | m : Possible void visible on televiewer.                                    |            |                         |              |               |          |                    |        |                 |         |          |                    | 40           |                 |             |    |
|                            |                                                                             | r.         |                         |              |               |          |                    |        |                 |         |          |                    |              | 60<br>120       |             |    |
|                            |                                                                             | f.<br>f.   | -                       |              |               |          |                    |        |                 |         |          |                    |              | 400             |             |    |
|                            |                                                                             | f-         |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             |            |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | r.         |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | f<br>f-    | -                       |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | f.         |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | r.         |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             |            |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | f-         | _                       |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
|                            |                                                                             | [          |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |
| Stratum depths mea         | asured along borehole axis.                                                 | • •        |                         |              | ,             |          |                    |        | · · · · · · · · |         |          |                    |              |                 |             | 1  |
|                            | may be subject to seasonal, tidal and o                                     | other fluc | tuation                 | s and sl     | hould not be  | aken a   | is con             | stant. |                 |         |          |                    |              |                 |             |    |
| Groundwater levels         |                                                                             |            |                         |              |               |          |                    |        |                 |         |          |                    |              |                 |             |    |

| •barn<br>ritchies                                                                                                                                                                            | В                                                                                                                                                                                                                                                       | BOR      | E               | HO    | LE L                           | 00      | 3                  |          |                 |                    |        | N                               | 1L03            | hole N<br>5-RC<br>et 5 of | 016                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|-------|--------------------------------|---------|--------------------|----------|-----------------|--------------------|--------|---------------------------------|-----------------|---------------------------|----------------------------------------|
| Project Name:                                                                                                                                                                                | Amersham Tunnel to Calvert                                                                                                                                                                                                                              |          |                 |       | Survey Gri<br>Co-ordinate      | -       | em:                |          |                 | SGB<br>37.56 1     | nE     | Hole Ty<br>Checked              |                 |                           | AB,                                    |
| Project No:<br>Client:                                                                                                                                                                       | 1G063-AAZ.<br>High Speed 2 (HS2) Ltd                                                                                                                                                                                                                    |          |                 |       | Ground Le                      | vel:    |                    |          |                 | 72.49 ı<br>72.86 r |        | Approve<br>Scale:               |                 |                           | PM<br>1:2                              |
| ingineer:<br>Date Started:<br>Date Completed:                                                                                                                                                | High Speed 2 (HS2) Ltd<br>23/01/2017<br>27/01/2017                                                                                                                                                                                                      |          |                 |       | Orientation                    |         |                    |          |                 | c<br>90 c          | •      | Log Sta<br>Print Da<br>Final De | te:             |                           | FIN<br>21/11/20<br>55.5                |
| •                                                                                                                                                                                            | Stratum Description                                                                                                                                                                                                                                     | Legend ( | Depth<br>Thick- | Level |                                |         | -                  | -        | andhS           | itu Test           | ina    |                                 | TCR             | If min                    |                                        |
|                                                                                                                                                                                              |                                                                                                                                                                                                                                                         |          | ness)<br>(m)    | (m)   | Depth<br>(m)                   | Туре    | ( <sup>Dia</sup> ) | Rec<br>% | Blows<br>(mins) | Test               | Test F | Result Uni                      | ts RQU          | ) (mma)k                  | Weter B                                |
|                                                                                                                                                                                              |                                                                                                                                                                                                                                                         |          |                 |       | 19.50-21.00                    | RC      | 102                |          |                 |                    |        |                                 | 100<br>61<br>53 | 60                        |                                        |
| 21.00-21.40m : Dr                                                                                                                                                                            | illing disturbed. Recovered non-intact.                                                                                                                                                                                                                 |          |                 |       | 21.00 - 22.50                  | RC      | 102                |          |                 |                    |        |                                 | 100<br>33<br>30 | 120<br>400                | ප්ර පුර පුර පුර පුර පුර                |
| CHALK with occasion<br>wisps). Fracture set<br>spaced (40/170/320),<br>green staining on fra<br>set 2: three 60 degre<br>spaced (240/-/350),<br>infill. Chalk Rock. (G<br>[Lewes Nodular Cha |                                                                                                                                                                                                                                                         |          | -               | 50.96 |                                |         |                    |          |                 |                    |        |                                 |                 |                           | 3080808080808080808080                 |
|                                                                                                                                                                                              | illing disturbed. Recovered non-intact.<br>solution features visible on televiewer?                                                                                                                                                                     |          | 2.10)           |       | 22.50 - 24.00<br>23.70 - 23.90 | RC<br>C | 102                | 2        |                 |                    |        |                                 | 93<br>40<br>37  | 40<br>200<br>350          | ფ. |
| frequent marl burrow<br>Fracture set 1: horizo<br>slightly rough, with fr<br>yellow staining. Frac                                                                                           | y, light <u>greyish</u> whiteCH A L Kwi th-l=f'=<br>vs and rare chalk interclasts.<br>ontal medium spaced, undulating<br>equent black specks and dark<br>ture set 2: one 70 degree fracture,<br>th black specks and no infill. (Grade:<br>lk Formation] |          | ₹0<br>2.00)     | 48.86 | 24.00 - 25.50                  | RC      | 102                |          |                 |                    |        |                                 | 100<br>43<br>37 |                           | ფიფიფიფიფიფიფიფიფი                     |

| •barn                                                                                                                                                                                                                                                                   | E                                                                                                                                                                                                                                                                                                                                                                                      | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HO             | LE L                                                     | 00           | 3      |                       |                    |         | I                | ML03            | hole N<br>5-RC<br>et 6 of | 016                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------|--------------|--------|-----------------------|--------------------|---------|------------------|-----------------|---------------------------|--------------------------------------------------|
| Project Name:                                                                                                                                                                                                                                                           | Amersham Tunnel to Calvert                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | Survey Gri                                               | id Syst      | em:    | C                     | DSGB               | I       | Hole Ty          |                 |                           |                                                  |
| Ducia et Nico                                                                                                                                                                                                                                                           | 10000 447                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | Co-ordinate                                              | es:          |        |                       | 87.56 n            |         | Checke           |                 |                           | AB,                                              |
| Project No:<br>lient:                                                                                                                                                                                                                                                   | 1G063-AAZ.<br>High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | Ground Le                                                | evel:        |        |                       | 72.49 n<br>72.86 m |         | Approv<br>Scale: | ea By:          |                           | PM<br>1:2                                        |
| ngineer:                                                                                                                                                                                                                                                                | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                                          |              |        |                       |                    |         | Log St           | atus:           |                           | FIN                                              |
| ate Started:                                                                                                                                                                                                                                                            | 23/01/2017                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | Orientation                                              |              |        |                       | d                  | 0       | Print D          |                 |                           | 21/11/20                                         |
| Date Completed:                                                                                                                                                                                                                                                         | 27/01/2017                                                                                                                                                                                                                                                                                                                                                                             | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | Inclination:                                             |              | ling C | oring and h S         | 90 d               | -       | Final D          | ·               | If min                    | 55.5                                             |
|                                                                                                                                                                                                                                                                         | Stratum Description                                                                                                                                                                                                                                                                                                                                                                    | Legend (Thick-<br>ness)<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Level<br>(m)   | Depth<br>(m)                                             | Туре         | 1      | Rec Blows<br>% (mins) | Test               | Test Ro | esult Ur         | its RØ          | lfave<br>Df(rmma)x        | Weter Ba                                         |
| 25.50-25.90m:Dr                                                                                                                                                                                                                                                         | 25.25 - 25.30m : Grey marl seam.<br>illing disturbed. Recovered non-intact.                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                                          |              |        |                       |                    |         |                  |                 | NI<br>80<br>200           | ර හිදු හිදු හිදු හිදු හිදු හිදු                  |
| with thin grey lamina<br>burrows. Fracture se<br>medium spaced (5/4<br>with frequent black s<br>infill. Fracture set 2: -<br>(10/1200/1400), und<br>specks dark yellow s<br>degrees to vertical, u                                                                      | "竹好.暇分gœ.ylst::WhtedALKbc:ailyJ=<br>ations (marl wisps) and frequent marl<br>et 1: horizontal to 20 degrees,<br>30/600), undulating slighUy rough<br>specks and dark yellow staining, no<br>45 to 60 degrees, widely spaced<br>ulating slighUy rough, with frequent<br>staining. Fracture set 3: rare 60<br>undulating slightly rough, with<br>s and no infill. (Grade: A2)<br>nation] | 2 oc<br>2 | 46.86          | 25.50 - 27.00<br>21.00 - 31.50<br>26.60<br>26.60 - 26.70 | RC<br>D<br>D | 102    |                       | Falling<br>Head    | 6.7E    | 006 m            | 100<br>40<br>37 |                           | ადი ფი ფი ფი ფი ფი ფი ფი ფი<br>მი ფი ფი ფი ფი ფი |
|                                                                                                                                                                                                                                                                         | 27. 10- 27. 17m : Grey marl seam.                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45.34          |                                                          |              |        |                       |                    |         |                  |                 |                           | ვიფიფიფიფიფი                                     |
| Grey marl seam. Po<br>New Pit Chalk Form                                                                                                                                                                                                                                | ssibly Upper Glynde Marl?<br>nation                                                                                                                                                                                                                                                                                                                                                    | 27.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.26          |                                                          |              |        |                       |                    |         |                  |                 |                           | 00                                               |
| Weak, medium dens<br>with thin grey lamina<br>burrows. Fracture se<br>medium spaced (5/4<br>with frequent black s<br>infill. Fracture set 2: -<br>(10/1200/1400), und<br>specks dark yellow s<br>degrees to vertical, to<br>frequent black speck<br>[New Pit Chalk Form | sity, light greyish white CHALK locally<br>titions (marl wisps) and frequent marl<br>et 1: horizontal to 20 degrees,<br>30/600), undulating slighUy rough<br>specks and dark yellow staining, no<br>45 to 60 degrees, widely spaced<br>ulating slighUy rough, with frequent<br>staining. Fracture set 3: rare 60<br>undulating slightly rough, with<br>as and no infill. (Grade: A2)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 27.00 - 28.50                                            | RC           | 102    |                       |                    |         |                  | 100<br>53<br>43 | NIDO<br>40<br>110         | රු හිදු හිදු හිදු හිදු හිදු හිදු හිදු            |
| Grey marl seam. Po<br>New Pit Chalk Form<br>Weak, medium dens<br>with thin grey lamina<br>burrows. Fracture se<br>medium spaced (5/4:<br>with frequent black s<br>infill. Fracture set 2: -<br>(10/1200/1400), und                                                      | illing disturbed. Recovered non-intact.<br>ssibly Lower Glynde Marl?                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43.61<br>43.54 | 28.50 - 30.00<br>29.45 - 29.70                           |              | 102    |                       |                    |         |                  | 100<br>60<br>57 |                           | ფიფი ფიფი ფი          |

| •barn                                                                                                                                                                                                                                           | E                                                                                                                                                                                                                                                                                                                                                                                 | BOF      | RE                               | НО             | LE L                                                                | 00                 | 3     |         |                            |                                                    |                         | N                                                                           | 1L03                          | ehole N<br>5-RC<br>et 7 of | 016                               |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------|----------------|---------------------------------------------------------------------|--------------------|-------|---------|----------------------------|----------------------------------------------------|-------------------------|-----------------------------------------------------------------------------|-------------------------------|----------------------------|-----------------------------------|-------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started:<br>Date Completed:                                                                                                                                                        | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>23/01/2017<br>27/01/2017                                                                                                                                                                                                                                                          |          |                                  |                | Survey Gr<br>Co-ordinat<br>Ground Le<br>Orientation<br>Inclination: | es:<br>evel:<br>n: | em:   |         | 49928<br>1935              | OSGB<br>37.56 r<br>72.49 r<br>72.86 n<br>c<br>90 c | nE<br>nN<br>nOD<br>leg. | Hole Typ<br>Checked<br>Approve<br>Scale:<br>Log Sta<br>Print Da<br>Final De | l By:<br>d By:<br>tus:<br>te: |                            | 1:<br>FII<br>21/11/2              | ИсG<br>:25<br>NAL |
|                                                                                                                                                                                                                                                 | Stratum Description                                                                                                                                                                                                                                                                                                                                                               | Legend   | Depth<br>(Thick-<br>ness)<br>(m) | Level<br>(m)   | Depth<br>(m)                                                        | Sampl<br>Type      | 1     | Rec     | andh Si<br>Blows<br>(mins) | tu Testi<br>Test                                   | ing<br>Test R           | esult Unit                                                                  | TCR<br>SCR<br>s RØD           | lfmin<br>Ifave<br>(mna)x   | Weter Ba                          | Well              |
|                                                                                                                                                                                                                                                 | Indulating slightly rough, with<br>is and no infill. (Grade: A2)<br>ation]                                                                                                                                                                                                                                                                                                        |          |                                  | +              | 30.00 - 30.20<br>30.00 - 31.50                                      |                    | 102   |         |                            |                                                    |                         |                                                                             | 83<br>20<br>17                |                            | یں <u>ج</u> ہ جہ جہ جہ جہ جہ جہ م |                   |
| 31.50                                                                                                                                                                                                                                           | Flintfragments (upt0 60mm), possible<br>flint band.<br>31.35 - 31.41m : Grey mart seam.<br>31.57m : Flint fragments (up to 20mm).                                                                                                                                                                                                                                                 |          | -<br>                            | 40.46          | 31.50 -33.00                                                        | RC                 | 102   |         |                            |                                                    |                         |                                                                             | 100<br>9<br>9                 | NIDO<br>40<br>110          | 080808                            |                   |
| New Pit Chalk Form<br>Weak, medium dens<br>with thin grey lamina<br>burrows. Fracture se<br>medium spaced (5/43<br>with frequent black s<br>infill. Fracture set 2: 4<br>(10/1200/1400), und<br>specks dark yellow s<br>degrees to vertical, to | ity, light greyish white CHALK locally<br>titions (marl wisps) and frequent marl<br>t 1: horizontal to 20 degrees,<br>30/600), undulating slighUy rough<br>ppecks and dark yellow staining, no<br>45 to 60 degrees, widely spaced<br>ulating slighUy rough, with frequent<br>staining. Fracture set 3: rare 60<br>undulating slightly rough, with<br>s and no infill. (Grade: A2) |          | -32.40<br>-32.45<br>             | 40.46<br>40.41 |                                                                     |                    |       |         |                            |                                                    |                         |                                                                             |                               |                            | _                                 |                   |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                   |          |                                  |                | 33.00 - 34.50<br>34.30 - 35.05                                      |                    | 102   |         |                            |                                                    |                         |                                                                             | 100<br>7<br>0                 | NIDO<br>150<br>300         |                                   |                   |
| Groundwater levels<br>Explanation of symb                                                                                                                                                                                                       | asured along borehole axis.<br>may be subject to seasonal, tidal and o<br>bols and abbreviations given in 'Key to<br>n on appended 'Borehole Infonmation S                                                                                                                                                                                                                        | Explorat |                                  |                | hould not be t                                                      | taken a            | s con | istant. |                            |                                                    | <u> </u>                |                                                                             |                               |                            |                                   |                   |

| •barn                            | E                                                                             | BOF       | RE              | HO       | LE L          | 00      | G       |        |                 |                    |        | ſ                    | ML03       | hole N<br>5-RC<br>et 8 of | 016   |                |
|----------------------------------|-------------------------------------------------------------------------------|-----------|-----------------|----------|---------------|---------|---------|--------|-----------------|--------------------|--------|----------------------|------------|---------------------------|-------|----------------|
| Project Name:                    | Amersham Tunnel to Calvert                                                    |           |                 |          | Survey Gr     | id Syst | em:     |        |                 | SGB                |        | Hole Ty              | vpe:       |                           |       | RC             |
| Project No:                      | 1G063-AAZ.                                                                    |           |                 |          | Co-ordinat    | es:     |         |        |                 | 37.56 r<br>72.49 r |        | Checke<br>Approve    |            |                           |       | B, CB<br>PMcG  |
| Client:                          | High Speed 2 (HS2) Ltd                                                        |           |                 |          | Ground Le     | evel:   |         |        |                 | 72.86 r            |        | Scale:               | <i></i>    |                           |       | 1:25           |
| Engineer:                        | High Speed 2 (HS2) Ltd<br>23/01/2017                                          |           |                 |          | Orientatior   |         |         |        |                 |                    |        | Log St               |            |                           |       | FINAL<br>/2017 |
| Date Started:<br>Date Completed: | 27/01/2017                                                                    |           |                 |          | Inclination   |         |         |        |                 | c<br>90 c          | •      | Print Da<br>Final De |            |                           |       | 5.50m          |
|                                  | Stratum Description                                                           | Legen     | Depth<br>(Thick | - Level  | Depth         | Samp    | ling, C | oring  | andhS           | ituTest            | ing    |                      | TCR<br>SCR |                           |       | Well           |
|                                  |                                                                               | Logon     | ness)<br>(m)    | (m)      | (m)           | Туре    | (Ria)   | Rec    | Blows<br>(mins) | Test               | Test F | Result Uni           |            |                           | Weter |                |
|                                  | sity, light greyish white CHALK locally ations (mart wisps) and frequent mart | ' ľ       | _               | t        |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
| burrows. Fracture se             | at 1: horizontal to 20 degrees,<br>30/600), undulating slighUy rough          | T. T.     |                 |          | 34.50 - 36.00 | RC      | 102     |        |                 |                    |        |                      |            |                           |       |                |
| with frequent black s            | specks and dark yellow staining, no                                           | TT        | -               |          | 04.00 00.00   |         | 102     |        |                 |                    |        |                      |            | 40                        |       |                |
|                                  | 45 to 60 degrees, widely spaced<br>ulating slighUy rough, with frequent       | T T       | _               |          |               |         |         |        |                 |                    |        |                      | 100<br>73  | 40<br>120<br>450          |       |                |
| specks dark yellow s             | staining. Fracture set 3: rare 60<br>undulating slightly rough, with          | T T       | _               |          |               |         |         |        |                 |                    |        |                      | 63         | 430                       |       |                |
| frequent black speck             | ks and no infill. (Grade: A2)                                                 | TT        | -               |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
| [New Pit Chalk Form              | nationj                                                                       | T T       | _               |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
|                                  | sity, light greyish white CHALK with                                          | T T       | -35.90          | 36.96    |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
| horizontal to 20 deg             | ations (mart wisps). Fracture set 1:<br>rees, medium spaced (40/400/550),     | T T       | -               |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
|                                  | ough with frequent black specks and , no infill. Fracture set 2: 40 to 60     |           |                 |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
| degrees, widely space            | ced (50/900/2500), undulating requent specks dark yellow staining.            | r r       | E               |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
| Fracture set 3: rare 8           | 30 degrees to vertical, undulating                                            |           | E               |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
| (Grade: A2)                      | requent black specks and no infill.                                           |           | _               |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
| [New Pit Chalk Form              | nation]                                                                       |           |                 |          | 36.00 - 37.50 | RC      | 102     |        |                 |                    |        |                      | 100<br>37  |                           |       |                |
|                                  |                                                                               | T T       | _               |          | 00.00 07.00   |         |         |        |                 |                    |        |                      | 0          |                           |       |                |
|                                  |                                                                               |           | _               |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
|                                  |                                                                               |           | -               |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
| 37.15-37.30m:Di                  | rilling disturbed. Recovered non-intact.                                      | 1 T       | Ē               |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
|                                  |                                                                               |           | F               |          |               |         |         |        |                 |                    |        |                      |            | NIDO                      |       |                |
|                                  |                                                                               | ГГ        | Ē               |          |               |         |         |        |                 |                    |        |                      |            | 50<br>150                 |       |                |
|                                  |                                                                               | T T       | -               |          |               |         |         |        |                 |                    |        |                      |            | 150                       |       |                |
|                                  |                                                                               | T T       |                 |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
|                                  |                                                                               | T T       | _               |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
|                                  |                                                                               | 1,1,1     | (5.06)          |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
|                                  |                                                                               | TT        |                 |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
|                                  |                                                                               | T T       | F               |          | 37.50 - 39.00 | RC      | 102     |        |                 |                    |        |                      | 100<br>23  |                           |       |                |
|                                  |                                                                               |           | E               |          |               |         |         |        |                 |                    |        |                      | 0          |                           |       |                |
|                                  |                                                                               |           | _               |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
|                                  |                                                                               |           |                 |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
|                                  |                                                                               |           | -               |          | 38.70 - 38.80 | D       |         |        |                 |                    |        |                      |            |                           |       |                |
|                                  |                                                                               |           |                 |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
|                                  |                                                                               | ГГ        | E               |          |               |         |         |        |                 |                    |        |                      |            |                           | -     |                |
|                                  |                                                                               | T T       | E               |          | 39.00-39.22   | 2 C     |         |        |                 |                    |        |                      |            |                           |       |                |
|                                  | <b>—</b>                                                                      | L. L      | E               |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
| 39.29-39.36m                     | : Tabularffint fragments (up to 20mm).<br>Sheet ffint visible on televiewer.  | T T       | -               |          |               |         |         |        |                 |                    |        |                      | 100        |                           |       |                |
|                                  |                                                                               | TT        |                 |          |               |         |         |        |                 |                    |        |                      | 53         |                           |       |                |
|                                  |                                                                               | L L       | -               |          |               |         |         |        |                 |                    |        |                      | 47         |                           |       |                |
|                                  |                                                                               | T T       | E               |          | 39.00 - 40.50 | RC      | 102     |        |                 |                    |        |                      |            |                           |       |                |
|                                  |                                                                               | r r       | F               |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
|                                  |                                                                               |           | -               |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
| Stratum depths mea               | asured along borehole axis.                                                   |           |                 |          |               |         |         |        |                 |                    |        |                      |            |                           |       | L              |
|                                  | may be subject to seasonal, tidal and                                         | other flu | ctuatior        | ns and s | hould not be  | taken a | as con  | istant |                 |                    |        |                      |            |                           |       |                |
|                                  | bols and abbreviations given in 'Key to                                       |           | tory Ho         | oles'    |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
| Further details give             | n on appended 'Borehole Information S                                         | Sheer.    |                 |          |               |         |         |        |                 |                    |        |                      |            |                           |       |                |
|                                  |                                                                               |           |                 |          |               |         |         |        |                 |                    |        |                      |            |                           | /-    |                |

| •barn<br>ritchies                                                                                                                                                                                                                                            | BO                                          | RE                               | HO           | LE L                           | 00            | 3      |         |                             |                    |     | 1                     | L03               | hole N<br>5-RC<br>et 9 of | 016   |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------|--------------|--------------------------------|---------------|--------|---------|-----------------------------|--------------------|-----|-----------------------|-------------------|---------------------------|-------|----------------|
| Project Name: Amersham Tunnel to Ca                                                                                                                                                                                                                          | lvert                                       |                                  |              | Survey Gr                      |               | em:    |         |                             | SGB                | - F | Hole Typ              |                   |                           |       | RC             |
| Project No: 1G063-AAZ.                                                                                                                                                                                                                                       |                                             |                                  |              | Co-ordinat                     | es:           |        |         |                             | 37.56 n<br>72.49 n |     | Checked<br>Approved   |                   |                           |       | B, CB<br>PMcG  |
| Client: High Speed 2 (HS2) Ltd                                                                                                                                                                                                                               |                                             |                                  |              | Ground Le                      | evel:         |        |         | -                           | 72.86 n            | nOD | Scale:                | -                 |                           |       | 1:25           |
| Engineer: High Speed 2 (HS2) Ltd<br>Date Started: 23/01/2017                                                                                                                                                                                                 |                                             |                                  |              | Orientatior                    | 1:            |        |         |                             | d                  | ea. | Log Star<br>Print Dat |                   |                           |       | FINAL<br>/2017 |
| Date Completed: 27/01/2017                                                                                                                                                                                                                                   |                                             |                                  |              | Inclination:                   |               |        |         |                             | 90 d               | •   | Final De              |                   |                           |       | 5.50m          |
| Stratum Description                                                                                                                                                                                                                                          | Legend                                      | Depth<br>(Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)                   | Sampl<br>Type | 1      | Rec     | and h Si<br>Blows<br>(mins) |                    | •   | Result Units          | TCR<br>SCR<br>RØD | lfmin<br>Ifave<br>(mna)x  | Weter | Well<br>Backfi |
| Weak, medium density, light greyish white CHA<br>rare thin grey laminations (mart wisps). Fractur<br>horizontal to 20 degrees, medium spaced (40/-<br>undulating slighUy rough with frequent black sp<br>dark yellow staining, no infill. Fracture set 2: 40 | e set 1:<br>400/550),<br>becks and          |                                  | -            |                                |               |        |         |                             |                    |     |                       |                   |                           |       |                |
| degrees, widely spaced (50/900/2500), undula<br>slighUy rough, with frequent specks dark yellow<br>Fracture set 3: rare 80 degrees to vertical, und<br>slighUy rough, with frequent black specks and                                                         | ting<br>/ staining.<br>ulating              |                                  |              |                                |               |        |         |                             |                    |     |                       |                   |                           |       |                |
| (Grade: A2)<br>[New Pit Chalk Formation]<br>Grey mart seam. Possibly New Pit Mart 1?                                                                                                                                                                         |                                             | 40.96                            |              |                                |               |        |         |                             |                    |     |                       |                   |                           |       |                |
| New Pit Chalk Formation<br>Weak, medium density, light greyish white CH/<br>rare thin grey laminations (mart wisps). Fractur<br>horizontal to 20 degrees, medium spaced (40/-<br>undulating slighUy rough with frequent black sp                             | e set 1:<br>400/550),<br>becks and          | <b>4</b> 1.05                    | 31.81        | 40.50 - 42.00                  | RC            | 102    |         |                             |                    |     |                       | 100<br>13<br>10   |                           |       |                |
| dark yellow staining, no infill. Fracture set 2: 40<br>degrees, widely spaced (50/900/2500), undula<br>slighUy rough, with frequent specks dark yellow<br>Fracture set 3: rare 80 degrees to vertical, und<br>slighUy rough, with frequent black specks and  | ting<br>v staining.<br>ulating              |                                  |              |                                |               |        |         |                             |                    |     |                       |                   |                           |       |                |
| (Grade: A2)<br>[New Pit Chalk Formation]<br>41.23-42.00m:Drilling disturbed. Recovered in                                                                                                                                                                    | non-intact.                                 |                                  |              |                                |               |        |         |                             |                    |     |                       |                   |                           |       |                |
| 42.30 - 42.35m : Orange staining. Sp                                                                                                                                                                                                                         | bonge bed.                                  |                                  |              |                                |               |        |         |                             |                    |     |                       |                   |                           |       |                |
|                                                                                                                                                                                                                                                              |                                             |                                  |              | 42.65 - 42.85<br>42.00 - 43.50 | C<br>RC       | 102    |         |                             |                    |     |                       | 100<br>60<br>60   |                           |       |                |
|                                                                                                                                                                                                                                                              |                                             | (7.61)                           |              |                                |               |        |         |                             |                    |     |                       |                   |                           |       |                |
|                                                                                                                                                                                                                                                              |                                             |                                  |              |                                |               |        |         |                             |                    |     |                       |                   |                           |       |                |
|                                                                                                                                                                                                                                                              |                                             |                                  |              | 43.50 - 45.00                  | RC            | 102    |         |                             |                    |     |                       | 100<br>35<br>30   |                           |       |                |
|                                                                                                                                                                                                                                                              |                                             |                                  |              |                                |               |        |         |                             |                    |     |                       |                   |                           |       |                |
| Stratum depths measured along borehole axis                                                                                                                                                                                                                  | •                                           |                                  |              |                                |               |        |         |                             |                    |     |                       |                   |                           |       |                |
| Groundwater levels may be subject to season:<br>Explanation of symbols and abbreviations give<br>Further details given on appended 'Borehole Ir                                                                                                              | al, tidal and other fleen in 'Key to Explor |                                  |              | hould not be t                 | taken a       | as cor | nstant. |                             |                    |     |                       |                   |                           |       |                |

| •barn<br>ritchies                                                                                                                                                                                                       | BORE                                    | HO           | LE L                                 | 00            | 3       |                                   |                                     |                |                                          | 1L03                | hole N<br>5-RC<br>t 10 of | 016                   |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|--------------------------------------|---------------|---------|-----------------------------------|-------------------------------------|----------------|------------------------------------------|---------------------|---------------------------|-----------------------|------------|
| Project Name:       Amersham Tunnel to Calvert         Project No:       1G063 -AAZ.         Client:       High Speed 2 (HS2) Ltd                                                                                       |                                         |              | Survey Gr<br>Co-ordinat<br>Ground Le | es:           | em:     |                                   | OSGB<br>9287.56<br>3572.49<br>72.86 | mN             | Hole Typ<br>Checked<br>Approve<br>Scale: | l By:<br>d By:      |                           | 1                     | Mc(<br>:25 |
| Engineer:     High Speed 2 (HS2) Ltd       Date Started:     23/01/2017       Date Completed:     27/01/2017                                                                                                            |                                         |              | Orientation<br>Inclination           |               |         |                                   |                                     | deg.<br>deg.   | Log Sta<br>Print Da<br>Final De          | te:                 |                           | FI<br>21/11/2<br>55.1 |            |
| Stratum Description                                                                                                                                                                                                     | Legend Depth<br>(Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)                         | Sampl<br>Type | 1       | oring and h<br>Rec Blov<br>% (mir |                                     | ting<br>Test I | Result Unit                              | TCR<br>SCR<br>s RØD | lfmin<br>lfave<br>(mma)x  | Weter Ba              | We<br>ack  |
| 45.70- 46.35m : Drilling disturbed. Recovered non-ir                                                                                                                                                                    | ntact.                                  |              | 45.00 - 46.50                        | RC            | 102     |                                   |                                     |                |                                          | 100<br>50<br>43     |                           |                       |            |
|                                                                                                                                                                                                                         |                                         |              | 46.50 - 46.68                        | с             |         |                                   |                                     |                |                                          |                     |                           |                       |            |
|                                                                                                                                                                                                                         |                                         |              | 46.50 - 48.00                        | RC            | 102     |                                   |                                     |                |                                          | 100<br>70<br>53     | NIDO<br>150<br>340        |                       |            |
| Drilling disturbed. Recovered as weak, low density,<br>greyish white CHALK. With abundant randomly<br>orientated fractures, closely spaced, infilled (<3mm)<br>soft brown clay. (Grade: B3)<br>[New PitChalk Formation] |                                         | 24_20        | 48.65 - 48.75<br>48.00 - 49.50       |               | 102     |                                   |                                     |                |                                          | 100<br>17<br>10     |                           |                       |            |
|                                                                                                                                                                                                                         |                                         |              |                                      |               |         |                                   |                                     |                |                                          |                     |                           |                       |            |
| Stratum depths measured along borehole axis.<br>Groundwater levels may be subject to seasonal, tid<br>Explanation of symbols and abbreviations given in '<br>Further details given on appended 'Borehole Inform         | Key to Exploratory Ho                   |              | hould not be                         | taken a       | as con: | stant.                            |                                     | <u> </u>       |                                          |                     | <u> </u>                  |                       |            |
| Office: BAM Ritchies, Glasgow Road, Kilsyth, Glasgow                                                                                                                                                                    | G65 9BL                                 |              |                                      |               |         |                                   |                                     |                | BAN                                      | I R Boi             | ehole Lo                  | og 06/04 <sup>.</sup> | 12         |

| •barn                                        | E                                                                                                         | BORE                   | HO             | LE L          | 00            | 3        |           |         |        |         |         |                    | 5-RC(<br>t 11 of            |         |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------|----------------|---------------|---------------|----------|-----------|---------|--------|---------|---------|--------------------|-----------------------------|---------|
| roject Name:                                 | Amersham Tunnel to Calvert                                                                                |                        |                | Survey Gr     | id Svst       | em:      |           | OSGE    |        | Ho      | le Type |                    | 1101                        | 12      |
| ,                                            |                                                                                                           |                        |                | Co-ordinat    |               |          | 49        | 9287.56 |        |         | ecked   |                    |                             | AB      |
| Project No:                                  | 1G063-AAZ.                                                                                                |                        |                |               |               |          | 19        | 3572.49 | mN     | App     | proved  | By:                |                             | Р       |
| lient:                                       | High Speed 2 (HS2) Ltd                                                                                    |                        |                | Ground Le     | evel:         |          |           | 72.86   | mOD    | Sca     | ale:    |                    |                             | 1       |
| ngineer:                                     | High Speed 2 (HS2) Ltd                                                                                    |                        |                |               |               |          |           |         |        | Loç     | g Stat  | us:                |                             | FI      |
| ate Started:                                 | 23/01/2017                                                                                                |                        |                | Orientation   | 1:            |          |           | -       | deg.   | Pri     | nt Date | э:                 | 1                           | 21/11/2 |
| Date Completed:                              | 27/01/2017                                                                                                |                        |                | Inclination   |               |          |           | 90      | ) deg. | Fin     | nal Dep | oth:               |                             | 55.     |
|                                              | Stratum Description                                                                                       | Legend (Thick<br>ness) | - Level<br>(m) | Depth<br>(m)  | Sampl<br>Type |          | oring and |         | Тоо    | t Resul | t Units | TCR<br>SCR<br>RØ4D | lfmin<br>lfave<br>l(mma)x \ | Veter E |
| greyish white CHAL                           | ecovered as weak, low density, light<br>K. With abundant randomly<br>closely spaced, infilled (<3mm) with | (m)                    |                | (11)          | Type          | ((11111) |           |         |        |         |         |                    |                             |         |
| soft brown clay. (Gra<br>[New Pit Chalk Form | ade: B3)                                                                                                  |                        |                | 49.50 - 51.00 | RC            | 102      |           |         |        |         |         | 100                | NIDO                        |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         | 0<br>0             | 150<br>340                  |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    |                             |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    |                             |         |
|                                              |                                                                                                           |                        |                | 51.00 - 52.50 | RC            | 102      |           |         |        |         |         | 100<br>7<br>7      |                             |         |
|                                              |                                                                                                           |                        |                | 54 00 50 05   | -             |          |           |         |        |         |         |                    | 1                           |         |
|                                              |                                                                                                           |                        |                | 51.90-52.05   | D             |          |           |         |        |         |         |                    | 1                           |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    | 1                           |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    | 1                           |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    | l                           |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    | 1                           |         |
|                                              |                                                                                                           | (6.84)                 |                |               |               |          |           |         |        |         |         |                    | 1                           |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    | l                           |         |
|                                              |                                                                                                           | 1 II -                 |                |               |               |          |           |         |        |         |         |                    | 1                           |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    | l                           |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    | NIDO                        |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    | 50<br>90                    |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         | 100                | l                           |         |
|                                              |                                                                                                           |                        |                | 52.50 - 54.00 | RC            | 102      |           |         |        |         |         | 6                  | 1                           |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         | 0                  | 1                           |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    |                             |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    | 1                           |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    |                             |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    |                             |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    |                             |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    |                             |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    |                             |         |
|                                              |                                                                                                           |                        |                | 54.10-54.20   | D             |          |           |         |        |         |         |                    | l                           |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    |                             |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    |                             |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         | 100                |                             |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         | 10<br>0            |                             |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    |                             |         |
|                                              |                                                                                                           |                        |                | 54.00 - 55.50 | RC            | 102      |           |         |        |         |         |                    |                             |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    |                             |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    |                             |         |
|                                              |                                                                                                           | +                      |                |               |               |          |           |         |        |         |         |                    |                             |         |
|                                              |                                                                                                           |                        |                |               |               |          |           |         |        |         |         |                    |                             |         |
| Stratum depths may                           | asured along borehole axis.                                                                               |                        |                |               |               |          |           |         |        |         |         |                    |                             |         |

| •barn<br>ritchies                                                     | E                                                                                                               | BOF        | RE                       | HOL            | E L                       | .00     | 6      |        |                   |                    |           |                | MLC                       | rehole I<br>035-RC<br>eet 12 o    | 016   |                     |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------|--------------------------|----------------|---------------------------|---------|--------|--------|-------------------|--------------------|-----------|----------------|---------------------------|-----------------------------------|-------|---------------------|
| Project Name:                                                         | Amersham Tunnel to Calvert                                                                                      |            |                          |                | Survey G<br>Co-ordina     | -       | em:    |        |                   | SGB<br>37.56 r     |           |                | Type:<br>ked By           |                                   |       | R<br>B, C           |
| Project No:<br>lient:                                                 | 1G063-AAZ.<br>High Speed 2 (HS2) Ltd                                                                            |            |                          |                | Ground L                  | evel:   |        |        |                   | 72.49 r<br>72.86 n | nN<br>nOD | Appro<br>Scale | oved B                    | y:                                |       | PM0<br>1:2          |
| ngineer:<br>ate Started:<br>bate Completed:                           | High Speed 2 (HS2) Ltd<br>23/01/2017<br>27/01/2017                                                              |            |                          |                | Orientatio<br>Inclination |         |        |        |                   | d<br>90 d          | eg.       | Print          | Status:<br>Date:<br>Depth |                                   | 21/11 | FIN<br>1/20<br>5.50 |
| -                                                                     | Stratum Description                                                                                             | Legend     | Depth<br>(Thick<br>ness) | - Level<br>(m) | Depth                     | Sampl   | -      | -      | and h Si<br>Blows | tuTest             | ng        |                | Т                         | CR Ifmin<br>CR Ifave<br>3D Ifmmax |       | Τ                   |
| greyish white CHALI<br>orientated fractures,<br>soft brown clay. (Gra |                                                                                                                 |            | (m)                      |                | (m)                       | Туре    | (mm)   | %      | Blows<br>(mins)   |                    |           |                |                           | NIDO<br>50<br>90                  |       |                     |
| [New PitChalk Form<br>Boreho1e∓                                       | ation]<br>lerminated at55.50 mJ ⊫                                                                               | =1-55      | .50                      | 17.36          |                           |         |        |        |                   |                    |           |                |                           | 90                                | -     |                     |
|                                                                       |                                                                                                                 |            | f-<br>f-                 |                |                           |         |        |        |                   |                    |           |                |                           |                                   |       |                     |
|                                                                       |                                                                                                                 |            | f-                       |                |                           |         |        |        |                   |                    |           |                |                           |                                   |       |                     |
|                                                                       |                                                                                                                 |            | r-<br>f-                 |                |                           |         |        |        |                   |                    |           |                |                           |                                   |       |                     |
|                                                                       |                                                                                                                 |            | f-<br>f-                 |                |                           |         |        |        |                   |                    |           |                |                           |                                   |       |                     |
|                                                                       |                                                                                                                 |            | f-<br>f-                 |                |                           |         |        |        |                   |                    |           |                |                           |                                   |       |                     |
|                                                                       |                                                                                                                 |            | f-<br>f-                 |                |                           |         |        |        |                   |                    |           |                |                           |                                   |       |                     |
|                                                                       |                                                                                                                 |            | -                        |                |                           |         |        |        |                   |                    |           |                |                           |                                   |       |                     |
|                                                                       |                                                                                                                 |            | r-<br>f-<br>f-           |                |                           |         |        |        |                   |                    |           |                |                           |                                   |       |                     |
|                                                                       |                                                                                                                 |            | f-<br>f-<br>f-           |                |                           |         |        |        |                   |                    |           |                |                           |                                   |       |                     |
|                                                                       |                                                                                                                 |            | f-<br>f-                 |                |                           |         |        |        |                   |                    |           |                |                           |                                   |       |                     |
|                                                                       |                                                                                                                 |            |                          |                |                           |         |        |        |                   |                    |           |                |                           |                                   |       |                     |
|                                                                       |                                                                                                                 |            | f-<br>f-                 |                |                           |         |        |        |                   |                    |           |                |                           |                                   |       |                     |
|                                                                       |                                                                                                                 |            |                          |                |                           |         |        |        |                   |                    |           |                |                           |                                   |       |                     |
|                                                                       | asured along borehole axis.<br>may be subject to seasonal, tidal and<br>pols and abbreviations given in 'Key to | other flue | ctuation                 | ns and she     | ould not be               | taken a | s cons | stant. |                   |                    |           |                |                           |                                   |       |                     |

| <b>,,.b</b>                                                                                                  | <b>a ri</b>                                                          |                  |                                                                    | BO                                                      | REH                                          | OLE                                                                                                                                  | IN       | FOR                                    | MA                       | T        | ION              | SH               | IEE1                                     | Γ                                         |                     | ML                                             | orehole N<br>035-RC<br>Sheet 1 of                  | 016                           |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------|--------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------|--------------------------|----------|------------------|------------------|------------------------------------------|-------------------------------------------|---------------------|------------------------------------------------|----------------------------------------------------|-------------------------------|
| Project N<br>Project N<br>Client:<br>Engineer:                                                               | 0:                                                                   |                  | 1G063 ·<br>High Spe                                                | am Tunnel<br>-AAZ<br>eed 2 (HS2<br>eed 2 (HS2           | 2) Ltd                                       |                                                                                                                                      |          |                                        | Surve<br>Co-oro<br>Grour | dinate   |                  |                  | OSG<br>499287.5<br>193572.4<br>72.8      | 6 mE                                      | Che<br>App<br>Log   | le Type:<br>ecked E<br>proved<br>g Statu       | By:<br>By:                                         | RC<br>AB, CB<br>PMcG<br>FINAL |
| Date Star<br>Date Con                                                                                        |                                                                      |                  | 23/01/20                                                           |                                                         |                                              |                                                                                                                                      |          |                                        | Orient                   |          | :                |                  |                                          | deg.                                      |                     | ate:<br>al Dept                                | h.                                                 | 21/11/2017                    |
| Date Con                                                                                                     | iipieteu.                                                            |                  | 27/01/20                                                           | 117                                                     |                                              | D                                                                                                                                    | epth Re  | elated Explora                         |                          |          | mation           |                  |                                          | 0 deg.                                    | FIN                 | ai Depi                                        | 11.                                                | 55.50m                        |
| From <ml<br>0.00</ml<br>                                                                                     | To rr<br>1.20                                                        |                  | Tvoe<br>IP                                                         | Start<br>23/01/2017                                     | End<br>23/01/2017                            | Plant<br>Insulated digging                                                                                                           | g tools  | Barrel                                 | Drill                    |          | L. Ro            | Driller<br>berts |                                          | Loaaer<br>I. Soley                        |                     |                                                | Remar                                              | ks                            |
| 1.20<br>4.50                                                                                                 | 4.50<br>55.50                                                        |                  | RC<br>RC                                                           | 23/01/2017<br>24/01/2017                                | 23/01/2017<br>26/01/2017                     | Cornacchio 305                                                                                                                       |          | Geobor-S<br>(146)<br>Geobor-S<br>(146) | PCI                      |          |                  | oberts           |                                          | C. Elenwa<br>C. Elenwa                    |                     |                                                |                                                    |                               |
|                                                                                                              |                                                                      |                  |                                                                    | 11-Drillina Pro                                         |                                              |                                                                                                                                      |          |                                        |                          |          | er bv Deoth      |                  | _                                        |                                           |                     | Diameter                                       | bv Deoth                                           |                               |
| Date 23/01/2017                                                                                              | 07:30                                                                | )                | Deoth <ml<br>0.00</ml<br>                                          | Casinanl<br>0.00                                        | Depth Water (m)<br>Dry<br>1.90               | start of shift                                                                                                                       | S        | Deoth <ml<br>2.50<br/>55.50</ml<br>    | Dia.Im<br>168<br>146     |          | Rem              | narks            | Deoth <<br>2.50<br>55.50                 |                                           | .rmml<br>168<br>146 |                                                | Remar                                              | KS                            |
| 23/01/2017<br>24/01/2017<br>25/01/2017<br>25/01/2017<br>25/01/2017<br>26/01/2017<br>26/01/2017<br>27/01/2017 | 18:00<br>07:30<br>07:30<br>17:00<br>07:30<br>07:30<br>18:00<br>07:30 |                  | 4.50<br>4.50<br>27.00<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50 | 4.50<br>4.50<br>27.00<br>55.50<br>55.50<br>0.00<br>0.00 | 1.90<br>1.90<br>9.20<br>9.70<br>8.30<br>9.80 | End of shill<br>start of shift<br>End of shill<br>start of shift<br>End of shill<br>start of shift<br>End of shill<br>start of shift |          | 55.50                                  | 146                      | 6        |                  |                  | 55.50<br>ater Added F                    |                                           | 146                 |                                                |                                                    |                               |
| 27/01/2017                                                                                                   | 15:0                                                                 |                  | 55.50                                                              | 0.00                                                    |                                              | End of shill                                                                                                                         |          | From (m)                               | To (r                    | m)       | Volume (Iltres)  |                  | alei Audeu i                             | Cecorus                                   | Rema                | arks                                           |                                                    |                               |
|                                                                                                              |                                                                      |                  | Dept                                                               | Related Rer                                             | narks                                        |                                                                                                                                      |          |                                        | Chi                      | isellini | Details          |                  |                                          |                                           | Drilli              | no Flush                                       | Details                                            |                               |
| From (m)                                                                                                     | To (m)                                                               | Elush            |                                                                    |                                                         | Remarks                                      | -                                                                                                                                    |          | From (m)                               | To (r                    |          | Duration (hh:mm) | Tool             | From (m                                  |                                           | n) Retu             | rns (%)                                        | Flush                                              | Colour                        |
| 1.20<br>3.00                                                                                                 | 2.50<br>7.50                                                         | Poorr            | ecovery - ro                                                       | tary coring uns                                         | commence corin<br>suitable for groun         | g.<br>Id conditions (sand                                                                                                            | dand     |                                        |                          |          |                  |                  | 2.50                                     | 3.00                                      |                     | 0-100                                          | Polymer-<br>Purebore                               | Brown                         |
| 7.50                                                                                                         | 8.50                                                                 | grave<br>Driller | s note: poor                                                       | recovery in p                                           | por quality chalk.                           |                                                                                                                                      |          |                                        |                          |          |                  |                  | 3.00                                     | 4.50                                      |                     | 0- 50                                          | Polymer-<br>Purebore                               | Brown                         |
| 7.50<br>21.00                                                                                                | 31.50                                                                |                  |                                                                    | umed top of ch<br>carried out in st                     |                                              | changed to white.                                                                                                                    |          |                                        |                          |          |                  |                  | 4.50                                     | 6.00                                      | 60                  | 0- 80                                          | Polymer-<br>Purebore                               | Orange                        |
|                                                                                                              |                                                                      |                  | ,                                                                  |                                                         |                                              |                                                                                                                                      |          |                                        |                          |          |                  |                  | 6.00                                     | 7.50                                      | 50                  | 0- 50                                          | Polymer-                                           | Orange                        |
|                                                                                                              |                                                                      |                  |                                                                    |                                                         |                                              |                                                                                                                                      |          |                                        |                          |          |                  |                  | 7.50                                     | 8.50                                      | 70                  | )- 70                                          | Purebore<br>Polymer-                               | White                         |
|                                                                                                              |                                                                      |                  |                                                                    |                                                         |                                              |                                                                                                                                      |          |                                        |                          |          |                  |                  |                                          |                                           |                     |                                                | Purebore                                           |                               |
| Dale                                                                                                         | Strike(m)                                                            | caalrci(         |                                                                    | er Strikes<br>Depth (m) Seal                            | ed(m) R                                      | emarks                                                                                                                               | Type F   | Monito<br>Pipe ID From(m               |                          |          | Pioe Work        | Remark           | s From (m                                | n) To (m                                  |                     | ackfill De<br>gend                             |                                                    | aiption                       |
|                                                                                                              |                                                                      |                  | / ( )                                                              |                                                         |                                              |                                                                                                                                      | SP<br>SP | 1 0.00<br>1 21.50                      | 21.50<br>31.50           | 50<br>50 | Plain<br>Slotted |                  | 0.00 0.05                                | 0.05                                      | 9                   | 910 F                                          | lush cover<br>concrete                             | 1 -                           |
|                                                                                                              |                                                                      |                  |                                                                    |                                                         |                                              |                                                                                                                                      |          |                                        |                          |          |                  |                  | 0.50<br>19.00<br>21.00<br>31.50<br>33.50 | 19.00<br>21.00<br>31.50<br>33.50<br>55.50 |                     | 904 G<br>903 <b>B</b><br>902 G<br>903 <b>B</b> | Grout<br>Sentonite<br>Gravel<br>Sentonite<br>Grout |                               |
|                                                                                                              |                                                                      |                  |                                                                    |                                                         |                                              |                                                                                                                                      |          |                                        |                          |          |                  |                  |                                          |                                           |                     |                                                |                                                    |                               |
| Depth (ml                                                                                                    | Туре                                                                 | N Vslue          | e Casina (                                                         | m otor (ml                                              | SW/Pon/mm Blo                                | ws1 Pen1(mml                                                                                                                         |          | ndard Penetra                          |                          |          | ts<br>nml Blows4 | Bon4/mm          |                                          | onE/mml                                   | Ployee              | Pen6(mr                                        | ml Hamme                                           | r E. Ratio%                   |
| Deput(ini                                                                                                    | турс                                                                 | IN VSIUC         | e Casina (i                                                        | in ater (in                                             | Bio                                          | war reni(iiiiii                                                                                                                      | DIOW32   | renz(iiiiii                            | DIOW35                   | 6113(1   | IIIII DIOW34     | r en4(iiii       | II DIOW35 P                              | eno(inini                                 | DIOWSO              | reno(iiii                                      | III Hamme                                          | L. Ratio /6                   |
|                                                                                                              |                                                                      |                  |                                                                    |                                                         |                                              |                                                                                                                                      |          |                                        |                          |          |                  |                  |                                          |                                           |                     |                                                |                                                    |                               |
|                                                                                                              |                                                                      |                  |                                                                    |                                                         |                                              |                                                                                                                                      |          |                                        |                          |          |                  |                  |                                          |                                           |                     |                                                |                                                    |                               |
|                                                                                                              |                                                                      |                  |                                                                    |                                                         |                                              | Reason for Ho                                                                                                                        | oleTer   | mination: I                            | Reache                   | d sch    | eduled de        | pth              |                                          |                                           |                     |                                                |                                                    |                               |
| 0                                                                                                            |                                                                      |                  |                                                                    |                                                         |                                              |                                                                                                                                      |          |                                        |                          |          |                  |                  |                                          |                                           |                     |                                                |                                                    |                               |
| Ground                                                                                                       | water le                                                             | vels c           | an be sul                                                          | oject to sea                                            | asonal, tidal a                              | and other fluct                                                                                                                      | uatior   | is and sho                             | uid not l                | pe tal   | ken as cor       | nstant.          |                                          |                                           |                     |                                                |                                                    |                               |
| DAM D                                                                                                        |                                                                      |                  |                                                                    |                                                         | accow CEE                                    |                                                                                                                                      |          |                                        |                          |          |                  |                  |                                          |                                           |                     | _                                              |                                                    | 06/04/2017                    |

BAM Ritchies, Glasgow Road, Kilsyth, Glasgow G65 9BL

| ".b                                                                                                                                                                                                                                                          | a r       | n        |                                                                                                                                                                                                                                                                                 | BC                          | REH                             | OLE          | IN       | FOF                     | RM        | ΑΤ                          | ION             | SH       | EET                                     |                 |                                                  | Borehole                                 |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------|--------------|----------|-------------------------|-----------|-----------------------------|-----------------|----------|-----------------------------------------|-----------------|--------------------------------------------------|------------------------------------------|--------------------------------|
| r<br>Project Na<br>Project Na<br>Client:<br>Engineer:                                                                                                                                                                                                        | 0:        | ;        | 1G063 -<br>High Spe                                                                                                                                                                                                                                                             |                             |                                 |              |          |                         | Co-       | vey Gr<br>ordinat<br>und Le |                 |          | OSGB<br>499287.56<br>193572.49<br>72.86 | mN              | Hole Ty<br>Checker<br>Approve<br>Log St<br>Date: | <u>Sheet 2</u><br>pe:<br>d By:<br>ed By: |                                |
| Date Star<br>Date Com                                                                                                                                                                                                                                        |           |          | 23/01/20<br>27/01/20                                                                                                                                                                                                                                                            |                             |                                 |              |          |                         |           | ntatior<br>nation           |                 |          |                                         | deg.<br>deg.    | Final D                                          | epth:                                    | 55.50m                         |
| From <ml< td=""><td>Tor</td><td></td><td>Туое</td><td>Start</td><td>End</td><td>Plan</td><td></td><td>elated Explo<br/>Barrel</td><td>oratory H</td><td></td><td>ormation</td><td>dDriller</td><td></td><td>oaaer</td><td></td><td></td><td>marks</td></ml<> | Tor       |          | Туое                                                                                                                                                                                                                                                                            | Start                       | End                             | Plan         |          | elated Explo<br>Barrel  | oratory H |                             | ormation        | dDriller |                                         | oaaer           |                                                  |                                          | marks                          |
|                                                                                                                                                                                                                                                              |           |          | Bolin                                                                                                                                                                                                                                                                           | 11-Drillina Pr              | iress                           |              |          |                         | Hole      | Diame                       | ter by Deoth    |          |                                         | Ci              | asina Diam                                       | eter bv Deatt                            | h                              |
| Date                                                                                                                                                                                                                                                         | Tim       | e        | Deoth <ml< td=""><td>Casinanl</td><td>Depth Water (m)</td><td>Remar</td><td>ks</td><td>Deoth <r<br>2.50</r<br></td><td>nl Dia</td><td>.lmml<br/>168</td><td></td><td>marks</td><td>Deoth <ml<br>2.50</ml<br></td><td>Dia.rr</td><td>mml<br/>8</td><td></td><td>marks</td></ml<> | Casinanl                    | Depth Water (m)                 | Remar        | ks       | Deoth <r<br>2.50</r<br> | nl Dia    | .lmml<br>168                |                 | marks    | Deoth <ml<br>2.50</ml<br>               | Dia.rr          | mml<br>8                                         |                                          | marks                          |
|                                                                                                                                                                                                                                                              |           |          |                                                                                                                                                                                                                                                                                 |                             |                                 |              |          | 55.50                   |           | 146                         |                 |          | 55.50                                   | 140             | 6                                                |                                          |                                |
|                                                                                                                                                                                                                                                              |           |          |                                                                                                                                                                                                                                                                                 |                             |                                 |              |          | From (m                 | ) To      | ) (m)                       | Volume (Iltres  |          | ter Added Rec                           |                 | Remarks                                          |                                          |                                |
|                                                                                                                                                                                                                                                              |           |          | Donti                                                                                                                                                                                                                                                                           | Related Re                  | marka                           |              |          |                         |           | Chicollin                   | iDetails        |          |                                         |                 | Drilling El                                      | ush Details                              |                                |
| From (m)                                                                                                                                                                                                                                                     | To (m)    | _        | Depti                                                                                                                                                                                                                                                                           | Related Re                  | Remarks                         |              |          | From (m                 |           | o (m)                       | Duration (hh:mm | i) Tool  | From (m)<br>8.50                        | To (m)<br>12.00 | Returns (%                                       |                                          |                                |
|                                                                                                                                                                                                                                                              |           |          |                                                                                                                                                                                                                                                                                 |                             |                                 |              | 1        |                         |           | - 16 - 11                   |                 |          | 12.00                                   | 55.50           | 0                                                | Purebore<br>Polymer<br>Purebore          | <ul> <li>No returns</li> </ul> |
| Dale                                                                                                                                                                                                                                                         | Strike(m) | ) caalrc |                                                                                                                                                                                                                                                                                 | er Strikes<br>Depth (m) Sea | led(m) R                        | emarks       | Type P   |                         |           |                             | n Pioe Work     | Remarks  | From (m)                                | To (m)          | Legend                                           | Details                                  | Desaiption                     |
|                                                                                                                                                                                                                                                              |           |          |                                                                                                                                                                                                                                                                                 |                             |                                 |              |          | ndard Pene              |           |                             |                 |          |                                         |                 |                                                  |                                          |                                |
| Depth (ml                                                                                                                                                                                                                                                    | Туре      | N Vslu   | ue Casino C                                                                                                                                                                                                                                                                     | m V ater (m)                | SWPen(mm Blo                    | ws1 PenHmm   | ) Blows2 | Pen2(mm                 | ) Blows3  | Pen3(                       | mm) Blows4      | Pen4(mm) | Blows5 Pent                             | 5(mm) Blo       | ows6 Pen6                                        | (mm) Han                                 | mmer E. Ratio%                 |
|                                                                                                                                                                                                                                                              |           |          |                                                                                                                                                                                                                                                                                 |                             |                                 |              |          |                         |           |                             |                 |          |                                         |                 |                                                  |                                          |                                |
|                                                                                                                                                                                                                                                              |           |          |                                                                                                                                                                                                                                                                                 |                             |                                 | Reason for H | loleTer  | mination                | React     | ned sc                      | heduled d       | epth     |                                         |                 |                                                  |                                          |                                |
|                                                                                                                                                                                                                                                              |           |          |                                                                                                                                                                                                                                                                                 |                             | asonal, tidal a<br>lasgow G65 s |              | ctuation | ns and sh               | ould no   | ot be ta                    | aken as co      | nstant.  |                                         |                 |                                                  | BAM R                                    | Info 06/04/2017                |

| bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |                                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              | [   | DISCONTINU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ITY SHEET                                                             |                                                   |                                                                               | Borehole No<br>ML035-RC016<br>Sheet 1 of 1 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date started:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1G06<br>High S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sham Tunnel to C<br>3-AAZ<br>Speed 2 (HS2) Lt<br>Speed 2 (HS2) Lt | d                                                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Survey Grid System:<br>Co-ordinates:<br>Ground Level:<br>Orientation: | OSGB<br>499287.56 mE<br>499287.56 mN<br>72.86 mOD | Hole Type:<br>Checl <ed by:<br="">Approved By:<br/>Log Status:<br/>Date:</ed> | RC<br>AB,CB<br>PMcG<br>FINAL<br>21/1112017 |
| Date Completed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   |                                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              |     | Discontinu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Inclination:                                                          | deg.<br>90 deg.                                   | Final Depth:                                                                  | 55.50m                                     |
| Top(m)<br>15.576<br>15.87<br>15.87<br>15.92<br>HI.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bilse(m)<br>Is.ec<br>Is.n<br>****<br>16.00<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Type<br>RackJoi1t<br>Rocfyom<br>RockJc*II<br>Rock.Ic*II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10<br>90<br>10<br>10<br>30                                        | SSR(mm)<br>S ht IOU h<br>S ht IOU h<br>S ht IOU h<br>S ht IOU h<br>S ht IOU h | MSR (cm)<br>Undiha<br>Unditn:<br>Undia.thq<br>Undia.lh | JRC<br>1 10<br>1 12                                                                                                                                                                                                                                                                                                                                                                                                          | JCS | Aperture Observation<br>I Noinlil<br>I Noinlil<br>Noinlil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rrilling/Materiil                                                     |                                                   |                                                                               |                                            |
| TL.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rock.k*d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   | s<br>11T                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              | 11  | Notaili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       | <b>•</b>                                          |                                                                               | _                                          |
| 18.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Roi*Joi'lt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ;=                                                                | S ht KOU h                                                                    | Und•tn1                                                |                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                   |                                                                               |                                            |
| 17.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rock Jam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>#1                                                           | S hi IOU h                                                                    | Und•tilq                                               |                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                   |                                                                               |                                            |
| 17.64<br>111.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.n<br>18.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RockJoi1t<br>Roi®Joi1t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                 | S ht IOU h<br>S ht IOU h                                                      | Und1Mti11<br>Und1Mti11                                 |                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                   |                                                                               |                                            |
| 18.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | j0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RockJoi1t<br>RockJoi1t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | "                                                                 | S ht iou h<br>S hi iou h                                                      | Undia.tn1<br>Undu                                      |                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                   |                                                                               |                                            |
| 111.78<br>111.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rollk-InInI<br>Rock.Joni:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>10                                                          | Ro h<br>S hi ıou h                                                            | atng                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                              |     | mfil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                   |                                                                               |                                            |
| 111.05<br>18.12<br>19.37<br>19.53<br>19.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.20<br>18.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Roi*.k*d<br>Roi*.k*d<br>Rock.Jom<br>RockJoi1t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 88°                                                               | Shi IOUh<br>Sht IOUh<br>Sht IOUh<br>Sht Iouh                                  |                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                   |                                                                               |                                            |
| 19.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.53<br>19.7(1<br>20.1(1<br>20.!S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RoteJoilt<br>RockJoill<br>RockJMll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   | Shtiouh<br>Shtiouh<br>Shtiouh<br>Shtiouh                                      |                                                        | M                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                   |                                                                               |                                            |
| 20.77<br>29.37<br>21.73<br>21.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20:::S<br>79:71<br>79:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rock.k*rt<br>Rock.k*rt<br>Roc*Joi1t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80<br>0                                                           | Shi Kevin<br>Shi Kevin<br>Shi Kevin                                           |                                                        | 10<br>14                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                   |                                                                               |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Roefl:Joilt<br>RockJoi1t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                 | S ht IOU h<br>S                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1 :::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                                                   |                                                                               |                                            |
| 11.M<br>21.95<br>21.95<br>22.29<br>22.29<br>22.29<br>22.29<br>22.29<br>22.29<br>22.29<br>24.00<br>24.00<br>24.00<br>27.00<br>27.00<br>27.00<br>28.00<br>29.74<br>20.00<br>29.74<br>20.00<br>30.15<br>30.55<br>31.56<br>33.00<br>33.37<br>33.40<br>33.37<br>33.40<br>33.37<br>33.40<br>33.37<br>33.41<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.37<br>33.42<br>33.42<br>33.37<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>33.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34.42<br>34. | 11           2212           2222           2222           2222           2230           2310           2418           2525           24771           28.00           28.00           28.00           29.11           11.11           12.11           12.11           12.11           12.11           12.11           13.11           13.11           33.2.00           32.44           33.2.00           32.44           33.3.00           34.453           34.453           34.453           34.453           34.453           34.453           34.453           34.453           34.453           34.453           34.453           34.453           34.453           34.453           34.453           34.453           34.453           34.453           34.453           34.453           34.454 | Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill<br>Rocci-Mill | 9009800000 <b>00100000000000000000000000000</b>                   | son an                                    | Und-Ih<br>Su02-Ih<br>Su02-Ih<br>et                     | 1     18       1     12       12     12       14     14       10     12       10     12       11     10       12     12       10     12       11     14       10     12       12     12       14     14       10     12       12     14       14     14       10     12       12     15       10     12       112     15       10     10       112     15       10     10       115     10       116     11       117     14 | +   | I No Infli           No Infli | +                                                                     | 1                                                 |                                                                               | i                                          |

| 3x7         Image: Mail         0'         S hi ligh h         12         I Notali           351         71.0'         Rode: A'         0         S hi rou h         14         Notali           71.1'         Rode: A'         0         S hi rou h         14         Notali           71.1'         Rode: A'         0         S hi rou h         1         Notali           71.1'         Rode: A'         0         S hi rou h         1         Notali           71.1'         Rode: A'         0         S hi rou h         1         Notali           71.1'         Rode: A'         0         S hi rou h         1         Notali           71.3'         73.6'         Rode: A'         0         S hi rou h         Notali           77.4'         73.5'         Rode: A'         0         S hi rou h         Urdin.h         12           73.7'         73.75'         Rode: A'         10         S hi rou h         Urdin.h         12         Notali           73.7'         73.75'         Rode: A'         0         S hi rou h         Urdin.h         12         Notali           80.4'         80.5'         Rode: A''         0'         S hi rou h         Urdi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.77                             | 38.74<br>38.98                   | Rocte:Joi11<br>Rocte:Joi11<br>Rocte:JMll                 | 20<br>0          | S                                          |                                | 15<br>15<br>14   | Noinlil<br>Noinlil<br>Noinlil |                 |                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|----------------------------------------------------------|------------------|--------------------------------------------|--------------------------------|------------------|-------------------------------|-----------------|-------------------------|
| S         38.44       38.47       Rock*n       0       5 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 | 35.87<br>38.95<br>37.11           | 37.12                            | ReteiJMI                                                 | 6 <b>1'</b><br>0 | ShileUh<br>Shirouh                         |                                | 1 <u>0</u><br>14 | l Noiniti                     |                 |                         |
| S         38.4       38.0       Rock*n       0       5 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + | 37.115<br>37.25<br>37.35<br>27.50 | 37.17<br>37.50<br>37.36<br>38.60 | Roctc:Joill<br>Roctc:Joill<br>Roctc:Joill<br>Roctc:Joill |                  | S hi IOU h<br>S hi IOU h<br>S hi IOU h     | Planar                         |                  |                               |                 |                         |
| S         38.4       38.0       Rock*n       0       5 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + | 37.74<br>37.97<br>38.04           | 37.75<br>37.98<br>38.05          | Rocte: JMII<br>Rocte: JMfi<br>Rote: DLLL                 | 0<br>10<br>0     | Shi lOUh<br>&⊷hrilOUh<br>S⊷hi⊷rouh         | Undia.lh<br>Undia.lh<br>Planar | 14<br>12<br>10   | Nolnili<br>Nolnili<br>olnili  |                 |                         |
| S         NICOD         ask                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38.258<br>38.19<br>38.08          | 3820/<br>3820                    | Rocte:Joi11                                              | 61<br>0<br>0     | S.Shippologith<br>S.hi IOU h<br>Ŝ.hi IOU h | Und1Mth18                      |                  | Net                           |                 |                         |
| 38.4         80.c. 1/m         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th0< th="">         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <th0< th="">         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</th0<></th0<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
| Assi     Assi     Back-line     0     5 min       38:00     38:70     Rock-line     0     S min       38:00     38:70     Rock-line     0     S min       38:70     Rock-line     0     S min     0       38:70     Rock-line     0     S min       38:70     Rock-line     0     S min       38:70     Rock-line     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   | -38A5                            | Rocte.le*#                                               | 0                | S ht IOU h                                 |                                |                  |                               |                 |                         |
| Groundwater Evels can besubject to seasonal, tidal and dther nuctuations and should not betaken as constant.     Reason for Hole Termination: Reached scheduled depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.51<br>38.00<br>38.77           | 38.80<br>38.70<br>87             | Rocte-Inini                                              | 0<br>0<br>111    | S hi 100 h                                 |                                |                  | =.                            |                 |                         |
| Groundwater evels can besubject to seasonal, tidal and other nuctuations and should not be taken as constant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38.81                             | -,,                              | Rocte: Joil 1                                            | þ                | Sighily10ugh                               | Planar                         | 10               | Noinlil                       |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Groundwater                       | evelscanbesubie                  | ttoseasonal, tidal and o                                 | othernuctuati    | onsandshouldnott                           | etaken as constant.            | Reason fo        | rHoleTermination: Reached     | scheduled depth |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 | RAM D Info 28/0812015   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          | 1                |                                            |                                |                  |                               |                 | DAWI K IIIU 20100 (2013 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                | •                |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  | <u> </u>                      |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  | I                             |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                  |                                                          |                  |                                            |                                |                  |                               |                 |                         |

| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started:<br>Date Completed: | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>24/01/2017<br>27/01/2017                                  |                                                                                 |       | Survey Gr<br>Co-ordinat<br>Ground Le<br>Orientation<br>Inclination | evel:<br>n: |      |   | 49917<br>19364<br>7 | 1.03 n<br>0.95 n<br>d<br>90 c | nE Cl<br>nN Ap<br>nOD Si<br>La<br>eg. P<br>deg. Fi | ole Type:<br>hecked E<br>oproved<br>cale:<br>og Statu:<br>rint Date:<br>nal Dept | :<br>By:<br>By:<br>s:  | et 1 of          | F<br>PMcG, C<br>PMc<br>1:2:<br>FIN/<br>21/11/20 <sup>-</sup><br>25.00 |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------|--------------------------------------------------------------------|-------------|------|---|---------------------|-------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------|------------------------|------------------|-----------------------------------------------------------------------|
|                                                                                          | Stratum Description                                                                                                                                       | Legend Legend                                                                   |       | Depth                                                              |             | -    |   | and h Sit<br>Blows  |                               | 1                                                  | _                                                                                |                        | If min<br>If ave | Weter W<br>Ba                                                         |
| subangular and sub<br>[Alluvium]<br>Stiff orangish browi                                 | / sandy gravelly clayey SILT. Gravel is<br>prounded fine to coarse of flint.<br>n very gravelly CLAY with medium<br>bble content. Gravel is subangular to | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                          | )     | (m)<br>0.50<br>1.00                                                | В           | (mm) | % | (mins)              |                               | Test Resu                                          |                                                                                  | %                      | (mm)             | •.z<br>;:<br>•.z<br>!''/<br>tti-<br>;;z                               |
| subrounded fine to<br><u>Alluvium</u> ]<br>No recovery. Driller<br>GRAVEL.<br>[Alluvium] | coarse of flint.                                                                                                                                          |                                                                                 | 69.75 | 1.20-2.20<br>2.20-2.50                                             | RC          | 102  |   |                     | S                             | 50/150                                             |                                                                                  | ο<br>ο<br>ο            |                  |                                                                       |
|                                                                                          |                                                                                                                                                           | Γ.<br>Γ.<br>Γ.<br>Γ.<br>Γ.<br>Γ.<br>Γ.<br>Γ.<br>Γ.<br>Γ.<br>Γ.<br>Γ.<br>Γ.<br>Γ | ~     | 2.20 - 2.95<br>2.95 - 3.70                                         | RC          | 102  |   |                     |                               |                                                    | _                                                                                | 0<br>0<br>0<br>0       | NR<br>-          |                                                                       |
|                                                                                          |                                                                                                                                                           |                                                                                 |       | 3.70-4.00<br>3.70-4.20                                             | RC          | 102  |   |                     | S                             | 50/150                                             | )                                                                                | 000<br>0               |                  |                                                                       |
|                                                                                          |                                                                                                                                                           | с                                                                               |       | 4.20-4.70                                                          | RC          | 102  |   |                     |                               |                                                    | -                                                                                | <u>aaa</u> <u>a</u> aa |                  |                                                                       |

| •barn                                          | I                                                              | BOF                  | RE                               | 10           | LE L                       | 00           | 3     |                                            |                    | -    |                          | Boreh<br>ML035<br>Shee      |                                    | 002a          |
|------------------------------------------------|----------------------------------------------------------------|----------------------|----------------------------------|--------------|----------------------------|--------------|-------|--------------------------------------------|--------------------|------|--------------------------|-----------------------------|------------------------------------|---------------|
| roject Name:                                   | Amersham Tunnel to Calvert                                     |                      |                                  |              | Survey Gr<br>Co-ordinat    | -            | em:   | 4991                                       | DSGB<br>79.42 i    |      |                          | ed By:                      |                                    | PMcG          |
| roject No:<br>lient:<br>ngineer:               | 1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd |                      |                                  |              | Ground Le                  | evel:        |       |                                            | 41.03 r<br>70.95 ı |      | Appro<br>Scale:<br>Log S |                             |                                    | P<br>F        |
| ate Started:<br>ate Completed:                 | 24/01/2017<br>27/01/2017                                       |                      |                                  |              | Orientation<br>Inclination | :            |       |                                            | d<br>90 (          | deg. | Print [<br>Final         | Depth:                      |                                    | 21/11/2<br>25 |
|                                                | Stratum Description                                            | Legend               | Depth<br>(Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)               | Samp<br>Type | Dia R | <u>ingand In S</u><br>ec Blows<br>% (mins) |                    |      | esult Ur                 | TCR<br>SCR<br>hits RQD<br>% | If min<br>If ave<br>If max<br>(mm) | Weter         |
| No recovery. Driller<br>GRAVEL.<br>Alluvium]   | notes flush returns of SAND and                                | f-<br>f-<br>r.       | -                                |              |                            |              |       |                                            |                    |      |                          | — NR                        | -                                  |               |
| No recovery. Driller                           | notes flush returns of CHALK with                              | r.<br>r.<br>f.       | 5.40                             | 65.55        | 5.20 -5.65                 |              |       |                                            | s                  | N=   | 50                       | 0<br>0                      |                                    |               |
| ints.                                          |                                                                | f<br>r<br>r          |                                  |              | 5.20-5.70                  | RC           | 102   |                                            |                    |      |                          | °<br>                       |                                    |               |
|                                                |                                                                | r.<br>r.<br>f.<br>f. | -                                |              | 5.70-6.20                  | RC           | 102   |                                            |                    |      |                          | 0                           |                                    |               |
|                                                |                                                                | f<br>r<br>r          | <1.30)<br>-                      |              |                            |              |       |                                            |                    |      |                          | 0                           | NR<br>-                            | · ·           |
|                                                |                                                                | r.<br>r.<br>ř:       | -<br>-<br>-                      |              | 6.20-6.70                  | RC           | 102   |                                            |                    |      |                          | 8                           |                                    | ,<br>,        |
| rilling disturbed R                            | ecovered as: dark grav slightly                                | r<br>r<br>           | <br>                             | 64.25        |                            |              |       |                                            |                    |      |                          | 0                           |                                    |               |
| ubrounded coarse                               |                                                                | f                    | 10.30)<br>-                      | 01.20        |                            |              |       |                                            |                    |      |                          |                             | NA<br>-                            |               |
| ewes Nodular, Ch<br>orecovery. Briten<br>ints. | nalk Formation of OHALK with                                   |                      | .00                              | 63.95        |                            |              |       |                                            |                    |      |                          |                             |                                    | ,             |
|                                                |                                                                | r.<br>f.<br>f.       | -                                |              |                            |              |       |                                            |                    |      |                          | 20                          |                                    | ,             |
|                                                |                                                                | r.<br>r<br>r         | -                                |              | 6.70-8.20                  | RC           | 102   |                                            |                    |      |                          | 0                           |                                    |               |
|                                                |                                                                | r.<br>f-<br>f.       | -                                |              | 7.65<br>7.65               | EW           |       |                                            |                    |      |                          |                             |                                    | ,             |
|                                                |                                                                | r.<br>r.<br>r.       | -                                |              |                            |              |       |                                            |                    |      |                          |                             |                                    | ,             |
|                                                |                                                                | r.<br>f.<br>f.       | -                                |              |                            |              |       |                                            |                    |      |                          |                             |                                    |               |
|                                                |                                                                | t:<br>r.<br>r        | =<br><2.70)<br>                  |              |                            |              |       |                                            |                    |      |                          |                             | NR                                 | 1             |
|                                                |                                                                | r.<br>f.<br>f.<br>f. | -                                |              |                            |              |       |                                            |                    |      |                          |                             |                                    |               |
|                                                |                                                                | r.<br>1.             | -                                |              | 8.20-9.70                  | RC           | 102   |                                            |                    |      |                          | 8                           |                                    | j             |
|                                                |                                                                | r<br>F<br>F          |                                  |              |                            |              |       |                                            |                    |      |                          | 0                           |                                    |               |
|                                                |                                                                | r.<br>r.<br>r.       | -                                |              |                            |              |       |                                            |                    |      |                          |                             |                                    | 1             |
|                                                |                                                                | r.<br>f.<br>f.<br>r. | -                                |              |                            |              |       |                                            |                    |      |                          |                             |                                    | 1<br>1        |
| No recovery. No flus                           | h returns at surface.                                          | r.<br>r              | -9.70<br>-<br>-                  | 61.25        |                            |              |       |                                            |                    |      |                          |                             |                                    | ļ             |
|                                                |                                                                | f.                   | -                                |              |                            |              |       |                                            |                    |      |                          |                             |                                    |               |
| Stratum denths may                             | asured along borehole axis.                                    | I                    |                                  |              |                            |              |       |                                            |                    |      |                          |                             |                                    |               |

| •barn                    | E                                    | BO     | RE                      | HO           | LE L          | 00      | 3           |         |                 |          |             |                    |                 | 5-R0                     |            |
|--------------------------|--------------------------------------|--------|-------------------------|--------------|---------------|---------|-------------|---------|-----------------|----------|-------------|--------------------|-----------------|--------------------------|------------|
| roject Name:             | Amersham Tunnel to Calvert           |        |                         |              | Survey Gri    | d Syste | əm.         |         | 0               | SGB      | Ho          | Іе Турє            |                 | et3of                    | 5          |
| rojoot nume.             |                                      |        |                         |              | Co-ordinat    |         |             |         |                 | '9.42 m  |             | ecked              |                 |                          | PMc        |
| roject No:               | 1G063 -AAZ.                          |        |                         |              |               |         |             |         |                 | 41.03 m  |             | proved             | By:             |                          | F          |
| lient:                   | High Speed 2 (HS2) Ltd               |        |                         |              | Ground Le     | vel:    |             |         | 7               | 0.95 m   |             | ale:               |                 |                          | _          |
| ngineer:<br>ate Started: | High Speed 2 (HS2) Ltd<br>24/01/2017 |        |                         |              | Orientatior   | ŀ       |             |         |                 | de       |             | g Statu<br>nt Date |                 |                          | F<br>21/11 |
| ate Completed:           | 27/01/2017                           |        |                         |              | Inclination   |         |             |         |                 | 90 d     | -           | al Dep             |                 |                          | 25         |
|                          |                                      |        | Depth<br>(Thick-        | 1            |               | Sampli  | ing, C      | oring a | andh Si         | tu Testi | ng          |                    | ICR<br>SCR      | If min<br>If ave         |            |
|                          | Stratum Description                  | Legend | (Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)  | Туре    | Dia<br>(mm) |         | Blows<br>(mins) | Test     | Test Result | Units              | SCR<br>RQD<br>% | If ave<br>If max<br>(mm) | Weter      |
| No recovery. No flus     | sh returns at surface.               |        | 1-<br>1-<br>1-          |              | 9.70 - 10.45  | RC      | 102         |         |                 |          |             |                    | 0               |                          |            |
|                          |                                      |        | r                       |              |               |         |             |         |                 |          |             |                    | 6               |                          |            |
|                          |                                      |        | r-<br>f-<br>f-          |              | 10.43         | EW      |             |         |                 |          |             |                    | +               |                          |            |
|                          |                                      |        | f-<br>r-                |              |               |         |             |         |                 |          |             |                    |                 |                          |            |
|                          |                                      |        | r-<br>r-                |              |               |         |             |         |                 |          |             |                    | 0               |                          |            |
|                          |                                      |        | F=                      |              | 10.45 - 11.20 | RC      | 102         |         |                 |          |             |                    | 8               |                          |            |
|                          |                                      |        | f-<br>f-<br>f           |              | 6.00-16.00    |         |             |         |                 | Falling  |             | m/s                |                 |                          |            |
|                          |                                      |        | r-<br>r-                |              | 0.00-10.00    |         |             |         |                 | Head     |             | 11/3               |                 |                          |            |
|                          |                                      |        | r-<br>r-                |              |               |         |             |         |                 |          |             | -                  |                 |                          |            |
|                          |                                      |        | r<br>f-                 |              |               |         |             |         |                 |          |             |                    | 0               |                          |            |
|                          |                                      |        | f-<br>f-<br>r-          |              | 11.20 - 11.70 | RC      | 102         |         |                 |          |             |                    | 0<br>0<br>0     |                          |            |
|                          |                                      |        | r-<br>r-                |              |               |         |             |         |                 |          |             |                    | 0               |                          |            |
|                          |                                      |        | 83.70)                  |              |               |         |             |         |                 |          |             |                    | N               | ۶ -                      |            |
|                          |                                      |        | f-<br>f-                |              |               |         |             |         |                 |          |             |                    |                 | -                        |            |
|                          |                                      |        | f-<br>r-                |              | 11.70 - 12.20 | RC      | 102         |         |                 |          |             |                    | 0<br>0          |                          |            |
|                          |                                      |        | f=-<br>f-               |              |               |         |             |         |                 |          |             |                    | 0               |                          |            |
|                          |                                      |        | r-<br>r-<br>f-          |              |               |         |             |         |                 |          |             |                    | -               |                          |            |
|                          |                                      |        | f-                      |              |               |         |             |         |                 |          |             |                    |                 |                          |            |
|                          |                                      |        | r-<br>r-                |              | 12.20-12.70   | RC      | 102         |         |                 |          |             |                    | ð<br>o          |                          |            |
|                          |                                      |        | r-<br>r-                |              |               |         |             |         |                 |          |             |                    | Ŭ               |                          |            |
|                          |                                      |        | r-<br>f-<br>f-          |              |               |         |             |         |                 |          |             |                    | ┢               |                          |            |
|                          |                                      |        | f-<br>r-                |              |               |         |             |         |                 |          |             |                    |                 |                          |            |
|                          |                                      |        | r-<br>r-                |              |               |         |             |         |                 |          |             |                    |                 |                          |            |
|                          |                                      |        | r-<br>r-                |              |               |         |             |         |                 |          |             |                    |                 |                          |            |
|                          |                                      |        | f-<br>f-                |              |               |         |             |         |                 |          |             |                    |                 |                          |            |
|                          |                                      |        | r-<br>r-                | F7 FF        |               |         |             |         |                 |          |             |                    | - 2             |                          |            |
| Structureless CHAL       | K composed of off-white clayey       |        | 13.40                   | 57.55        |               |         |             |         |                 |          |             |                    | 53              |                          |            |
| gravelly SILT, Grave     | elisweak low denaity off-white with  |        | r-<br>r-                |              | 12.70-14.20   | RC      | 102         |         |                 |          |             |                    | 0               |                          |            |
| nodular flint cobbles    |                                      |        | f=<br>f-                |              |               |         |             |         |                 |          |             |                    |                 |                          |            |
| [Lewes Nodular Cha       |                                      |        | f-<br>r-                |              | 13.70 - 13.BO | D       |             |         |                 |          |             |                    |                 |                          |            |
|                          |                                      |        | r-<br>r-                |              |               |         |             |         |                 |          |             |                    |                 |                          |            |
|                          |                                      |        | r-<br>H1.30)            |              |               |         |             |         |                 |          |             |                    |                 | -                        |            |
|                          |                                      |        | f-<br>f-                |              |               |         |             |         |                 |          |             |                    |                 | NA<br>-                  |            |
|                          |                                      |        | r-<br>r-                |              |               |         |             |         |                 |          |             | -                  | -               |                          |            |
|                          |                                      |        | r-<br>r-                |              |               |         |             |         |                 |          |             |                    |                 |                          |            |
|                          |                                      |        | r-<br>f-                |              |               |         |             |         |                 |          |             |                    |                 |                          |            |
|                          |                                      |        | r-<br>                  |              |               |         |             |         |                 |          |             |                    | 0               |                          |            |
| No recovery. No flue     | sh returns at surface.               |        | 14.70                   | 56.25        |               |         |             |         |                 |          |             |                    | 0               | _                        |            |
|                          |                                      |        | r-<br>r-                |              |               |         |             |         |                 |          |             |                    |                 |                          |            |
|                          |                                      |        | f-                      |              | 14.20-15.70   | RC      | 102         |         |                 |          |             |                    |                 |                          |            |
|                          |                                      |        |                         |              |               |         |             |         |                 |          |             |                    |                 |                          |            |

| •barn<br>ritchies                                                                                                      | E                                                                                                                                                                                                                                                                           | BORE                            | НО       | LE L                                                               | 00                 | 3           |                                        |                                                    |                        |                                                                               | _035                             | hole N<br>5-R0(<br>et 4 of | 002a                     | ı                                                     |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------|--------------------------------------------------------------------|--------------------|-------------|----------------------------------------|----------------------------------------------------|------------------------|-------------------------------------------------------------------------------|----------------------------------|----------------------------|--------------------------|-------------------------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started:<br>Date Completed:                               | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>24/01/2017<br>27/01/2017                                                                                                                                                    |                                 |          | Survey Gr<br>Co-ordinat<br>Ground Le<br>Orientation<br>Inclination | es:<br>evel:<br>n: | em:         | 4991<br>1936                           | DSGB<br>79.42 n<br>41.03 n<br>70.95 n<br>d<br>90 d | nE<br>nN<br>nOD<br>eg. | Hole Typ<br>Checked<br>Approved<br>Scale:<br>Log Sta<br>Print Dat<br>Final De | e:<br>By:<br>I By:<br>tus:<br>e: |                            | PMcG<br>F<br>F<br>21/11/ | PMcG<br>1:25<br>FINAL                                 |
|                                                                                                                        | Stratum Description                                                                                                                                                                                                                                                         | Legend Depti<br>(Thick<br>ness) | k- Level | Depth<br>(m)                                                       | Samp<br>Type       |             | oring and h S<br>Rec Blows<br>% (mins) | itu Testi<br>Test                                  | ng<br>Test Re          | esult Unit                                                                    | TCR<br>SCR<br>s RØ&L             | lfmin<br>Ifave<br>Dfmmaak  | Weter <b>E</b>           | Well<br>3ackfil                                       |
| No recovery. No flus                                                                                                   | h returns at surface.                                                                                                                                                                                                                                                       | (m)                             | )        |                                                                    |                    |             |                                        |                                                    |                        |                                                                               |                                  | NR                         |                          | <u>ං නිං නිං නිං නිං නිං</u><br><u>කර්කාරකාරකාරකා</u> |
| Assumed zone of co                                                                                                     | pre loss.                                                                                                                                                                                                                                                                   |                                 |          |                                                                    |                    |             |                                        |                                                    |                        |                                                                               |                                  | NR                         | -                        | 0 890 890 99                                          |
| white CHALK. Fraction<br>orientated fractures,<br>spaced (10/20/40), p<br>occasionally infilled<br>to 80 degrees, dose | weak, low density, light brownish<br>ure set 1: abundant randomly<br>extremely dosely to very dosely<br>blanar slightly rough, open and<br>(<2mm) with day. Fracture set 2: 65<br>ly spaced (70/100/120), planar<br>ugh, open, with no infill. (Grade: B4)<br>lk Fonmation] |                                 | 54.75    | 15.70-17.20<br>16.67-16.77                                         | RC                 | 102         |                                        |                                                    |                        |                                                                               | 67<br>0<br>0                     |                            |                          |                                                       |
|                                                                                                                        |                                                                                                                                                                                                                                                                             |                                 |          | 17.20-18.70                                                        | RC                 | 102         |                                        |                                                    |                        |                                                                               | 100<br>0<br>0                    | 10<br>20<br>40             |                          |                                                       |
| Assumed zone of co                                                                                                     | ore loss.                                                                                                                                                                                                                                                                   |                                 |          |                                                                    |                    |             |                                        |                                                    |                        |                                                                               | 53                               | NR                         | -                        |                                                       |
| CHALK. No discerni<br>randomly orientated<br>closely spaced (NI/2                                                      | weak, low density, light greyish white<br>ble fracture sets. With abundant<br>fractures, extremely dosely to very<br>20/40), planar slightly rough, open<br>n) with clay. {Grade: B4)<br>lk Fonmation]                                                                      | 19.40                           |          | 18.70-20.20<br>19.70-19.80                                         | D RC               | 102         |                                        |                                                    |                        |                                                                               | 777                              | NI<br>20<br>40             |                          |                                                       |
| Groundwater levels<br>Explanation of symi<br>Further details given                                                     | asured along borehole axis.<br>may be subject to seasonal, tidal and<br>bols and abbreviations given in 'Key to<br>n on appended 'Borehole Infonmation S<br>as Glasoow Road Kilsyth Glasoow G65 9B                                                                          | Exploratory H<br>Sheer.         |          | hould not be                                                       | taken a            | I<br>as con | Istant.                                | I                                                  | <u> </u>               |                                                                               |                                  |                            | 00.06/04                 | 4400                                                  |

| Co-ordinates:     499179.42 mE     Che       Project No:     1G063-AAZ.     193641.03 mN     Appr       Client:     High Speed 2 (HS2) Ltd     Ground Level:     70.95 mOD     Scal       Engineer:     High Speed 2 (HS2) Ltd     Drientation:     deg.     Prince                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | <b>-R0002a</b><br>et 5 of 5          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|
| Project No:       10983-AAZ.       193841.03 mM       App.         Client:       High Speed 2 (HS2) Ltd       Ground Level:       70.95 mOD       Scale         Date Stantation:       2401/2017       Orientation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hole Type:<br>Checked By:       | R(<br>PMcG, CI                       |
| Engineer:       High Speed 2 (H52) Ltd       Log         Date Scanpleted:       2401/2017       Orientation:       9-0 dg.       Pin         Date Completed:       2701/2017       Inclination:       90 dg.       Pin         Extremely weak to weak, low density, light greyish while<br>CHALK. No discernible fractures extremely dosely to very<br>closely spaced (N02400), planar sight/ rough, one<br>Lawes. Noclular Chalk Formation       50.75       Stratum Description       Type       Rows       Test Brows       Test Brows       Test Brows         Dolling disturbed, recovered non-intact.<br>Stratum of contacters by<br>derestly, light greyish while<br>CHALK. Not discernition of contacters by<br>derestly, light greyish while CHALK. Recovered restly light<br>greyish while CHALK while frequencies (2 00 45)<br>degrees, dosely spaced (N8000100), planar sightly<br>rough, open with orients and the green (2000).       49.45       20.95 · 21.70       RC       102       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                             | Approved By:                    | PMcC                                 |
| Date Starter:       24/01/2017       Orientation:      deg.       Print<br>Inclination:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Scale:<br>Log Status:           | 1:25<br>FINA                         |
| Stratum Description     Lagent Messal     Lagent Messal     Lagent Messal     Lagent Messal     Lagent Messal     Sampling, Coring andh Situ Testing       Extremely weak to weak, low density, light greyish white<br>CHALK. No discribule fractures est. With abundant<br>randomly orientated fractures, extensely dosely to very<br>closely spaced (MI20/du), planet sightly rough, open<br>locally inflied (-2mm) with clay, (Grade: B4)     20.20     50.75     50.00     50.00       Drilling disturbed, recovered non-intact.<br>Leves Notdar Chalk Formation     20.05     50.00     20.20 - 20.26     RC     102       Veak to medium strong, low to medium density, light<br>greyish white CHALK with frequent thing rey laminations<br>(martwisp.) Fractures et : 14 to 0.45<br>degrees, dosely spaced (NI80/130), planet sightly<br>rough, open with origing infractures et : 40.40.45<br>degrees, dosely spaced (NI80/130), planet sightly<br>rough, open with origing infractures<br>: 22.10m: Trnc.creamisting on fracture<br>: 22.10m: Trnc.creamisting white Shell/ragment (20nm).     49.45     20.95 - 21.70     RC     102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Print Date:                     | 21/11/2017                           |
| Stratum Description Level (mes) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Final Depth:                    | 25.00n                               |
| CHALK. No discernible fracture sets. With abundant<br>randomy orientated fractures, estremely dosely to very<br>closely spaced (MIZ040), planar slightly rough, open<br>lcelwes Nodular Chalk Formation<br>Assumed zone of core loss.<br>Drilling disturbed, recovered non-intact. Strong, high<br>density, light greyish white CHALK. Recovered as: sandy<br>fine to coarse GRAVEL of chalk. Possibly Chalk Rock?<br>[Lewes Nodular Chalk Formation]<br>Weak to medium strong, low to medium density, light<br>greyish white CHALK with frequent thin grey taminations<br>find visps), Focture set 1: 10 6 degrees. Asternely<br>closely spaced (60/80/120), planar slightly<br>rough, open with orange iron staining on fracture<br>surfaces. (Grade: B3)<br>[Lewes Nodular Chalk Formation]<br>21.50-21.90m:Drilling disturbed. Recovered non-intact.<br>22.10m: 1 no. creamish white shell fragment (20mn).<br>(a.50)<br>(a.50)<br>(a.50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TCR<br>SCR<br>Result Units ROAD | Ifmin<br>Ifave<br>(mma)x Weter Backt |
| locative infilied (<2mm) with clay. (Grade: B4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | NI<br>20<br>40                       |
| Drilling disturbed, recovered non-intact. Strong, high density, light greyish white CHALK. Recovered as: sandy line to carse GRAVEL of chalk. Recovered as: sandy line to carse GRAVEL of chalk. Recovered as: sandy line to carse settle set |                                 |                                      |
| Drilling disturbed, recovered non-intact. strong, night         densiy, light greyish white CHALK. Recovered as: sandy         [Lewes Nodular Chalk Formation]         Weak to medium strong, low to medium density, light         greyish white CHALK with frequent thin grey laminations         (mari wisps). Fracture set 1: 10 6 degrees, extremely         closely to dosely spaced (NU80/130). planar slightly         rough, open with on sinil. Fracture set 2: 40 to 45         degrees, dosely spaced (60/80/120). planar slightly         rough, open with orange ion staining on fracture         sufficiences. (Grade: B3)         [Lewes Nodular Chalk Formation]         21.50-21.90m: 1no. creamish white shell fragment (20mm).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0                     | NR                                   |
| density, light greyish white CHALK. Recovered as: sandy<br>fine to coarse GRAVEL of chalk. Possibly Chalk Rock?<br>[Lewes Nodular Chalk Formation]       21.50       49.45         Weak to medium strong, low to medium density, light<br>greyish white CHALK with frequent thin grey laminations<br>(mart wisps). Fracture set 1: 1to 6 degrees, extremely<br>closely to dosely spaced (0/80/120), planar slightly<br>rough, open with onage inon staining on fracture<br>surfaces. (Grade: B3)<br>[Lewes Nodular Chalk Formation]       49.45       20.95 - 21.70       RC       102         [Lewes Nodular Chalk Formation]<br>21.50-21.90m: Drilling disturbed. Recovered non-intact.<br>22.10m: 1 no. creamish white shell fragment (20mm).       49.45       20.95 - 21.70       RC       102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                                      |
| Weak to medium strong, low to medium density, light greyish white CHALK with frequent thin grey laminations (mari wisps). Fracture set 1: 10 6 degrees, extremely closely to dosely spaced (Ni/80/130), planar slightly rough, open with no inflit. Fracture set 2: 40 to 45 degrees, dosely spaced (60/80/120), planar slightly rough, open with no inflit fragment (20mm).       49.45       20.95 - 21.70       RC       102         ILewes Nodular Chalk Formation]       21.50       49.45       20.95 - 21.70       RC       102         21.50       21.50       49.45       20.95 - 21.70       RC       102         ILewes Nodular Chalk Formation]       22.09 - 22.23       C       21.00 - 23.20       RC       102         21.50       49.45       49.45       49.45       49.45       49.45       49.45         ILewes Nodular Chalk Formation]       21.50 - 21.00m: 11no. creamish white shell fragment (20mm).       21.70 - 23.20       RC       102         (3.50)       100       101       101       101       101       101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | NIDO                                 |
| Weak to medium strong, low to medium density, light grey/sh white CHALK with frequent thin grey laminations (marl wisps). Fracture set 1: 10 6 degrees, extremely closely to dosely spaced (NI/80/130), planar slightly rough, open with origin iton staining on fracture surfaces. (Grade: B3)         [Lewes Nodular Chalk Formation]       21.00 - 22.23       C         21.50 - 12.90m: Drilling disturbed. Recovered non-intact. 22.10m: 1 no. creamish white shell fragment (20mm).       21.70 - 23.20       RC       102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100<br>20<br>13                 |                                      |
| rough, open with no infill. Fracture set 2: 40 to 45<br>degrees, dosely spaced (60/80/120), planar slightly<br>surfaces. (Grade: B3)<br>[Lewes Nodular Chalk Formation]<br>21.50-21.90m: Difling disturbed. Recovered non-intact.<br>22.10m: 1 no. creamish white shell fragment (20mm).<br>21.70-23.20 RC 102<br>11.70-23.20 RC 102<br>11.70-23.20 RC 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                                      |
| surfaces. (Grade: B3)<br>[Lewes Nodular Chalk Formation]<br>21.50-21.90m: Drilling disturbed. Recovered non-intact.<br>22.10m: 1 no. creamish white shell fragment (20mm).<br>21.70-23.20 RC 102<br>102<br>102<br>102<br>102<br>102<br>102<br>102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                                      |
| 21.70-23.20 RC 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100<br>35                       |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                              |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | NI<br>80                             |
| 23.20 - 24.70 RC 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | 130                                  |
| 23.20 - 24.70 RC 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100<br>30                       |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                      |
| 24.60-24.65m : Soft light greenish grey marl seam.<br>24.70-24.75m : Drilling disturbed. Recovered non-intact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                                      |
| 24.70 - 25.00 RC 102<br>24.80 - 24.93 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100<br>24<br>0                  |                                      |
| Borehole Terminated at 25.00m 25.00 45.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                      |

| -barn<br>ritchies                         | B                                                                                                                                             | BOR                   | RE                               | HOI          | E L                       | .00   | 3   |   |                             |                            |               |                                 | _035              | ehole N<br>5-R00<br>et 1 of | )03a         | 3                |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|--------------|---------------------------|-------|-----|---|-----------------------------|----------------------------|---------------|---------------------------------|-------------------|-----------------------------|--------------|------------------|
| roject Name:<br>roject No:                | Amersham Tunnel to Calvert                                                                                                                    |                       |                                  |              | Survey G<br>Co-ordina     | -     | em: |   | 49919                       | 9SGB<br>96.52 n<br>33.70 n | ηE            | Hole Typ<br>Checked<br>Approved | By:               |                             | PMc0<br>F    | F<br>G, C<br>PMc |
| lient:<br>ngineer:                        | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd                                                                                              |                       |                                  |              | Ground L                  | evel: |     |   | 7                           | 70.69 m                    |               | Scale:<br>Log Sta               | tus:              |                             |              | 1:2:<br>FIN/     |
| ate Started:<br>ate Completed:            | 20/01/2017<br>24/01/2017                                                                                                                      |                       |                                  |              | Orientatio<br>Inclination | 1:    |     |   |                             | d<br>90 d                  | eg.           | Print Dat<br>Final De           |                   |                             | 20/11/<br>10 | /20<br>0.00      |
|                                           | Stratum Description                                                                                                                           | Legend                | Depth<br>(Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)              | Sampl | -   | - | and h Si<br>Blows<br>(mins) | tu Testi<br>Test           | ng<br>Test Re | sult Units                      | TCR<br>SCR<br>RØD | lfmin<br>Ifave<br>I(mma)x   | water        |                  |
| ntermediate plastic<br>ounded fine to coa | sandy gravelly silty low to<br>ity CLAY. Gravel is angular to<br>arse of flint. With occasional bands of<br>angular to rounded fine to coarse | t I:I-                | -                                |              |                           |       |     |   |                             |                            |               |                                 |                   |                             |              |                  |
|                                           |                                                                                                                                               | y }f1<br><b>t</b>     | .00)                             |              | 0.50                      | В     |     |   |                             |                            |               |                                 |                   |                             |              | 1.               |
| -                                         | lightely sandy-siltyangulatorounde d–P.•<br>VEL offlint. Sand isfine to coarse.                                                               | <b>Z:-</b> ,1.0       | 00                               | 69.69        | 1.1                       | В     |     |   |                             |                            |               |                                 |                   |                             |              |                  |
| IUV: ju m1.c                              | Clayey GRAVEL of flint. (Rotary                                                                                                               | - <u>ð(• ' •)</u> r ' | 1.20                             | 69.49        |                           |       |     |   |                             |                            |               |                                 |                   |                             |              |                  |
|                                           |                                                                                                                                               | <                     | :2.30)                           |              |                           |       |     |   |                             |                            |               |                                 |                   |                             |              |                  |
|                                           |                                                                                                                                               | r                     | _                                |              |                           |       |     |   |                             |                            |               |                                 |                   |                             |              |                  |
|                                           |                                                                                                                                               |                       |                                  |              |                           |       |     |   |                             |                            |               |                                 |                   |                             |              |                  |
| riillers description:<br>ole)             | SAND and GRAVEL. (Rotary open                                                                                                                 |                       | -3.50                            | 67.19        |                           |       |     |   |                             |                            |               |                                 |                   |                             |              |                  |
|                                           |                                                                                                                                               | [<                    | -                                |              |                           |       |     |   |                             |                            |               |                                 |                   |                             |              |                  |
|                                           |                                                                                                                                               |                       | _                                |              |                           |       |     |   |                             |                            |               |                                 |                   |                             |              |                  |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| <b>barn</b>                                   | E                                                                                                                                                      | BOF      | RE                               | HOI          | LE L                              | .00            | 3     |         |                            |                                   |              | N                                     | 1L03              | ehole N<br>5-R00<br>eet 2 of   | )03a   | à                           |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------|--------------|-----------------------------------|----------------|-------|---------|----------------------------|-----------------------------------|--------------|---------------------------------------|-------------------|--------------------------------|--------|-----------------------------|
| Project Name:<br>Project No:<br>Client:       | Amersham Tunnel to Calvert<br>1G063 -AAZ.<br>High Speed 2 (HS2) Ltd                                                                                    |          |                                  |              | Survey G<br>Co-ordina<br>Ground L | tes:           | em:   |         | 49919<br>19363             | SGB<br>6.52 n<br>3.70 n<br>0.69 m | ηN           | Hole Ty<br>Checke<br>Approv<br>Scale: | ed By:            |                                | F      | RO<br>G, CB<br>PMcG<br>1:25 |
| Engineer:<br>Date Started:<br>Date Completed: | High Speed 2 (HS2) Ltd<br>20/01/2017<br>24/01/2017                                                                                                     |          |                                  |              | Orientatio                        |                |       |         |                            | d<br>90 d                         | -            | Log Si<br>Print D<br>Final D          | ate:              |                                | 20/11/ | =INAL<br>/2017<br>0.00m     |
|                                               | Stratum Description                                                                                                                                    | Legend   | Depth<br>(Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)                      | Sampli<br>Type | 1     | -       | andh Si<br>Blows<br>(mins) | tu Testi<br>Test                  | ng<br>Test F | Result Un                             | TCF<br>SCF<br>RQU | R Ifmin<br>R Ifave<br>C (mma)x | water  | Well/<br>Backfill           |
| Drillers description: \$                      | SAND and GRAVEL. (Rotary open                                                                                                                          |          | _                                |              |                                   |                |       |         |                            |                                   |              |                                       |                   |                                |        | 0000                        |
| Drillers description: 0                       | CHALK. (Rotary open hole)                                                                                                                              |          | - 5.20                           | 65.49        |                                   |                |       |         |                            |                                   |              |                                       |                   |                                |        | 영국 가장 가장 가장 가장 가장 가장 가<br>  |
| r Boreho                                      | ofe∓lerminated at10.00m+-                                                                                                                              | -+-4u.   | 00                               | 60.69        |                                   |                |       |         |                            |                                   |              |                                       |                   |                                |        |                             |
| Groundwater levels<br>Explanation of symb     | asured along borehole axis.<br>may be subject to seasonal, tidal and<br>bols and abbreviations given in 'Key to<br>n on appended 'Borehole Infonmation | Explorat |                                  |              | ould not be                       | taken a        | s con | nstant. |                            |                                   | <u> </u>     |                                       | _                 | <u> </u>                       | L      | 1                           |

| •barn<br>ritchies                                                                     |                                                                                               | BOF    | REI                             | HO             | LE L                       | 00            | 3   |     |                                         |                            |                 | Μ                            | L03                    | hole N<br>5-CR<br>et 1 of | 003                |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------|---------------------------------|----------------|----------------------------|---------------|-----|-----|-----------------------------------------|----------------------------|-----------------|------------------------------|------------------------|---------------------------|--------------------|
| Project Name:<br>Project No:                                                          | Amersham Tunnel to Calvert<br>1G063-AAZ.                                                      |        |                                 |                | Survey Gr<br>Co-ordinat    | -             | em: |     | 49903                                   | 9SGB<br>35.82 n<br>21.10 m | nE Cł           | ole Typ<br>necked<br>oproved | e:<br>By:              |                           | CP+<br>PMcG,<br>PM |
| Client:<br>ingineer:                                                                  | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd                                              |        |                                 |                | Ground Le                  | evel:         |     |     | 7                                       | 71.34 m                    |                 | cale:<br>og Stat             | tus:                   |                           | 1:<br>FII          |
| Date Started:<br>Date Completed:                                                      | 10/10/2016<br>26/10/2016                                                                      |        |                                 |                | Orientatior<br>Inclination | :             |     |     |                                         | de<br>90 d                 | leg. Fi         | int Dat<br>nal De            |                        |                           | 20/11/2<br>55.0    |
|                                                                                       | Stratum Description                                                                           | Legend | Depth<br>(Thick<br>ness)<br>(m) | - Level<br>(m) | Depth<br>(m)               | Sampl<br>Type | Dia | Rec | andh Si<br>Blows<br>(mins)              | Test                       | ng<br>Test Resu | It Units                     | TCR<br>SCR<br>RQD<br>% |                           | Weter E            |
|                                                                                       | brown slightly sandy gravelly CLAY<br>Ir to angular fine to coarse of flint.                  |        | -<br>-(0.30)<br>-<br>- 0.30     | 71.04          |                            | В             | mm  |     | ((((((((((((((((((((((((((((((((((((((( |                            |                 |                              |                        |                           | **<br>9*<br>9*     |
| Finm light greyish br<br>sandy gravelly CLA'<br>fine to coarse of flint<br>[Alluvium] | rown mottled reddish brown slightly<br>Y. Gravel is subangular to angular<br>t. Sand is fine. |        |                                 | 71.04          | 0.50                       |               |     |     |                                         |                            |                 |                              |                        |                           |                    |
|                                                                                       |                                                                                               |        | (1.20)                          |                | 1.00                       | в             |     |     |                                         |                            |                 |                              |                        |                           |                    |
|                                                                                       |                                                                                               |        |                                 |                |                            |               |     |     |                                         |                            |                 |                              |                        |                           |                    |
|                                                                                       | wn very sandy angular to<br>coarse GRAVEL of flint. Sand is fine                              |        | 1.50<br>                        | 69.84          | 1.20-1.65                  | u             | 100 | 40  | 127                                     |                            |                 |                              |                        |                           |                    |
|                                                                                       |                                                                                               |        |                                 |                | 1.65-2.10<br>1.65-2.20     | В             |     |     |                                         | S                          | N=33            |                              |                        |                           |                    |
|                                                                                       |                                                                                               |        |                                 |                | 2.20-2.65                  | u             | 100 | 100 | 109                                     |                            |                 |                              |                        |                           |                    |
|                                                                                       |                                                                                               |        |                                 |                | 2.65                       | D             |     |     |                                         |                            |                 |                              |                        |                           |                    |
|                                                                                       |                                                                                               |        |                                 |                | 2.65 -3.10<br>2.65 -3.20   | В             |     |     |                                         | с                          | N=35            |                              |                        |                           |                    |
|                                                                                       |                                                                                               |        |                                 |                | 3.20 -3.20                 |               |     |     |                                         | с                          | 50/0            |                              |                        |                           |                    |
|                                                                                       |                                                                                               |        |                                 |                | 3.65-4.20                  | В             |     |     |                                         |                            |                 |                              |                        |                           |                    |
|                                                                                       |                                                                                               |        | 1 1 1 1 1 1 1 1 1 1             |                | 4.20-4.65                  |               |     |     |                                         | c                          | N=30            |                              |                        |                           |                    |
|                                                                                       |                                                                                               |        |                                 |                | 4.65 -5.20                 | в             |     |     |                                         |                            |                 |                              |                        |                           |                    |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn<br>ritchies                                                                            | E                                                                                                                                                                                                                                         | BOF    | RE                                                 | HO           | LE L                    | 00            | 3   |     |                   |                  |               |                           | ML03                  | hole N<br>5-CR<br>et 2 of | 003          |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------|--------------|-------------------------|---------------|-----|-----|-------------------|------------------|---------------|---------------------------|-----------------------|---------------------------|--------------|
| Project Name:                                                                                | Amersham Tunnel to Calvert                                                                                                                                                                                                                |        |                                                    |              | Survey Gr<br>Co-ordinat | -             | em: |     |                   | 9SGB<br>85.82 n  |               | Hole T <u>y</u><br>Checke | /pe:                  |                           | CP+<br>PMcG, |
| Project No:                                                                                  | 1G063-AAZ.                                                                                                                                                                                                                                |        |                                                    |              |                         |               |     |     |                   | 21.10 n          |               |                           | ed By:                |                           | PN           |
| Client:                                                                                      | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                    |        |                                                    |              | Ground Le               | evel:         |     |     | 7                 | 71.34 n          | nOD           | Scale:                    |                       |                           | 1:           |
| Engineer:                                                                                    | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                    |        |                                                    |              |                         |               |     |     |                   |                  |               | Log St                    | atus:                 |                           | ۶I           |
| Date Started:                                                                                | 10/10/2016                                                                                                                                                                                                                                |        |                                                    |              | Orientation             | n:            |     |     |                   | d                | •             | Print D                   | ate:                  |                           | 20/11/20     |
| Date Completed:                                                                              | 26/10/2016                                                                                                                                                                                                                                |        |                                                    |              | Inclination             | :             |     |     |                   | 90 d             | leg.          | Final D                   | epth:                 |                           | 55.0         |
|                                                                                              | Stratum Description                                                                                                                                                                                                                       | Legend | Depth<br>(Thick-<br>ness)<br>(m)                   | Level<br>(m) | Depth<br>(m)            | Sampl<br>Type |     | -   | and h Si<br>Blows | tu Testi<br>Test | ng<br>Test Re | sult Ur                   | TCR<br>SCR<br>its RQ2 | Ifave                     | Weter E      |
|                                                                                              | wn very sandy angular to<br>coarse GRAVEL of flint. Sand is fine                                                                                                                                                                          |        |                                                    |              |                         |               |     |     |                   |                  |               |                           |                       |                           |              |
| to coarse.                                                                                   | COAISE GRAVEL OF MILL SAND IS MILE                                                                                                                                                                                                        |        | r₋<br>>-5.20                                       | 66.14        |                         |               |     |     |                   |                  |               |                           |                       |                           |              |
| [Beaconsfield Grave                                                                          |                                                                                                                                                                                                                                           | /      | r-<br>r-                                           |              |                         |               |     |     |                   |                  |               |                           |                       |                           |              |
| composed of light gr<br>SILT. Gravel is very<br>white with occasiona<br>subangular fine to c | tecovered as: Structureless CHALK<br>reyish white motHed brown gravelly<br>weak, medium density, light greyish<br>al black specks, angular to<br>coarse of chalk. With occasional<br>coarse gravel of flint fragments.<br>alk Fonmation?] |        | r-<br>f-<br>f-<br>f-<br>t-<br>t-<br>t-<br>t-<br>t- |              | 5.20 -5.65              |               |     |     |                   | S                | N=14          | 1                         |                       |                           |              |
|                                                                                              |                                                                                                                                                                                                                                           |        | -<br>f-<br>f-<br>f-<br>t-<br>t-<br>t-<br>t-        |              | 5.65 -6.50              | в             |     |     |                   |                  |               |                           |                       |                           |              |
|                                                                                              |                                                                                                                                                                                                                                           |        | f-<br>f-<br>r-<br>r-<br>t<2.BO)<br>r-              |              | 6.50 -6.95              | u             | 100 | 100 | 24                |                  |               |                           |                       |                           |              |
|                                                                                              |                                                                                                                                                                                                                                           |        | r-<br>f-<br>f-<br>r-                               |              | 6.95                    | D             | 100 | 100 | 24                |                  |               |                           |                       |                           |              |
|                                                                                              |                                                                                                                                                                                                                                           |        | f<br>f<br>f<br>f                                   |              | 6.95 -7.40              |               |     |     |                   | s                | N=1           | 7                         |                       |                           |              |
|                                                                                              |                                                                                                                                                                                                                                           |        | f-<br>f-<br>f-<br>r-                               |              |                         | в             |     |     |                   |                  |               |                           |                       |                           |              |
|                                                                                              |                                                                                                                                                                                                                                           |        | r-<br>r-<br>r-<br>f-<br>f-<br>f-                   |              | 6.95 -8.00              | B             |     |     |                   |                  |               |                           |                       |                           |              |
|                                                                                              | ecovered as: Structureless CHALK reyish white slightly sandy silty                                                                                                                                                                        |        | r-<br>r-<br>- ::.00<br>r-                          | 63.34        | 7.97                    |               |     |     |                   |                  |               |                           |                       |                           | .SZ          |
| weak, medium dens<br>occasional subangul                                                     | ar fine to coarse GRAVEL. Clasts are<br>ity, white with black specks. With<br>lar fine to coarse gravel of flint, and<br>bles of flint and chalk. (Grade<br>alk Fonmation?)                                                               |        | r-<br>r-<br>f-<br>f-<br>f-<br>r-                   |              | 8.00 - 8.45             | U-NR          | 100 |     | 21                |                  |               |                           |                       |                           |              |
|                                                                                              |                                                                                                                                                                                                                                           |        | r-<br>r<br>f-<br>f-<br>f-                          |              | 8.45 -8.90              |               |     |     |                   | S                | N=6           |                           |                       |                           |              |
|                                                                                              |                                                                                                                                                                                                                                           |        | r-<br>r-<br>r-<br>r-                               |              | 8.45 -9.50              | в             |     |     |                   |                  |               |                           |                       |                           |              |
|                                                                                              |                                                                                                                                                                                                                                           |        | f=<br>f=<br>f=<br>f=                               |              |                         |               |     |     |                   |                  |               |                           |                       |                           |              |
|                                                                                              |                                                                                                                                                                                                                                           |        | r-<br>r-<br>f-<br>f-<br>f-                         |              |                         |               |     |     |                   |                  |               |                           |                       |                           |              |
|                                                                                              |                                                                                                                                                                                                                                           |        | f<br>f<br>f<br>f                                   |              | 9.50 -9.95              | U-NR          | 100 |     | 27                |                  |               |                           |                       |                           |              |
|                                                                                              |                                                                                                                                                                                                                                           |        | r-                                                 |              | 10.00                   | w             |     |     |                   |                  | 1             |                           |                       |                           | I 1          |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn                                       | E                                                  | BORE                           | 10           | LE L                           | 00            | 3              |   |                              |                    |                 | ML                                 | orehole<br>035-CI<br>heet 3 c       | R003                     |
|---------------------------------------------|----------------------------------------------------|--------------------------------|--------------|--------------------------------|---------------|----------------|---|------------------------------|--------------------|-----------------|------------------------------------|-------------------------------------|--------------------------|
| Project Name:                               | Amersham Tunnel to Calvert                         |                                |              | Survey Gri<br>Co-ordinat       |               | em:            |   |                              | SGB<br>5.82 n      |                 | le Type:<br>ecked E                |                                     | CP+F<br>PMcG, 0          |
| Project No:<br>lient:                       | 1G063 -AAZ.<br>High Speed 2 (HS2) Ltd              |                                |              | Ground Le                      | evel:         |                |   |                              | 21.10 n<br>71.34 m | nOD Sc          |                                    |                                     | PM0<br>1:2               |
| ngineer:<br>ate Started:<br>Date Completed: | High Speed 2 (HS2) Ltd<br>10/10/2016<br>26/10/2016 |                                |              | Orientation                    |               |                |   |                              | d<br>90 d          | eg. Pri         | g Status<br>int Date:<br>nal Depth |                                     | FIN<br>20/11/20<br>55.00 |
|                                             | Stratum Description                                | Legend (Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)                   | Sampl<br>Type | - <sup>-</sup> | - | and h Sit<br>Blows<br>(mins) | tu Testi<br>Test   | ng<br>Test Resu | It Units                           | CR Ifmi<br>SCR Ifave<br>⊠2D (mnna)∢ |                          |
|                                             |                                                    |                                |              | 9.95 - 10.40                   |               |                |   |                              | s                  | N=22            |                                    |                                     |                          |
| 10. <b>45</b> m : Wii                       | th occasional subangular chalk cobbles.            |                                |              | 10.43<br>10.44<br>9.95 - 11.00 | EW<br>EW<br>B |                |   |                              |                    |                 |                                    |                                     |                          |
|                                             |                                                    |                                |              | 11.00-11.45                    |               |                |   |                              | S                  | N=20            |                                    |                                     |                          |
|                                             |                                                    |                                |              | 11.45 - 12.50                  | В             |                |   |                              |                    |                 |                                    |                                     |                          |
| 13.00 <i>m</i> : V                          | With occasional subangular ffint cobbles.          |                                |              | 12.50 - 12.95                  |               |                |   |                              | S                  | N=18            |                                    |                                     |                          |
|                                             |                                                    |                                |              | 12.95 - 14.00                  | В             |                |   |                              |                    |                 |                                    |                                     | <u> </u>                 |
| 14.45m: Gravelan                            | d cobbles become predominantly white               |                                |              | 14.00 - 14.45                  | U-NR          | 100            |   | 25                           |                    |                 |                                    |                                     | හිද හිද හිද හිද හිද      |
| chalk, with ra                              | re subangular fine to coarse ffint gravel.         |                                |              | 14.45 - 14.90                  |               |                |   |                              | S                  | N=7             |                                    |                                     | . ඉදිං ඉදිං              |
|                                             |                                                    |                                |              | 14.45 - 15.50                  | в             |                |   |                              |                    |                 |                                    |                                     | 000                      |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn<br>ritchies                                             | E                                                                                                                                                        | BOF   | RE                              | HO             | LE L                    | 00    | 3     |   |                             |                 |                | N                 | IL03              | hole N<br>5-CR(<br>et 4 of  | 003        |                                 |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------|----------------|-------------------------|-------|-------|---|-----------------------------|-----------------|----------------|-------------------|-------------------|-----------------------------|------------|---------------------------------|
| Project Name:                                                 | Amersham Tunnel to Calvert                                                                                                                               |       |                                 |                | Survey Gr<br>Co-ordinat |       | em:   |   |                             | SGB<br>5.82 m   |                | ole Typ<br>hecked |                   |                             | CF<br>PMc0 | P+R<br>G, (                     |
| Project No:                                                   | 1G063-AAZ.                                                                                                                                               |       |                                 |                |                         |       |       |   | 19372                       | 1.10 m          | nN A           | pprove            | d By:             |                             | F          | PM                              |
| lient:                                                        | High Speed 2 (HS2) Ltd                                                                                                                                   |       |                                 |                | Ground Le               | evel: |       |   | 7                           | 1.34 m          |                | cale:             |                   |                             |            | 1:2                             |
| ngineer:                                                      | High Speed 2 (HS2) Ltd                                                                                                                                   |       |                                 |                |                         |       |       |   |                             |                 |                | og Sta            |                   |                             |            | FIN                             |
| Date Started:                                                 | 10/10/2016                                                                                                                                               |       |                                 |                | Orientation             |       |       |   |                             | d               | -              | rint Dat          |                   | 2                           | 20/11      |                                 |
| Date Completed:                                               | 26/10/2016                                                                                                                                               |       |                                 |                | Inclination             |       |       |   |                             | 90 d            | · ·            | inal De           |                   |                             | 55         | 5.0<br>T                        |
|                                                               | Stratum Description                                                                                                                                      | Legen | Depth<br>(Thick<br>ness)<br>(m) | - Level<br>(m) | Depth<br>(m)            | Type  | (Dia) | - | andh Sit<br>Blows<br>(mins) | u Testi<br>Test | ng<br>Test Res | ult Units         | TCR<br>SCR<br>RØD | lfmin<br>Ifave<br>(mnna)k V | /eter      | ۱<br>Ba                         |
| composed of light g<br>angular to subangu<br>weak, medium den | Recovered as: Structureless CHALK<br>greyish white slightly sandy silty<br>alar fine to coarse GRAVEL. Clasts are<br>sity, white with black specks. With |       |                                 |                |                         |       |       |   |                             |                 |                |                   |                   |                             |            | 20 300 300                      |
| rare subangular col<br>undetermined)                          | ular fine to coarse gravel of flint, and<br>obles of flint and chalk. (Grade                                                                             |       | -                               |                |                         |       |       |   |                             |                 |                |                   |                   |                             |            | 0 000 0                         |
| [Lewes Nodular Ch                                             | alk Formation?]                                                                                                                                          |       | -                               |                | 15.50 - 15.95           |       |       |   |                             | s               | N=5            |                   |                   |                             |            | 00000                           |
|                                                               |                                                                                                                                                          |       |                                 |                | 13.30 - 13.35           |       |       |   |                             | 5               | 11-0           |                   |                   |                             |            | So So So                        |
|                                                               |                                                                                                                                                          |       |                                 |                |                         |       |       |   |                             |                 |                |                   |                   |                             |            | 808080                          |
|                                                               |                                                                                                                                                          |       |                                 |                | 15.95 - 17.00           | В     |       |   |                             |                 |                |                   |                   |                             |            | 080808                          |
|                                                               |                                                                                                                                                          |       |                                 |                | 17.00 - 17.45           |       |       |   |                             | S               | N=5            |                   |                   |                             |            | 30,80,80,80,80                  |
|                                                               |                                                                                                                                                          |       |                                 |                | 17.45 - 18.50           | в     |       |   |                             |                 |                |                   |                   |                             |            | 80 80 80 80 80 80 80 80 80 80 8 |
|                                                               |                                                                                                                                                          |       |                                 |                | 18.50 - 18.95           |       |       |   |                             | s               | N=9            |                   |                   |                             |            | 80 80 80 80 80 80 80 9          |
|                                                               |                                                                                                                                                          |       |                                 |                | 18.95 - 20.00           | В     |       |   |                             |                 |                |                   |                   |                             |            | 30 30 80 80 80 80 80 80 80      |
|                                                               |                                                                                                                                                          |       |                                 |                |                         |       |       |   |                             |                 |                |                   |                   |                             |            | 80.808080                       |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn                                                                                                                                                                                                                                          | E                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BORE                                    | HO                      | LE L                                      | 00           | 3   |                                        |                    |              | N                 | /L03                 | ehole N<br>85-CR<br>et 5 of  | 2003  |                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------|-------------------------------------------|--------------|-----|----------------------------------------|--------------------|--------------|-------------------|----------------------|------------------------------|-------|-------------------------------------------|
| Project Name:                                                                                                                                                                                                                                  | Amersham Tunnel to Calvert                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                         | Survey Gr                                 | -            | em: |                                        | SGB                |              | Hole Ty           | pe:                  |                              | C     | P+R                                       |
| Drain at Nav                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                         | Co-ordinat                                | es:          |     |                                        | 35.82 n            |              | Checke            |                      |                              | PMc   | ,                                         |
| Project No:<br>Client:                                                                                                                                                                                                                         | 1G063-AAZ.<br>High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                         | Ground Le                                 | vel.         |     |                                        | 21.10 n<br>71.34 m |              | Approve<br>Scale: | а ву:                |                              | I     | PMc<br>1:2                                |
| Engineer:                                                                                                                                                                                                                                      | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                         |                                           |              |     |                                        |                    | .02          | Log Sta           | atus:                |                              | I     | FINA                                      |
| Date Started:                                                                                                                                                                                                                                  | 10/10/2016                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                         | Orientation                               | n:           |     |                                        | d                  | eg.          | Print Da          | ite:                 |                              | 20/11 | /201                                      |
| Date Completed:                                                                                                                                                                                                                                | 26/10/2016                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                         | Inclination                               |              |     |                                        | 90 d               | <u> </u>     | Final De          | ·                    |                              | _     | 5.00                                      |
|                                                                                                                                                                                                                                                | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                     | Legend Depth<br>(Thick-<br>ness)<br>(m) | Level<br>(m)            | Depth<br>(m)                              | Samp<br>Type |     | oring and h S<br>Rec Blows<br>% (mins) | itu Testi<br>Test  | ng<br>Test R | esult Un          | TCR<br>SCF<br>its RØ | lfmin<br>₹lfave<br>↓Df(mma)k | Weter | W<br>Bacł                                 |
| composed of light gr<br>angular to subangula<br>weak, medium densi<br>occasional subangul<br>rare subangular cobt<br>undetermined)<br>[Lewes Nodular Cha                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 49.34                   | 20.00-20.45<br>20.45-21.50<br>21.50-21.95 | В            |     |                                        | S                  | N=*          |                   |                      |                              |       | ਉਹ ਉ  |
| medium strong, high<br>occasional black spe<br>coarse gravel sized<br>with thin grey lamina<br>very thinly bedded ve<br>Recovered as: slight<br>subangular gravel. C<br>Undetermined)<br>[Lewes Nodular Cha<br>22.70-22.90m<br>CHALK with thin | covered non-intact. Weak locally<br>density, greyish white CHALK with<br>acks, occasional angular fine to<br>rinded flint fragments, and locally<br>ations (marl wisps). With frequent<br>ery weak, low density horizons.<br>dy sandy slightly silt fine to coarse<br>thalk Rock Member. (Grade<br>lik Formation]<br>: Weak, medium density, greyish white<br>grey laminations (marl wisps). Fracture<br>grees, undulating rough, clean. (Grade:<br>A4) |                                         |                         | 22.00 - 23.20<br>22.70 - 22.82            | RC<br>c      | 102 |                                        |                    |              |                   | 100<br>35<br>9       | NIDO<br>10<br>110            |       | ් පති |
| Lewes Nodular Cha<br>Weak, high density,<br>thin grey laminations<br>horizontal to 15 deg<br>undulating rough, pa<br>Member. (Grade: A3)<br>[Lewes Nodular Cha                                                                                 | light greyish white CHALK with rare<br>(marl wisps). Fracture set 1:<br>rees closely spaced (25/90/200mm),<br>rtly open, clean. Chalk Rock<br>)                                                                                                                                                                                                                                                                                                         |                                         | 48.14<br>48.09<br>46.39 | 23.20 - 24.70<br>13.50 - 34.50            | RC           | 102 |                                        | Falling<br>Head    | 2.3E-        | -005 mi           | 100<br>59<br>7       | NIDO<br>80<br>110            |       | 알 알 알 알 알 알 알 알 알 알 알 알 알 알 알 알 알 알 알     |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn                                                                                                                                                                                                             | E                                                                                                                                                                                                                                                                                                                                                                     | BORE                                                                                                            | HO             | LE L                        | 00      | 3      |                       |                 |        |                 | ML03            | hole N<br>5-CR<br>et 6 of | 003                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|---------|--------|-----------------------|-----------------|--------|-----------------|-----------------|---------------------------|-------------------------------------|
| Project Name:                                                                                                                                                                                                     | Amersham Tunnel to Calvert                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                | Survey Gr<br>Co-ordinat     |         | em:    |                       | DSGB<br>35.82 r | nF     | Hole 1          | Type:<br>ad By: |                           | CP+R<br>PMcG, C                     |
| Project No:                                                                                                                                                                                                       | 1G063-AAZ.                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                |                             |         |        | 1937                  | 21.10 r         | nΝ     | Appro           | ved By:         |                           | PMc                                 |
| Client:<br>Engineer:                                                                                                                                                                                              | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                | Ground Le                   | vel:    |        |                       | 71.34 r         | nOD    | Scale:<br>Log S | Status:         |                           | 1:2<br>FINA                         |
| Date Started:<br>Date Completed:                                                                                                                                                                                  | 10/10/2016<br>26/10/2016                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                | Orientatior<br>Inclination: |         |        |                       | c<br>90 c       | 0      | Print [         | Date:<br>Depth: |                           | 20/11/20 <sup>2</sup><br>55.00      |
| •                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                       | Depth                                                                                                           |                |                             |         | ing, C | oring and h S         |                 | •      |                 |                 | If min                    |                                     |
|                                                                                                                                                                                                                   | Stratum Description                                                                                                                                                                                                                                                                                                                                                   | Legend (Thick-<br>ness)<br>(m)                                                                                  | Level<br>(m)   | Depth<br>(m)                | Туре    | (Dia)  | Rec Blows<br>% (mins) | Test            | Test F | Result L        | Inits ROL       | lfave<br>)(mna)(          | W<br>Weter Bac                      |
| frequent black specks<br>orientated, very dose                                                                                                                                                                    | ity, light greyish white CHALK with<br>s. Fractures are randomly<br>ly spaced (B/30/60mm), undulating<br>ight orangish brown staining, no<br>lk Formation]                                                                                                                                                                                                            |                                                                                                                 | -              | 24.70-26.20                 | RC      | 102    |                       |                 |        |                 | 100<br>53<br>16 | 10<br>30<br>50            | තේ ප්ර ප්ර ප්ර ප්ර ප්ර              |
| New Pit Chalk Form<br>Weak, medium to hig<br>with frequent thin gre<br>set 1: horizontal to 1:<br>(110/200/300mm), ur<br>partly open, with freq                                                                   | the gray mark JJ" pperQyrode" "M"" a rk-<br>ation<br>yh density, creamish white CHALK<br>y laminations (marl wisps). Fracture<br>5 degrees, dosely spaced<br>ndulating to planar slightly rough,<br>uent black specks, slight orangish<br>g, no infill. (Grade: A3)                                                                                                   | *                                                                                                               | 45.47<br>45.43 |                             |         |        |                       |                 |        |                 |                 |                           | ති බති බති බති බති බති              |
| [New Pit Chalk Form                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |                | 26.51-26.71<br>26.20-27.70  | C<br>RC | 102    |                       |                 |        |                 | 100<br>87<br>63 | 110<br>200<br>300         | ්ජි ්ජි ්ජි ්ජි ්                   |
|                                                                                                                                                                                                                   | re incipient fracture 45 <i>10 75 degrees,</i><br>very tight, with frequent black specks.                                                                                                                                                                                                                                                                             |                                                                                                                 |                |                             |         |        |                       |                 |        |                 |                 |                           |                                     |
| Marl?<br>New Pit Chalk Form<br>Very weak locally we<br>CHALK with occasion<br>wisps). Fracture set<br>spaced (30/150/320n                                                                                         | oft grey marl. Possibly Lower Glynde<br>ation<br>ak, medium density, greyish white<br>hal thin grey laminations (marl<br>1: horizontal to 10 degrees dosely<br>m), undulating slightly rough, partly<br>equent black specks, slight orangish                                                                                                                          | 27.75<br>27.81                                                                                                  | 43.59<br>43.53 | 28.12-28.30                 | с       |        |                       |                 |        |                 |                 | 100<br>300<br>500         | ංසු දෙයි දෙයි.<br>මේ දේ දේ දේ දේ දේ |
| Fracture set 2: 45 to                                                                                                                                                                                             | y infilled with soft grey marl (>3mm).<br>60 degrees, closely spaced, tight to<br>uent black specks, no infill. (Grade:<br>ation)                                                                                                                                                                                                                                     | 28.64                                                                                                           | 42.70          | 27.70-29.20                 | RC      | 102    |                       |                 |        |                 | 100<br>97<br>31 |                           | 990 990 990                         |
| 28.45 - 28.<br>Very weak, medium o<br>occasional thin grey<br>subrounded fine to m<br>fragments. Fracture s<br>medium to widely spa<br>undulating slightly roi<br>specks and slight ora<br>2: 45 to 65 degrees of | 48m : Thick/ laminated soft_re, marl. j<br>density, creamish white CHALK with<br>laminations (marl wisps) and rare<br>needium gravel sized rinded flint<br>set 1: horizontal to 10 degrees<br>ced (546/1090/1BOOmm),<br>ugh, partly open, with frequent black<br>ungish brown staining. Fracture set<br>Josely spaced tight to partly open,<br>k specks. (Grade A2/3) |                                                                                                                 |                |                             |         |        |                       |                 |        |                 |                 |                           | ් දේ දීම දේ දීම දේ දීම දේ දීම දේ ද  |
| 29.45-29.70m<br>extremely closely sp                                                                                                                                                                              | auon<br>Twoparallel 60 degreejoint fractures<br>paced, undulating slightly rough, partly<br>pen, with frequent black specks, clean.                                                                                                                                                                                                                                   |                                                                                                                 |                |                             |         |        |                       |                 |        |                 | 100<br>98<br>48 |                           | <u> 0 000 000 000 000 000</u>       |
|                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       | The second se |                | 29.20 - 30.70               | RC      | 102    |                       |                 | 1      |                 |                 |                           | Lon I                               |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn<br>ritchies                                                     | E                                                                                                                                                                                                                                                | BORI       | EHO                      | LE L                                 | 00            | 3   |                           |                |                                   |               |                                           | IL03                  | hole N<br>5-CR<br>et 7 of | 003                                         |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------|--------------------------------------|---------------|-----|---------------------------|----------------|-----------------------------------|---------------|-------------------------------------------|-----------------------|---------------------------|---------------------------------------------|
| Project No:                                                           | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd                                                                                                                                                                               |            |                          | Survey Gr<br>Co-ordinat<br>Ground Le | es:           | em: |                           | 49903<br>19372 | SGB<br>5.82 m<br>1.10 m<br>1.34 m | nE (<br>nN A  | Hole Typ<br>Checked<br>Approved<br>Scale: | By:                   |                           | CP-<br>PMcG,<br>PI<br>1                     |
| Date Started:                                                         | High Speed 2 (HS2) Ltd<br>10/10/2016<br>26/10/2016                                                                                                                                                                                               |            |                          | Orientation                          |               |     |                           |                | d<br>90 d                         | eg. F         | Log Sta<br>Print Dat<br>Final De          | e:                    |                           | FI<br>20/11/2<br>55.                        |
| St                                                                    | tratum Description                                                                                                                                                                                                                               | Legend (Th | epth<br>nick-<br>ss) (m) | Depth<br>(m)                         | Sampl<br>Type | 1   | Coring a<br>Rec E<br>% (I |                | tu Testi<br>Test                  | ng<br>Test Re | sult Unit                                 | TCR<br>SCR<br>s Rପ୍ରଧ | lfmin<br>Ifave<br>D(mna)x | Weter Ba                                    |
|                                                                       | 2m : Thickly laminated son grey marl.<br>Rinded nodular flint fragments (up to<br>20mm), possible flint band.                                                                                                                                    |            | n)<br>76)                | (m)<br>30.78-31.09<br>30.70-32.20    | с             | 102 |                           | mins)          |                                   |               |                                           | 100<br>99<br>66       | 60<br>310<br>750          | ם אים מים מים מים מים מים מים מים מים מים מ |
|                                                                       | illing disturbed, recovered non-intact.<br>illing disturbed, recovered non-intact.                                                                                                                                                               |            |                          | 32.20 - 33.70                        | ) RC          | 102 | 2                         |                |                                   |               |                                           | 93<br>71<br>25        |                           | დი               |
| 45/30/15mm), possible<br>[New Pit Chalk Format<br>34.49 - 34.57m : Dr | led rinded flint fragments (up to<br>e flint band (Glyndebourne Flints?).<br>tion]<br><i>rillin disturbed recovered non-intact.</i><br>y, creamish white CHALK with<br>ssil fragments, and rare subrounded<br>ivel sized rinded flint fragments. | ·          | .40 36.94<br>.50 36.84   | 33.70 -35.20<br>34.55 - 34.70        |               | 102 |                           |                |                                   |               |                                           | 97<br>77<br>10        |                           | <u> </u>                                    |

| •barn                                                                                                                                                      | E                                                                                                                                                                                                                                                                                        | BOF     | RE                               | HO           | LE L                                                                | 00            | 3      |        |                  |                                                    |                   | N                                                                             | 1L03                          | hole N<br>5-CR<br>et 8 of | 003                      |                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------|--------------|---------------------------------------------------------------------|---------------|--------|--------|------------------|----------------------------------------------------|-------------------|-------------------------------------------------------------------------------|-------------------------------|---------------------------|--------------------------|----------------------------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started:<br>Date Completed:                                                                   | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>10/10/2016<br>26/10/2016                                                                                                                                                                 |         |                                  |              | Survey Gr<br>Co-ordinat<br>Ground Le<br>Orientation<br>Inclination: | es:<br>evel:  | em:    |        | 49903<br>19372   | 9SGB<br>35.82 n<br>21.10 n<br>71.34 n<br>d<br>90 d | nN<br>nOD<br>leg. | Hole Typ<br>Checked<br>Approved<br>Scale:<br>Log Sta<br>Print Dat<br>Final De | l By:<br>d By:<br>tus:<br>te: |                           | PMcG<br>F<br>F<br>20/11/ | P+RC<br>G, CB<br>PMcG<br>1:25<br>FINAL<br>/2017<br>5.00m |
|                                                                                                                                                            | Stratum Description                                                                                                                                                                                                                                                                      | Legend  | Depth<br>(Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)                                                        | Sampl<br>Type | Dia    |        | andh Si<br>Blows | tu Testi<br>Test                                   | •                 | esult Unit                                                                    | TCR<br>SCR<br>s RØD           | lfave                     | Weter I                  | Well/<br>Backfill                                        |
| with black specks.<br>medium spaced, pl<br>partly open, with bl<br>no infill. (Grade: B4<br>[New Pit Chalk For<br>35.20 - 35.25m<br>35.55 - 35.700         |                                                                                                                                                                                                                                                                                          |         | ()<br>                           | -            |                                                                     |               |        |        |                  |                                                    |                   |                                                                               |                               | NIDO<br>430<br>950        |                          |                                                          |
| Drilling disturbed.                                                                                                                                        | : With rare bivalve shell fragments (up to<br>35x20x12mm).<br>Extremely weak to very weak, low                                                                                                                                                                                           |         | <br>                             | 35.19        | 35.20 - 36.70                                                       | RC            | 102    |        |                  |                                                    |                   |                                                                               | 97<br>58<br>40                |                           |                          |                                                          |
| orientated fractures<br>undulating slighUy<br>specks, slight yello<br>undetermined)<br><u>New Pit Chalk For</u><br>Weak, medium der<br>set 2: 25 to 35 deg | white CHALK. Abundant randomly<br>, extremely closely spaced,<br>rough, partly open, with frequent black<br>wish orange staining, no infill. (Grade<br><u>rmation</u><br>isity, creamish white CHALK. Fracture<br>rees medium spaced, undulating<br>with occasional black specks, slight |         | (0.45)<br>                       | 34.74        |                                                                     |               |        |        |                  |                                                    |                   |                                                                               |                               | NIDO                      |                          |                                                          |
| yellow staining, no<br>[New Pit Chalk For                                                                                                                  | infill. (Grade: A3)                                                                                                                                                                                                                                                                      |         | (0.85)                           |              | 37.04-37.26                                                         |               |        |        |                  |                                                    |                   |                                                                               | 100                           | 80<br>100<br>350          |                          |                                                          |
| white locally gritty<br>thin grey lamination<br>fragments. Fracture<br>smooth to striated,                                                                 | , low to medium density, creamish<br>CHALK with rare inclined (45 degree)<br>as (marl wisps), and rare fossil<br>e set 2: (2 no.) 60 degrees, planar<br>partly open, with frequent black<br>gish brown staining, no infill. (Grade:<br>mation]                                           |         | -37.45                           | 33.89        | 36.70 - 38.20                                                       | RC            | 102    |        |                  |                                                    |                   |                                                                               | 68 21                         | NIDO<br>50<br>90          |                          |                                                          |
| with occasional thir<br>Fracture set 1: (2 n<br>undulating slighUy                                                                                         |                                                                                                                                                                                                                                                                                          |         |                                  | 32.84        | 38.20 - 39.70                                                       | RC            | 102    |        |                  |                                                    |                   |                                                                               | 96<br>85<br>31                | NIDO<br>440               |                          |                                                          |
| degrees to vertica                                                                                                                                         | m : Drilling disturbed. Possibly (1 no.) 80<br>al fracture. undulating slightly rough, with<br>ecks, slight orangish brown staining, no<br>infill.                                                                                                                                       |         |                                  |              |                                                                     |               |        |        |                  |                                                    |                   |                                                                               |                               | 680                       |                          |                                                          |
| Groundwater levels<br>Explanation of sym                                                                                                                   | easured along borehole axis.<br>s may be subject to seasonal, tidal and on<br>hools and abbreviations given in 'Key to<br>en on appended 'Borehole Infonmation S                                                                                                                         | Explora |                                  |              | hould not be t                                                      | aken a        | as con | nstant |                  | L                                                  | <u>.</u>          | I                                                                             | 1                             | <u>.</u>                  | <u> </u>                 |                                                          |
| _                                                                                                                                                          | ies, Glasgow Road, Kilsyth, Glasgow G65 9Bl                                                                                                                                                                                                                                              |         |                                  |              |                                                                     |               |        |        |                  |                                                    |                   | BAN                                                                           | /IR Bor                       | ehole La                  | og0610                   | 412017                                                   |

| •barn                                             | E                                                                                | BOR               | E                      | HO             | LE L                       | 00      | 3      |        |                 |                 |        |        | Μ                 | L03        | hole N<br>5-CR<br>et 9 of | 003   |                |
|---------------------------------------------------|----------------------------------------------------------------------------------|-------------------|------------------------|----------------|----------------------------|---------|--------|--------|-----------------|-----------------|--------|--------|-------------------|------------|---------------------------|-------|----------------|
| Project Name:                                     | Amersham Tunnel to Calvert                                                       |                   |                        |                | Survey Gr<br>Co-ordinat    |         | em:    |        |                 | )SGB<br>35.82 r | nF     |        | e Type<br>cked    |            |                           |       | P+RC<br>G, CB  |
| Project No:                                       | 1G063-AAZ.                                                                       |                   |                        |                |                            | .00.    |        |        |                 | 21.10 r         |        |        | roved             | •          |                           |       | PMcG           |
| Client:                                           | High Speed 2 (HS2) Ltd                                                           |                   |                        |                | Ground Le                  | evel:   |        |        | -               | 71.34 n         | nOD    | Sca    |                   |            |                           |       | 1:25           |
| -                                                 | High Speed 2 (HS2) Ltd                                                           |                   |                        |                | Orientetier                |         |        |        |                 |                 |        |        | Stat              |            |                           |       |                |
|                                                   | 10/10/2016<br>26/10/2016                                                         |                   |                        |                | Orientation<br>Inclination |         |        |        |                 | c<br>90 c       | •      |        | it Date<br>al Dep |            |                           |       | /2017<br>5.00m |
| Date Completed.                                   | 20,10,2010                                                                       |                   | Depth                  |                |                            |         | ina. C | Corina | andh Si         |                 | 0      | 1 1110 | 1000              | TCR        | lf min                    |       |                |
| Sti                                               | ratum Description                                                                | Legend            | (Thick<br>ness)<br>(m) | - Level<br>(m) | Depth<br>(m)               | Туре    | 1      | Ŭ      | Blows<br>(mins) |                 | Test F | esult  | Units             | SCR<br>RØD | Ifave                     | Weter | Well<br>Backf  |
|                                                   | density, creamish white CHALK ey laminations (mart wisps).                       | <u>fr</u> tr      |                        |                |                            |         |        |        |                 |                 |        |        |                   |            | NIDO<br>440               |       |                |
| Fracture set 1: (2 no.)                           | horizontal to 15 degrees,                                                        | <b>H</b>          | <b>1</b> 0.20          | 31.14          |                            |         |        |        |                 |                 |        |        |                   |            | 680                       |       |                |
| 2: (1 no.) 45 degrees,                            | gh, very tight, no infill. Fracture set planar slightly rough, with black        | fr r              |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
| specks. (Grade: A2)<br>New Pit Chalk Format       | tion                                                                             | ╔┲╧┲╞             |                        |                | 39.70 - 41.20              | RC      | 102    |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   | g, medium density, creamish white                                                |                   | 0.70)                  |                |                            | -       |        |        |                 |                 |        |        |                   | 100        | 30                        |       |                |
|                                                   | I: horizontal to 10 degrees medium                                               |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   | 90<br>90   | 130<br>160                |       |                |
| 2: 45 to 60 degrees clo                           | sely spaced, undulating slighUy                                                  | HT THE            |                        |                |                            |         |        |        |                 |                 |        |        |                   |            | 100                       |       |                |
| rough, tight to partly op<br>Pit Chalk Formation] | pen, no infill. (Grade: B4/5) [New                                               |                   | 48:99                  | 30.44          |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
| 40.32 - 40.34r                                    | m:Ve thin/ bedded soft_re marl.                                                  |                   | +0:92<br>              | 30.42          |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
| Very thinly bedded soft<br>1?                     | t grey mart. Possibly New Pit Mart                                               |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
| New Pit Chalk Format                              |                                                                                  |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   | k, medium to high density,<br>K with occasional interwoven thin                  |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
| grey laminations (mart                            | wisps), rare bivalve fossil                                                      | Frit-             |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   | avities (up to 20x30mm). Fracture degrees widely spaced, undulating              |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
| slighUy rough, tight to                           | partly open, with occasional                                                     |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   | g, no infill. Fracture set 2: 40 to 60 ced, planar to undulating smooth to       | TTE               |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
| slighUy rough, with free                          | quent black specks, occasional                                                   | r r               |                        |                | 41.80 - 42.02              | с       |        |        |                 |                 |        |        |                   | 100        |                           |       |                |
| New Pit Chalk Format                              | staining, no infill. (Grade: A2)<br>tion]                                        |                   | _                      |                | 41.20 - 42.70              | RC      | 102    |        |                 |                 |        |        |                   | 82<br>26   |                           |       |                |
|                                                   | lling disturbed, recovered non-intact.<br>lling disturbed, recovered non-intact. | Fr Fr             |                        |                |                            |         |        |        |                 |                 |        |        |                   | 20         |                           |       |                |
|                                                   | inng ustabled, recovered norrinaet.                                              |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   |                                                                                  |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   |                                                                                  |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   |                                                                                  |                   | -                      |                |                            |         |        |        |                 |                 |        |        |                   |            | NIDO                      |       |                |
|                                                   | lling disturbed, recovered non-intact.                                           |                   | 3.15)                  |                |                            |         |        |        |                 |                 |        |        |                   |            | 390<br>1040               |       |                |
| 42.70 - 42.90m : Dril                             | lling disturbed, recovered non-intact.                                           |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   |                                                                                  |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   |                                                                                  |                   | -                      |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   |                                                                                  |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   |                                                                                  |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   |                                                                                  |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   | 100        |                           |       |                |
| 43.40 - 43.41m : /                                | Asymmetrical cavity (15x30mm) with                                               | T T               |                        |                | 42.70 - 44.20              | RC      | 102    |        |                 |                 |        |        |                   | BO         |                           |       |                |
|                                                   | brownish orange staining.                                                        | TTTT-             |                        |                |                            |         |        |        |                 |                 |        |        |                   | 18         |                           |       |                |
|                                                   |                                                                                  |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   |                                                                                  |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   |                                                                                  | IT TE             |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   |                                                                                  | T T               | -                      |                | 43.90 - 44.10              | c       |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   | lling disturbed, recovered non-intact.                                           | TT TT             |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   | to <u>nelium density</u> cr <u>ea</u> mish_µ1'+                                  | . <u>d,4 20</u> 4 | <b>14.20</b>           | 14             |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   | h rare thin grey laminations (mart<br>15 to 30 degrees closely spaced,           | r r               |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   | gh, partly open to open, with                                                    | Fr Fr             |                        |                |                            |         |        |        |                 |                 |        |        |                   | 400        |                           |       |                |
|                                                   | occasional orangish brown<br>ture set 2: (6 no.) 45 to 60                        | FT TH             | 1.50)                  |                |                            |         |        |        |                 |                 |        |        |                   | 100<br>77  | NIDO<br>200               |       |                |
| degrees, medium spac<br>infill. (Grade: A3)       | ed, undulating slighUy rough, no                                                 |                   | -                      |                |                            |         |        |        |                 |                 |        |        |                   | 18         | 400                       |       |                |
| [New Pit Chalk Format                             |                                                                                  | F                 |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
| 44.20 - 44.95n                                    | n : Drilling disturbed. Possibly due to<br>conjugate fracturing.                 |                   |                        |                | 44.20 - 45.70              | RC      | 102    |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   | galo naolanigi                                                                   | +                 | -                      | I              |                            | -       |        |        |                 |                 |        |        |                   |            |                           |       |                |
| Stratum depths measure                            | ured along borehole axis.                                                        |                   |                        |                | 1                          | I       | I      | I      | I               |                 | I      |        |                   |            |                           | I     | L              |
|                                                   | ay be subject to seasonal, tidal and                                             | other fluct       | uation                 | is and s       | hould not be               | taken a | as cor | nstant |                 |                 |        |        |                   |            |                           |       |                |
| Explanation of symbol                             | Is and abbreviations given in 'Key to                                            | Explorato         | ry Ho                  | les'           |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
| Further details given of                          | on appended 'Borehole Infonnation \$                                             | Sheer.            |                        |                |                            |         |        |        |                 |                 |        |        |                   |            |                           |       |                |
|                                                   | Glasdow Road Kilsyth Glasdow G6598                                               |                   |                        |                |                            |         |        |        |                 |                 |        |        |                   |            | ehole I                   |       |                |

| •barn<br>ritchies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BORE                             | EHO            | LE L                                 | 00           | 3      |        |                            |                                       |               |                                                  | ML03                  | hole N<br>5-CR<br>t 10 o  | 003              |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|--------------------------------------|--------------|--------|--------|----------------------------|---------------------------------------|---------------|--------------------------------------------------|-----------------------|---------------------------|------------------|-----------------|
| Project Name:       Amersham Tunnel to Calvert         Project No:       1G063-AAZ.         Client:       High Speed 2 (HS2) Ltd         Engineer:       High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                             |                                  |                | Survey Gr<br>Co-ordinat<br>Ground Le | es:          | em:    |        | 49903<br>19372             | 0SGB<br>35.82 n<br>21.10 n<br>71.34 n | nN            | Hole Ty<br>Checke<br>Approve<br>Scale:<br>Log St | d By:<br>ed By:       |                           | 1::              |                 |
| Date Started:         10/10/2016           Date Completed:         26/10/2016                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                | Orientatior<br>Inclination:          |              |        |        |                            | d<br>90 d                             | •             | Print Da<br>Final D                              |                       |                           | 20/11/20<br>55.0 |                 |
| Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Legend Dep<br>(Thio<br>nes<br>(m | s) (m)         | Depth<br>(m)                         | Samp<br>Type | 1      | -      | and h S<br>Blows<br>(mins) | itu Testi<br>Test                     | ing<br>Test R | esult Ur                                         | TCR<br>SCF<br>hits RØ | lfmin<br>lfave<br>D(mna)k | Weter Ba         | Nell/<br>ckfill |
| 45.25-45.33m : Drilling disturt.Jed, recovered non-intact.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                |                                      |              |        |        |                            |                                       |               |                                                  |                       | NIDO<br>200<br>400        |                  |                 |
| 45.55-45.70m: Drilling disturtJed, recovered non-intact.                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45.7                             | 0 25.64        |                                      |              |        |        |                            |                                       |               |                                                  |                       |                           |                  |                 |
| Weak, medium to high density, creamish white CHALK<br>with occasional thin grey laminations (marl wisps).<br>Fracture set 1: horizontal to 15 degrees widely spaced,<br>undulating slighUy rough, tight to parUy open, with<br>frequent black specks, no infill. Fracture set 2: (2 no.) 45<br>to 60 degrees, planar smooth to polished, tight to parUy<br>open, with frequent black specks, occasional heavy<br>orange and blackish brown staining, no infill. (Grade: A2)<br>[New Pit Chalk Formation]    |                                  | <b>U</b> 25.64 | 45.70 - 47.20<br>46.39 - 46.79       |              | 102    |        |                            |                                       |               |                                                  | 100<br>91<br>58       |                           |                  |                 |
| 47.10-47.20m : Drilling disturtJed, recovered non-intact.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | ) (0           |                                      |              |        |        |                            |                                       |               |                                                  | 100                   | NIDD<br>270<br>700        |                  |                 |
| 48.10-48.18m:Drilling disturt.Jed, recovered non-intact.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                | 47.20-48.70                          | RC           | 102    |        |                            |                                       |               |                                                  | 87<br>23              |                           |                  |                 |
| 48.35-48.40m : Drilling disturtJed, recovered non-intact.<br>48.50-48.60m : Asymmetrical cylindrical vug (25x100mm)<br>with brownish orange staining.                                                                                                                                                                                                                                                                                                                                                       |                                  |                |                                      |              |        |        |                            |                                       |               |                                                  |                       |                           |                  |                 |
| Drilling disturbed, recovered non-intact. Weak, low to<br>medium density, greyish white CHALK. (Grade<br>undetermined)<br>[New Pit Chalk Formation]<br><i>48.70-49.30m: Drilling disturtJed, recovered non-intact.</i>                                                                                                                                                                                                                                                                                      |                                  |                |                                      |              |        |        |                            |                                       |               |                                                  |                       | NIDO<br>50                |                  |                 |
| Weak locally medium strong, medium to high density,<br>creamish white CHALK with occasional interwoven thin<br>grey laminations (marl wisps). Fracture set 1: (2 no.) 10<br>to 30 degrees very widely spaced, undulating slightly<br>rough, parUy open, with frequent black specks, slight<br>yellow staining, no infill. Fracture set 2: (4 no.) 45 to 65<br>degrees medium to very widely spaced, undulating<br>slightly rough, partly open, with rare orangish brown<br>staining, no infill. (Grade: A1) |                                  | 0 22.04        | 48.70 -50.20<br>49.60 - 49.78        |              | 102    |        |                            |                                       |               |                                                  | 100<br>69<br>17       |                           |                  |                 |
| Stratum depths measured along borehole axis.<br>Groundwater levels may be subject to seasonal, tidal and<br>Explanation of symbols and abbreviations given in 'Key to<br>Further details given on appended 'Borehole Information<br>Office: BAM Ritchies, Glasgow Road, Kilsyth, Glasgow G65 9B                                                                                                                                                                                                             | Exploratory<br>Sheer.            |                | hould not be t                       | aken a       | as cor | nstant |                            |                                       |               | RA                                               | MRRo                  | rehole                    | og 06/041:       | 2017            |

| ritchies                      |                                                                                        |            |                        |              |                             |        |         |                       |                 |        |                    | Shee     | et 11 of         |                |
|-------------------------------|----------------------------------------------------------------------------------------|------------|------------------------|--------------|-----------------------------|--------|---------|-----------------------|-----------------|--------|--------------------|----------|------------------|----------------|
| oject Name:                   | Amersham Tunnel to Calvert                                                             |            |                        |              | Survey Gri<br>Co-ordinate   | -      | em:     |                       | DSGB<br>35.82 n | ٥F     | Hole T             |          |                  | CP-<br>PMcG    |
| oject No:                     | 1G063-AAZ.                                                                             |            |                        |              | CO-Ordinat                  |        |         |                       | 21.10 n         |        | Approv             | -        |                  | PI             |
| ent:                          | High Speed 2 (HS2) Ltd                                                                 |            |                        |              | Ground Le                   | vel:   |         |                       | 71.34 m         | nOD    | Scale:             |          |                  | 1              |
| gineer:                       | High Speed 2 (HS2) Ltd                                                                 |            |                        |              |                             |        |         |                       |                 |        | Log St             |          |                  | FI             |
| te Started:<br>ate Completed: | 10/10/2016<br>26/10/2016                                                               |            |                        |              | Orientation<br>Inclination: |        |         |                       | d<br>90 d       | •      | Print D<br>Final D |          | :                | 20/11/2<br>55. |
|                               |                                                                                        |            | Depth                  |              |                             |        | ing, Co | oring and h S         | itu Testi       | na     |                    | TCR      | Ifmin            |                |
|                               | Stratum Description                                                                    | Legend (   | Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)                | Туре   | (Dia)   | Rec Blows<br>% (mins) | Test            | Test F | Result Ur          | its ROAD | lfave<br>(mnna)x | Weter B        |
| New Pit Chalk Form            |                                                                                        |            | (,                     |              |                             |        |         |                       |                 |        |                    |          |                  |                |
| 49.90 - 49.99m : L            | Drilling disturbed, recovered non-intact.<br>Drilling disturbed, recovered non-intact. |            |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
| 50.10 - 50.20m : L            | Drilling disturbed, recovered non-intact.                                              |            |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        |            |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        |            | .                      |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        | Frit       |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        |            |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        |            |                        |              | 50.20 -51.70                | RC     | 102     |                       |                 |        |                    | 97<br>97 |                  |                |
|                               |                                                                                        | fr r -     | -                      |              | 30.20 01.70                 |        |         |                       |                 |        |                    | 97       |                  |                |
|                               |                                                                                        |            |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        | T T        |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        | ртт Е      |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        | ,r,r       | .                      |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        | FT-T       |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        |            |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        |            |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        |            | -                      |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        |            |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        | HT I       |                        |              | 52.23 - 52.46               | с      |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        |            |                        |              | 51.70 -53.20                | RC     | 102     |                       |                 |        |                    | 93<br>91 | NIDO             |                |
|                               |                                                                                        | <b>FFF</b> | 5.70)                  |              |                             |        |         |                       |                 |        |                    | 91       | 1050<br>1995     |                |
|                               |                                                                                        |            |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        | jr jr E    |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        | TTT-       |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        |            | -                      |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        | T T        |                        |              | 53.20-53.31                 | C      |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        | ır ¦ır [-  |                        |              | 53.20-53.3                  | с      |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        |            |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        |            |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        | HT.E       |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        |            |                        |              |                             |        |         |                       |                 |        |                    | 100      |                  |                |
|                               |                                                                                        |            | _                      |              | 53.20 - 54.70               | RC     | 102     |                       |                 |        |                    | 73<br>73 |                  |                |
|                               |                                                                                        |            |                        |              |                             |        |         |                       |                 |        |                    | /3       |                  |                |
| 54.20-54.40m:                 | Patchy orange brown staining (sponge                                                   | FFFF       |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               | bed)?                                                                                  |            |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        |            |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        | ÉT TE      |                        |              |                             |        |         |                       |                 |        |                    |          |                  |                |
|                               |                                                                                        |            |                        |              |                             |        |         |                       |                 |        |                    | 77       |                  |                |
|                               |                                                                                        | ır‡r€      |                        |              | 54.70 -55.00                | RC     | 102     |                       |                 |        |                    | 33       |                  |                |
| Boreh                         | ole Terminated at 55,00m                                                               | ╞┲╧┲╪      | 55.00                  | 16.34        |                             |        |         |                       |                 |        |                    |          | ──               |                |
|                               |                                                                                        |            | I                      |              |                             |        |         |                       |                 |        |                    |          | <u> </u>         |                |
|                               | asured along borehole axis.<br>may be subject to seasonal, tidal and                   |            |                        | ام ام م      | haved not had               | akan a |         | atant                 |                 |        |                    |          |                  |                |

| <b>,,.b</b>                                                                                                          | a I                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                             | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | REH                                                        | OLE                                                                                                                                                   | IN                                                                                               | IF           | OR                                                                                          | MA                                                              | ٩T                         | ION                                                                                                                                                                                                                        | SH                                                                              | EE.                                                                                               | Г                                                                                    |                                                                                              | ML                                                                                                                          | Borehole<br><b>_035-CF</b><br>Sheet 1 c                                                         | R003                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project N<br>Project N<br>Client:<br>Engineer                                                                        | lo:                                                                                                 |                                                                                    | 1G063<br>High Sp                                                                                                                                                                                                                                                                                                                                            | am Tunnel<br>-AAZ<br>beed 2 (HS<br>beed 2 (HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2) Ltd                                                     |                                                                                                                                                       |                                                                                                  |              |                                                                                             | Co-oi                                                           | ey Gri<br>rdinate<br>nd Le |                                                                                                                                                                                                                            |                                                                                 | OSC<br>499035.4<br>193721.7<br>71.                                                                | 82 mE                                                                                | C<br>A                                                                                       | Hole Typ<br>Checked<br>Approvec<br>Log Stat                                                                                 | By:<br>I By:                                                                                    | CP+RC<br>PMcG, CB<br>PMcG<br>FINAL                                                                                                                                                                                                                                                                                                                                                   |
| Date Star                                                                                                            | rted:                                                                                               |                                                                                    | 10/10/2                                                                                                                                                                                                                                                                                                                                                     | 016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                                                                                                                                                       |                                                                                                  |              |                                                                                             | Orien                                                           | itation                    | :                                                                                                                                                                                                                          |                                                                                 |                                                                                                   | deg                                                                                  |                                                                                              | Date:                                                                                                                       |                                                                                                 | 20/11/2017                                                                                                                                                                                                                                                                                                                                                                           |
| Date Cor                                                                                                             |                                                                                                     |                                                                                    | 26/10/2                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            |                                                                                                                                                       |                                                                                                  |              | d Explora                                                                                   |                                                                 | ole Info                   |                                                                                                                                                                                                                            |                                                                                 |                                                                                                   | 90 deg                                                                               |                                                                                              | -inal Dep                                                                                                                   |                                                                                                 | 55.00m                                                                                                                                                                                                                                                                                                                                                                               |
| From <ml<br>0:00<br/>1.20<br/>5.20<br/>22.00</ml<br>                                                                 | 5                                                                                                   | o rml<br>.20<br>5.20<br>2.00<br>5.00                                               | IVoe<br>IP<br>CP<br>CP<br>RC                                                                                                                                                                                                                                                                                                                                | Start<br>10/10/2016<br>10/10/2016<br>20/10/2016<br>24/10/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/10/2016                                                 | Plar<br>Insulated digg<br>T830-047<br>T830-047<br>T830-047<br>P450                                                                                    |                                                                                                  | Ge           | eobor-S<br>(146)                                                                            | TC C                                                            |                            | S. Kiczyns<br>S. Kiczyns<br>S. Kiczyns                                                                                                                                                                                     | Crew<br>ki /J. Adam<br>ki /J. Adam<br>ki /J. Adam<br>e /T. Devlin               |                                                                                                   | Loaaer<br>J. Manas<br>J. Manas<br>A. Mccas                                           | s<br>s<br>W                                                                                  |                                                                                                                             | Rema                                                                                            | rks                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                      |                                                                                                     |                                                                                    | Bolii                                                                                                                                                                                                                                                                                                                                                       | 11-Drillina P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                                                                                                                                       |                                                                                                  |              |                                                                                             | Hole I                                                          | Diamete                    | er by Deoth                                                                                                                                                                                                                |                                                                                 |                                                                                                   |                                                                                      |                                                                                              |                                                                                                                             | er by Deoth                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                      |
| Date<br>10/10/2016<br>19/10/2016<br>19/10/2016<br>19/10/2016<br>20/10/2016<br>21/10/2016<br>21/10/2016<br>21/10/2016 | 0<br>1<br>1<br>1<br>0<br>1<br>1<br>0                                                                | ime<br>7:30<br>8:00<br>1:00<br>7:45<br>7:30<br>7:45<br>8:30<br>2:30                | Deoth <ml<br>0.00<br/>5.65<br/>5.65<br/>12.95<br/>12.95<br/>22.00<br/>21.50<br/>21.50</ml<br>                                                                                                                                                                                                                                                               | Casinani Di<br>0.00<br>4.70<br>5.20<br>12.50<br>12.50<br>22.00<br>21.50<br>21.50                                                                                                                                                                                                                                                                                                                                                                                                                                                 | th Water (m)<br>Dry<br>Dry<br>B.00<br>B.70<br>13.50<br>Dry | Rema<br>start of shift<br>End of shill<br>start of shift<br>End of shift<br>End of shift<br>start of shift<br>start of shift<br>End of shift          | rks                                                                                              |              | eoth <ml<br>22.00<br/>55.00</ml<br>                                                         | Dia.<br>20<br>14                                                | 0                          | Ren                                                                                                                                                                                                                        | narks                                                                           | Deoth<br>21.5<br>21.5<br>55.0                                                                     | 0                                                                                    | Dia.rmm<br>200<br>168<br>146                                                                 |                                                                                                                             | Rema<br>ble percussive                                                                          |                                                                                                                                                                                                                                                                                                                                                                                      |
| 24/10/2016<br>24/10/2016<br>25/10/2016                                                                               | 1                                                                                                   | 2:30<br>2:30<br>6:45<br>9:15                                                       | 21.50<br>21.50<br>24.70<br>24.70                                                                                                                                                                                                                                                                                                                            | 21.50<br>21.50<br>24.70<br>24.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dry<br>1.20<br>5.75<br>5.82                                | start of shift<br>End of shift<br>start of shift                                                                                                      |                                                                                                  | Fr           | rom (m)                                                                                     | To (                                                            | (m) V                      | olume (litres)                                                                                                                                                                                                             | wat                                                                             | er Added                                                                                          | Re <del>co</del> rds                                                                 | Re                                                                                           | marks                                                                                                                       |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                      |
| 25/10/2016<br>25/10/2016<br>26/10/2016<br>26/10/2016                                                                 | 1                                                                                                   | 9:15<br>7:00<br>9:15<br>8:00                                                       | 50.20<br>50.20<br>55.00                                                                                                                                                                                                                                                                                                                                     | 50.20<br>50.20<br>55.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.20<br>5.80<br>5.82                                       | End of shill<br>start of shill<br>Hole complete                                                                                                       | e                                                                                                |              |                                                                                             | Cr                                                              | nisellin                   | iDetails                                                                                                                                                                                                                   |                                                                                 |                                                                                                   |                                                                                      | D                                                                                            | rillino Flusi                                                                                                               | Details                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                      |
| -From (m)<br>13.50                                                                                                   | To (m<br>34.50                                                                                      |                                                                                    |                                                                                                                                                                                                                                                                                                                                                             | earned out ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remarks<br>standpipe                                       |                                                                                                                                                       |                                                                                                  | Fr           | rom (m)                                                                                     |                                                                 |                            | ation(hh:mm)                                                                                                                                                                                                               | Tool                                                                            | From (n<br>22.00<br>24.70<br>33.70<br>38.20<br>41.20<br>42.70<br>44.20<br>45.70<br>47.20<br>48.70 | 24<br>33<br>38<br>41<br>42<br>44<br>44<br>45<br>45<br>47<br>48                       | m) Re<br>.70<br>.20<br>.20<br>.20<br>.70<br>.20<br>.70<br>.20<br>.70<br>.20<br>.70<br>.20    | Eturns (%)<br>90- 90<br>70- 70<br>60- 60<br>50- 50<br>40- 40<br>50- 50<br>40- 40<br>30- 30<br>20- 20<br>10-10<br>Backfill D | Flush<br>Water<br>Water<br>Waler<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water | Colour                                                                                                                                                                                                                                                                                                                                                                               |
| Dale<br>                                                                                                             | 8.0                                                                                                 | <del>)   8.</del> 0                                                                | (m) lime (mine<br>10 5                                                                                                                                                                                                                                                                                                                                      | Depth (m) Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | led(m) R                                                   | emarks                                                                                                                                                | SP                                                                                               | 1            | From(m)                                                                                     | ) To (m)<br>14.00                                               | ) <b>Da(m</b><br>80        | Pipe Type<br>Plain                                                                                                                                                                                                         | Remarks                                                                         | 0.00                                                                                              | 0.                                                                                   | 10                                                                                           | legend<br>909                                                                                                               | Des<br>Upstanding c                                                                             | aiption<br>over                                                                                                                                                                                                                                                                                                                                                                      |
| 19/10/2016<br>19/10/2016<br>19/10/2016                                                                               | 8.0                                                                                                 | ) B.0                                                                              | 0 15                                                                                                                                                                                                                                                                                                                                                        | 7.25<br>7.05<br>6.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                                                                                                                                       | SP                                                                                               | 1            | 14.00                                                                                       | 34.00                                                           | ₿O<br>                     | Slotted                                                                                                                                                                                                                    |                                                                                 | 0.10<br>0.50<br>13.50<br>34.50                                                                    | 13.<br>34.                                                                           | .50<br>.50                                                                                   | 903<br>902                                                                                                                  | Concrete<br>Bentonite<br>Gravel<br>Bentonite                                                    |                                                                                                                                                                                                                                                                                                                                                                                      |
| Donth (m)                                                                                                            | Tret                                                                                                |                                                                                    | ud Casino                                                                                                                                                                                                                                                                                                                                                   | /m Water (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LISW/Bon/mm IB                                             | lound Ront/m                                                                                                                                          |                                                                                                  |              | Penetra                                                                                     |                                                                 |                            |                                                                                                                                                                                                                            | Ron4/mml                                                                        | Playar D                                                                                          | nE/mml                                                                               | Ployes                                                                                       | Donfilmm                                                                                                                    | Usemaa                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                      |
| Depth (m)<br>1.66<br>3.26<br>3.20<br>6.95<br>8.45<br>9.95<br>11.00<br>12.50<br>14.45<br>15.50<br>20.00<br>21.50      | Type<br>S<br>C<br>C<br>C<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | N VS<br>N=3<br>50//<br>N=3<br>N=1<br>N=1<br>N=2<br>N=2<br>N=2<br>N=1<br>N=7<br>N=4 | 33         1.22           5         2.20           0         3.20           0         4.20           4         4.70           4         4.70           5         8.00           2         9.50           0         11.00           6         12.55           1         15.56           1         17.00           1         18.55           8         20.000 | Dry         Dry           Dry         Base           Dot         12.00           D         12.80 |                                                            | Iows1 Penting<br>5 75<br>5 75<br>55 5<br>4 75<br>3 75<br>2 75<br>2 75<br>2 75<br>3 75<br>1 75<br>1 75<br>1 75<br>1 75<br>6 75<br>6 75<br>8 75<br>6 75 | mi Bow<br>B<br>4<br>4<br>3<br>1<br>2<br>2<br>2<br>2<br>1<br>1<br>3<br>2<br>2<br>2<br>1<br>1<br>8 | <u>s2</u> Pe | n2(mml)<br>76<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75 | Biows3 111<br>500 6<br>3 4<br>2 6<br>6 3<br>3 1<br>1 3<br>9 111 | Pensim 76                  | Imil         Blows4           6         8           3         4           2         6           6         1           2         1           2         1           1         2           1         2           3         12 | 75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>7 | Blows5 Pa<br>9<br>8<br>4<br>4<br>1<br>6<br>6<br>6<br>1<br>1<br>2<br>2<br>3<br>14                  | n5(mm)<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75 | Blows6<br>9<br>8<br>4<br>5<br>1<br>1<br>4<br>7<br>8<br>2<br>2<br>1<br>1<br>2<br>3<br>3<br>12 | 76<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                            | I Hammel<br>BRK3<br>BRK3<br>BRK3<br>BRK3<br>BRK3<br>BRK3<br>BRK3<br>BRK3                        | 3         70           70         70           70         70           70         70           70         70           70         70           70         70           70         70           70         70           70         70           70         70           70         70           70         70           70         70           70         70           70         70 |
|                                                                                                                      |                                                                                                     |                                                                                    |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            | Reasonforl                                                                                                                                            | HoleTe                                                                                           | ermin        | ation: F                                                                                    | Reache                                                          | ed sch                     | eduled de                                                                                                                                                                                                                  | epth                                                                            |                                                                                                   |                                                                                      |                                                                                              |                                                                                                                             |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                      |
| Ground                                                                                                               | water                                                                                               | levels                                                                             | can be su                                                                                                                                                                                                                                                                                                                                                   | bject to se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | asonal, tidal a                                            |                                                                                                                                                       |                                                                                                  |              |                                                                                             |                                                                 |                            |                                                                                                                                                                                                                            |                                                                                 |                                                                                                   |                                                                                      |                                                                                              |                                                                                                                             |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                      |

BAM Ritchies, Glasgow Road, Kilsyth, Glasgow G65 9BL

| -barn                                                    | E                                                                                                        | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HO    | LE L                                | 00    | 3                  |          |                 |                    |          | N                               | IL03        | hole N<br>5-CR<br>et 1 of | 004                    |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|-------|--------------------|----------|-----------------|--------------------|----------|---------------------------------|-------------|---------------------------|------------------------|
| Project Name:                                            | Amersham Tunnel to Calvert                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | Survey Gr<br>Co-ordinat             | -     | em:                |          | 49891           | SGB<br>3.63 n      | nE C     | lole Typ<br>Checked             | e:<br>By:   |                           | CP+<br>JMe,            |
| Project No:<br>lient:                                    | 1G063 -AAZ<br>High Speed 2 (HS2) Ltd                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | Ground Le                           | evel: |                    |          |                 | 19.98 n<br>72.15 n | nOD S    | pproved                         |             |                           | PN<br>1:               |
| ngineer:<br>ate Started:<br>Date Completed:              | High Speed 2 (HS2) Ltd<br>24/10/2016<br>26/10/2016                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | Orientation<br>Inclination          |       |                    |          |                 | d<br>90 d          | leg. F   | og Sta<br>Print Dat<br>Final De | te:         |                           | FII<br>20/11/2<br>55.0 |
|                                                          |                                                                                                          | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                     | Sampl | ing, C             | oring    | andh Si         | tu Testi           | na       |                                 | TCR         | lfmin                     |                        |
|                                                          | Stratum Description                                                                                      | Legend (Thick-<br>ness)<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (m)   | Depth<br>(m)                        | Туре  | ( <sup>Dia</sup> ) | Rec<br>% | Blows<br>(mins) | Test               | Test Res | sult Units                      | SCR<br>RØJD | lfave<br>(mnna)x          | water Ba               |
|                                                          | brown slightly gravelly SILT with<br>Gravel is subrounded to subangular                                  | X X X<br>X X X<br>X X X<br>X X X<br>X X X<br>X X X<br>(X X X<br>(0.70)<br>X X X<br>(X X X X<br>(X X X<br>(X X X<br>(X X X<br>(X X X X X X<br>(X X X X X X X<br>(X X X X X X X X X X X X X X X X X X X |       | 0.50                                | в     |                    |          |                 |                    |          |                                 |             |                           |                        |
| ine to coarse GRAV<br>cobbles. Sand is fine<br>Alluvium] |                                                                                                          | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71.45 | 1.1                                 | В     |                    |          |                 |                    |          |                                 |             |                           |                        |
|                                                          | oming slightly darker in colour and veiy<br>clayey.<br>oming dark orangish brown and slightly<br>clayey. | (0.80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1.20-1.65                           | UT    | 100                | 80       | 70              |                    |          |                                 |             |                           |                        |
| ubangular to round                                       | ming dense light brown sandy<br>ed fine to coarse GRAVEL of flint.<br>e predominantly coarse.            | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70.65 | 1.65                                | D     | 100                |          | 10              |                    |          |                                 |             |                           |                        |
|                                                          |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 1.65-2.10<br>1.65-2.10<br>1.65-2.20 | D     |                    |          |                 | S                  | N=14     |                                 |             |                           |                        |
|                                                          |                                                                                                          | -(1.70)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 2.20-2.65<br>2.20-2.65              | D     |                    |          |                 | S                  | N=40     |                                 |             |                           |                        |
|                                                          |                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 2.65 -3.20                          | В     |                    |          |                 |                    |          |                                 |             |                           |                        |
|                                                          | e light brown slightly silty very sandy<br>fine to coarse GRAVEL of flint. Sand<br>el]                   | 3.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 68.95 | 3.20 -3.65<br>3.20 -3.65            | D     |                    |          |                 | S                  | N=43     |                                 |             |                           |                        |
|                                                          |                                                                                                          | <br><br>(2.80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 3.65-4.20                           | В     |                    |          |                 |                    |          |                                 |             |                           |                        |
|                                                          |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 4.20-4.65<br>4.20-4.65              | D     |                    |          |                 | S                  | N=44     |                                 |             |                           |                        |
|                                                          |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 4.65 -5.20                          | в     |                    |          |                 |                    |          |                                 |             |                           |                        |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| <b>barn</b>                                 | E                                                                                | BORE                                                                                                            | HO    | LE L                       | .00   | 3     |       |                 |               |          | N                   | 1L03       | ehole N<br>85-CR<br>et 2 of | 004   | Ļ              |
|---------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------|----------------------------|-------|-------|-------|-----------------|---------------|----------|---------------------|------------|-----------------------------|-------|----------------|
| Project Name:                               | Amersham Tunnel to Calvert                                                       |                                                                                                                 |       | Survey G<br>Co-ordina      |       | em:   |       |                 | SGB<br>3.63 r |          | lole Typ<br>Checked | e:         | 21 2 01                     | C     | CP+F<br>/Ie, ( |
| Project No:                                 | 1G063-AAZ.                                                                       |                                                                                                                 |       | oo oraina                  | 100.  |       |       |                 | 19.98 r       |          | pprove              |            |                             |       | PM             |
| lient:                                      | High Speed 2 (HS2) Ltd                                                           |                                                                                                                 |       | Ground L                   | evel: |       |       |                 | 72.15 r       |          | scale:              | ).         |                             |       | 1:2            |
| ngineer:                                    | High Speed 2 (HS2) Ltd                                                           |                                                                                                                 |       |                            |       |       |       |                 |               | L        | .og Sta             | tus:       |                             |       | FIN            |
| ate Started:                                | 24/10/2016                                                                       |                                                                                                                 |       | Orientatio                 | n:    |       |       |                 | c             |          | Print Dat           |            |                             | 20/11 | 1/20           |
| ate Completed:                              | 26/10/2016                                                                       |                                                                                                                 |       | Inclination                |       |       |       |                 | 90 c          | •        | inal De             |            |                             |       | 5.00           |
|                                             |                                                                                  | Depth                                                                                                           |       |                            | Sampl | ina C | orina | and h Si        |               | •        |                     | TCF        | RIfmin                      | -     |                |
| :                                           | Stratum Description                                                              | Legend (Thic<br>ness)<br>(m)                                                                                    |       | Depth<br>(m)               | Туре  | -     | -     | Blows<br>(mins) | Test          | Test Res | sult Units          | SCR<br>RØD | R Ifave<br>I(mnnna)x        |       | r Ba           |
|                                             | light brown slightly silty very sandy<br>ne to coarse GRAVEL of flint. Sand<br>] | ×                                                                                                               |       |                            |       |       |       |                 |               |          |                     |            |                             |       | 00000          |
|                                             |                                                                                  |                                                                                                                 |       | 5.20 -5.60<br>5.20 -5.65   | D     |       |       |                 | S             | 50/24    | 5                   |            |                             |       | 0000000        |
|                                             |                                                                                  | × × +<br>× × +<br>× × +                                                                                         |       | 5.65 -6.00                 | в     |       |       |                 |               |          |                     |            |                             |       | 0 0 0 0 0      |
| Gravel is weak, medi                        | composed of white gravelly SILT.                                                 | <b>6</b> .00                                                                                                    | 66.15 |                            |       |       |       |                 |               |          |                     |            |                             |       |                |
| subangular fine to co<br>Lewes Nodular Chal |                                                                                  |                                                                                                                 |       | 6.00 -6.45                 | UT    | 100   | 100   | 55              |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       | 6.45                       | D     |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       |                            |       |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  | (1.45)                                                                                                          | .1    | 6.45 -6.90                 | _     |       |       |                 | s             | N=12     |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       | 6.45-7.00                  | В     |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       |                            |       |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       |                            |       |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       |                            |       |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       | 700 745                    |       | 100   | 100   |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       | 7.00 - 7.45                | UT    | 100   | 100   | 40              |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       |                            | _     |       |       |                 |               |          |                     |            |                             |       | ,              |
| Structureless CHALK                         | composed of white sandy silty                                                    | 7.45                                                                                                            | 64.70 | 7.45                       | D     |       |       |                 |               |          |                     |            |                             |       |                |
| angular to subangula                        | r fine to coarse GRAVEL. Clasts are                                              | Fr Fr                                                                                                           |       | 7.45                       | W     |       |       |                 |               |          |                     |            |                             |       |                |
|                                             | ty, white with black specks and<br>quent subangular fine to coarse               |                                                                                                                 |       | 7.45-7.90                  | D     |       |       |                 |               |          |                     |            |                             |       |                |
| gravel of flint. (Grade                     |                                                                                  |                                                                                                                 |       | 7.45-7.90<br>7.45-B.00     | в     |       |       |                 | s             | N=B      |                     |            |                             |       |                |
| Lewes Nodular Chal                          |                                                                                  |                                                                                                                 |       | 1.40 -D.UU                 | D     |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       |                            |       |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       |                            |       |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  | Frfr                                                                                                            |       |                            |       |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       | B.00 - B.45                | UI-NR | 100   |       | 55              |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       |                            |       |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       |                            |       |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       |                            |       |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       | B.45 -B.90                 | D     |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  | TT-T                                                                                                            |       | B.45 -B.90<br>B.66         |       |       |       |                 | S             | N=7      |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       | B.45-9.00                  | В     |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       |                            |       |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       |                            |       |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       | 0.00 0.15                  |       | 100   |       | 45              |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       | 9.00 -9.45                 | UI-NR | 100   |       | 45              |               |          |                     |            |                             |       |                |
|                                             |                                                                                  | T T                                                                                                             |       |                            |       |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       |                            |       |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       |                            |       |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       | 9.45 -9.90                 | D     |       |       |                 |               |          |                     |            |                             |       |                |
|                                             |                                                                                  |                                                                                                                 |       | 9.45 -9.90<br>9.45 - 10.00 |       |       |       |                 | S             | N=B      |                     |            |                             |       |                |
|                                             |                                                                                  | Fr-Fr-F                                                                                                         |       | 9.40 - 10.00               | В     |       |       |                 |               |          |                     | 1          |                             |       |                |
|                                             |                                                                                  | the second se |       |                            |       |       |       |                 |               |          |                     |            |                             |       |                |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| -barn<br>ritchies                     | E                                                                   | BOR        | EHC                               | DLE L                                   | 00             | 3   |    |                            |                            |                 | N                            | IL03              | ehole N<br>5-CR<br>et 3 of | 004   |                        |
|---------------------------------------|---------------------------------------------------------------------|------------|-----------------------------------|-----------------------------------------|----------------|-----|----|----------------------------|----------------------------|-----------------|------------------------------|-------------------|----------------------------|-------|------------------------|
| Project Name:<br>Project No:          | Amersham Tunnel to Calvert                                          |            |                                   | Survey Gri<br>Co-ordinat                |                | em: |    | 4989 <sup>-</sup>          | )SGB<br>13.63 r<br>49.98 r | mE C            | ole Typ<br>hecked<br>oproved | By:               |                            | JMe   | P+R(<br>le, Cl<br>PMc( |
| Client:<br>Engineer:<br>Date Started: | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>24/10/2016      |            |                                   | Ground Le<br>Orientation                |                |     |    |                            | 72.15 r<br>c               | nOD So<br>Lo    | cale:<br>og Sta<br>rint Dat  | tus:              |                            |       | 1:25<br>FINA           |
| Date Completed:                       | 26/10/2016                                                          |            |                                   | Inclination:                            |                |     |    |                            | 90 c                       | leg. F          | inal De                      | pth:              |                            | 55    | 5.00r                  |
|                                       | Stratum Description                                                 | Legend (TI | pth<br>hick-Leve<br>ss) (m)<br>n) | Depth                                   | Sampli<br>Type | 1   | -  | andh Si<br>Blows<br>(mins) | itu Test<br>Test           | ing<br>Test Res | ult Units                    | TCR<br>SCR<br>RØD | lfmin<br>Ifave<br>I(mma)x  | water | We<br>Bacl             |
|                                       |                                                                     |            |                                   | 10.00 - 10.45<br>10.00 - 10.45          | D              |     |    |                            | s                          | N=B             |                              |                   |                            |       |                        |
|                                       |                                                                     |            |                                   | 10.43<br>10.44                          | EW<br>EW       |     |    |                            |                            |                 |                              |                   |                            |       |                        |
|                                       |                                                                     |            |                                   | 10.45 - 11.00                           | В              |     |    |                            |                            |                 |                              |                   |                            |       |                        |
| 11.00m : VIII                         | ith occasional subangular tO subrounded cobbles of chalk and flint. |            |                                   |                                         |                |     |    |                            |                            |                 |                              |                   |                            |       |                        |
|                                       |                                                                     |            |                                   | 11.00 - 11.45                           | UT             | 100 | 20 | 42                         |                            |                 |                              |                   |                            |       |                        |
|                                       |                                                                     |            |                                   | 11.45-11.90                             |                |     |    |                            | S                          | N=13            |                              |                   |                            |       |                        |
|                                       |                                                                     |            |                                   | 11.45 - 12.50                           | В              |     |    |                            |                            |                 |                              |                   |                            |       |                        |
|                                       |                                                                     |            | 55)                               | 12.50 - 12.95                           | UT             | 100 | 30 | 75                         |                            |                 |                              |                   |                            |       |                        |
|                                       |                                                                     |            |                                   | 12.95 - 13.40<br>12.95 - 13.40          |                |     |    |                            | 8                          | N=16            |                              |                   |                            |       |                        |
|                                       |                                                                     |            |                                   | 12.95 - 14.00                           | В              |     |    |                            |                            |                 |                              |                   |                            |       |                        |
|                                       |                                                                     |            |                                   | 14.00 - 14.45                           |                | 100 | 75 | 150                        |                            |                 |                              |                   |                            |       |                        |
|                                       |                                                                     |            |                                   | 14.45<br>14.45 - 14.90<br>14.45 - 14.90 |                |     |    |                            | s                          | N=54            |                              |                   |                            |       |                        |
|                                       |                                                                     | T T -      |                                   |                                         |                |     |    |                            |                            |                 |                              |                   |                            |       |                        |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| -barn<br>ritchies                                                                                                                                                                                | BORE                           | 10    | LE L                                                                      | 00           | 3                  |          |                 |                    |               | N                            | IL03 | hole N<br>5-CR<br>et 4 of | 004         |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------|---------------------------------------------------------------------------|--------------|--------------------|----------|-----------------|--------------------|---------------|------------------------------|------|---------------------------|-------------|-------------------------------------------|
| oject Name: Amersham Tunnel to Calvert                                                                                                                                                           |                                |       | Survey Gri<br>Co-ordinate                                                 | -            | em:                |          |                 | )SGB<br>13.63 r    |               | lole Typ<br>Checked          | e:   |                           |             | P+F<br>le, (                              |
| opject No:     1G063 -AAZ.       ent:     High Speed 2 (HS2) Ltd       gineer:     High Speed 2 (HS2) Ltd                                                                                        |                                |       | Ground Le                                                                 |              |                    |          |                 | 19.98 r<br>72.15 n | nOD S         | opproved<br>cale:<br>.og Sta | tus: |                           | F           | PM<br>1:2<br>FIN                          |
| te Started: 24/10/2016<br>te Completed: 26/10/2016                                                                                                                                               |                                |       | Orientation<br>Inclination:                                               | :            |                    |          |                 | d<br>90 d          | -             | Print Dat<br>Final De        |      |                           | 20/11<br>55 | 5.0                                       |
|                                                                                                                                                                                                  | Depth                          | 1     |                                                                           | Sampli       | ing, C             | oring    | andh Si         | tu Testi           | ng<br>Test Re |                              | TCR  | Ifmin                     |             | ,                                         |
| Stratum Description                                                                                                                                                                              | Legend (Thick-<br>ness)<br>(m) | (m)   | Depth<br>(m)                                                              | Туре         | ( <sup>Dia</sup> ) | Rec<br>% | Blows<br>(mins) | Test               | Test Re       | sult Units                   | R    | tfave<br>tmnnak v         | vater E     | Ba                                        |
|                                                                                                                                                                                                  |                                |       | 15.50 - 15.95<br>15.95 - 16.40<br>15.95 - 16.40                           | UT           | 100                | 40       | 150             | S                  | N=56          |                              |      |                           |             |                                           |
| 17.00- 18.00m : Flint graveVcobbles becoming rare. Matrix<br>becoming greyish white with orange mottling                                                                                         |                                |       | 15.95 - 17.00                                                             | В            |                    |          |                 |                    |               |                              |      |                           |             |                                           |
|                                                                                                                                                                                                  |                                |       | 17.00 - 17.45 <sup>'</sup><br>17.45<br>17.45 - 17.90<br>17.45 - 17.90     | UT<br>D<br>D | 100                | 30       | 170             | S                  | N=23          |                              |      |                           |             |                                           |
| rilling disturbed. Structureless CHALK composed of<br>hite gravelly SILT. Gravel is weak, medium density.<br>hite with black specks and subrounded. (Grade: Dm)<br>ewes Nodular Chalk Formation] |                                | 54.15 | 17.45 - 18.50                                                             | В            |                    |          |                 | 5                  | 11-20         |                              |      |                           |             | 808080                                    |
|                                                                                                                                                                                                  |                                |       | 18.50 - 18.95<br>18.95<br>18.95 - 19.40<br>18.95 - 19.40<br>18.95 - 20.00 | D            | 100                | 30       | 165             | S                  | N=17          |                              |      |                           |             | ão Ro |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn<br>ritchies                                                                                                                                                                                                                                                                                     | B                                                                          | ORE                          | HO      | LE L                           | 00    | 3     |    |                            |                            |               | N                               | IL03              | hole N<br>5-CR<br>et 5 of | 004   |                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------|---------|--------------------------------|-------|-------|----|----------------------------|----------------------------|---------------|---------------------------------|-------------------|---------------------------|-------|------------------------|
| roject Name: Amersham Tur<br>roject No: 1G063-AAZ.                                                                                                                                                                                                                                                    | nnel to Calvert                                                            |                              |         | Survey Gr<br>Co-ordinat        | ,     | em:   |    | 49891                      | )SGB<br> 3.63 r<br>19.98 r | nE            | Hole Typ<br>Checked<br>Approved | By:               |                           | JM    | P+F<br>/le, (<br>PM    |
| ient: High Speed 2<br>ngineer: High Speed 2                                                                                                                                                                                                                                                           | . ,                                                                        |                              |         | Ground Le                      | evel: |       |    | 7                          | 72.15 r                    |               | Scale:<br>Log Sta               | tue               |                           |       | 1:2<br>FIN             |
| ate Started: 24/10/2016                                                                                                                                                                                                                                                                               | (152) Liu                                                                  |                              |         | Orientatior                    | 1:    |       |    |                            | c                          |               | Print Dat                       |                   |                           | 20/11 |                        |
| ate Completed: 26/10/2016                                                                                                                                                                                                                                                                             |                                                                            |                              |         | Inclination:                   |       |       |    |                            | 90 c                       | · ·           | Final De                        |                   |                           | 5     | 5.0                    |
| Stratum Description                                                                                                                                                                                                                                                                                   | n                                                                          | Legend (Thick<br>ness<br>(m) | - Level | Depth<br>(m)                   | Type  | (Dia) |    | andh Si<br>Blows<br>(mins) | tu Test                    | ng<br>Test Re | esult Unit                      | TCR<br>SCR<br>RØD | lfmin<br>Ifave<br>(mnna)x | Weter | Ba                     |
| Drilling disturbed. Structureless CHAI<br>white gravelly SILT. Gravel is weak, r<br>white with black specks and subroun<br>Lewes Nodular Chalk Formation]                                                                                                                                             | nedium density.                                                            |                              |         | 20.00 - 20.45                  | UT    | 100   | 60 | 170                        |                            |               |                                 |                   |                           |       | 0,80,80,80             |
| Drilling disturbed. Structureless CHAI<br>andy silty angular to subangular fine                                                                                                                                                                                                                       | e to coarse                                                                | 20.45                        | 51.70   | 20.45                          | D     |       |    |                            |                            |               |                                 |                   |                           |       | 0°0°0°0                |
| GRAVEL. Clasts are weak, medium of<br>black specks and subrounded. With<br>o coarse gravel of flint and occasion<br>cobbles of chalk. Matrix is greyish wh                                                                                                                                            | rare subangular fine<br>al subangular                                      |                              |         | 20.45 - 20.90<br>20.45 - 20.90 | D     |       |    |                            | s                          | N=17          | 7                               |                   |                           |       | 0.00.00                |
| (Grade: De)<br>[Lewes Nodular Chalk Formation]                                                                                                                                                                                                                                                        | Ū                                                                          | <u> </u>                     |         | 20.45 - 21.50                  | В     |       |    |                            |                            |               |                                 |                   |                           |       | 0,00,00                |
|                                                                                                                                                                                                                                                                                                       |                                                                            |                              |         |                                |       |       |    |                            |                            |               |                                 |                   |                           |       | 00000                  |
| 21.45 - 21.50m : Chalk possibly<br>Unable to grade due to disturl:Jance                                                                                                                                                                                                                               |                                                                            | 21.50                        | 50.65   | 21.50 - 21.63<br>21.50 - 21.66 | D     |       |    |                            | s                          | 100/1         | 35                              |                   |                           |       | 0.0.0.0                |
| Drilling disturbed. Weak locally media<br>o high density, light greyish white CF<br>abundant randomly orientated fractur<br>olanar smooth, with black specks and<br>orange discolouration. Locally with th<br>mart wisps). Possibly Chalk Rock? (<br>undetermined)<br>[Lewes Nodular Chalk Formation] | IALK. With<br>es, closely spaced,<br>d non-penetrative<br>in brown laminae |                              |         | 21.00 - 22.50                  | RC    | 102   |    |                            |                            |               |                                 | 100<br>21<br>0    |                           |       | 0808080808080808080808 |
|                                                                                                                                                                                                                                                                                                       |                                                                            |                              | ,       | 23.05 - 23.16                  | с     |       |    |                            |                            |               |                                 |                   |                           |       | 0.0.0.0                |
|                                                                                                                                                                                                                                                                                                       |                                                                            |                              |         | 22.50 - 24.00                  |       | 102   |    |                            |                            |               |                                 | 100<br>32<br>14   | NIDO<br>70<br>160         |       | 90 90 90               |
| 23.60 - 23.BOm : Fractures locally                                                                                                                                                                                                                                                                    | have non-penetrative<br>brown staining.                                    |                              |         |                                |       |       |    |                            |                            |               |                                 |                   |                           |       | 80808080               |
| 24.00 - 24.25m : F                                                                                                                                                                                                                                                                                    | Recovered non-intact.                                                      |                              |         |                                |       |       |    |                            |                            |               |                                 |                   |                           |       | 0,80,80,80             |
| Medium strong, medium to high dens<br>white CHALK. With occasional glauce                                                                                                                                                                                                                             | onitic green staining                                                      | 24.57                        |         |                                |       |       |    |                            |                            |               |                                 | 100<br>10<br>0    |                           |       | 30,20,50,50            |
| and frequent black specks. Chalk Ro<br>Lewes Nodular Chalk Formation<br>Drilling disturbed. Weak locally mediu                                                                                                                                                                                        |                                                                            | (0.56)                       | ,       | 24.00 - 25.50                  | RC    | 102   |    |                            |                            |               |                                 |                   |                           |       | 0000                   |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn                                                                                                                                                                                                                                                                                                                                    | E                                                                                                                                                                                                                                            | BOF                 | REI                                                                                                   | HO                      | LE L                                                  | 00           | 3       |         |                 |                                         |           | N                                                             | /L03                    | hole N<br>5-CR<br>et 6 of | 004     |                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------|--------------|---------|---------|-----------------|-----------------------------------------|-----------|---------------------------------------------------------------|-------------------------|---------------------------|---------|-------------------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started:                                                                                                                                                                                                                                                                    | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>24/10/2016                                                                                                                                   |                     |                                                                                                       |                         | Survey Gri<br>Co-ordinate<br>Ground Le<br>Orientation | es:<br>evel: | em:     |         | 49891<br>19384  | SGB<br>3.63 r<br>19.98 r<br>2.15 n<br>c | nN<br>1OD | Hole Ty<br>Checke<br>Approve<br>Scale:<br>Log Sta<br>Print Da | d By:<br>d By:<br>atus: |                           | JM<br>F | P+RC<br>e, CB<br>PMcG<br>1:25<br>FINAL<br>/2017 |
| Date Completed:                                                                                                                                                                                                                                                                                                                          | 26/10/2016                                                                                                                                                                                                                                   |                     | Depth                                                                                                 |                         | Inclination:                                          |              | ing C   | oring   | andh Si         | 90 d                                    | •         | Final De                                                      | pth:                    | Ifmin                     | 55      | 5.00m                                           |
|                                                                                                                                                                                                                                                                                                                                          | Stratum Description                                                                                                                                                                                                                          | Legend              | (Thick-<br>ness)<br>(m)                                                                               | Level<br>(m)            | Depth<br>(m)                                          | Туре         | 1       | -       | Blows<br>(mins) | Test                                    | Test R    | esult Uni                                                     | SCR<br>ts RØ            | lfave<br>(mma)x           | Weter   | Well/<br>Backfill                               |
| abundant randomly of<br>planar smooth, with the<br>orange discolouratio<br>(marl wisps). Possibl<br>undetermined)<br>Lewes Nodular Cha<br>Greenish grey mart s<br>New Pit Chalk Form<br>Drilling disturbed. Mi<br>density, light greyish<br>randomly orientated<br>rough, with black spe<br>discolouration. Chalk<br>[New Pit Chalk Form | seam. Upper Glynde MARL?<br>ation<br>edium strong, medium to high<br>white CHALK. With abundant<br>fractures, closely spaced, planar<br>ecks and locally with orange<br>k Rock. (Grade: Undetermined)                                        |                     | (1.30)                                                                                                | 46.92<br>46.85          | 26.10 - 26.20<br>25.50 - 27.00                        | D<br>RC      | 102     |         |                 |                                         |           |                                                               | 100<br>17<br>0          | NIDO<br>70<br>160         |         | 20 20 20 20 20 20 20 20 20 20 20 20 20 2        |
| density, light greyish<br>randomly orientated<br>rough, with black spe<br>comminuted chalk. V<br>(whispy marl) and ra<br>B5)<br>New Pit Chalk Form                                                                                                                                                                                       | ssibly Lower Glynde MARL?                                                                                                                                                                                                                    |                     | -<br>-26.60<br>-<br>-<br>                                                                             | 45.55<br>45.28<br>45.25 |                                                       |              |         |         |                 |                                         |           |                                                               |                         |                           |         | 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0         |
| Very weak locally we<br>Fracture set 1: 3 to 1<br>undulating smooth, w<br>orange staining, infill<br>Fracture set 2: 65 to<br>slighUy rough, with p                                                                                                                                                                                      | eak, low density cream CHALK.<br>O degrees closely spaced,<br>vith black specks and penetrative<br>led (<1mm) with comminuted chalk.<br>80 degrees medium spaced, planar<br>senetrative orange staining and<br>comminuted chalk. (Grade: B5) |                     | -                                                                                                     |                         | 27.60 - 27.80<br>27.00 - 28.50                        |              | 102     |         |                 |                                         |           |                                                               | 100<br>60<br>36         |                           |         |                                                 |
| 2                                                                                                                                                                                                                                                                                                                                        | 28.60-28.70m: Recovered non-intact.                                                                                                                                                                                                          |                     | (2.65)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                         | 28.50 - 30.00                                         | RC           | 102     |         |                 |                                         |           |                                                               | 90<br>40<br>11          | NIDO                      |         |                                                 |
| 29.35 - 29.50m : A                                                                                                                                                                                                                                                                                                                       | ssumed zone of corbess. Te/eviewer<br>shows possible dissolution cavities.                                                                                                                                                                   |                     | -                                                                                                     |                         |                                                       |              |         |         |                 |                                         |           |                                                               |                         |                           |         |                                                 |
| Fracture set 1: 3 to 1<br>undulating smooth, w                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                              |                     | 29:55<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                    | 42.60<br>42.57          |                                                       |              |         |         |                 |                                         |           |                                                               |                         |                           |         |                                                 |
| Groundwater levels<br>Explanation of symb<br>Further details giver                                                                                                                                                                                                                                                                       | asured along borehole axis.<br>may be subject to seasonal, tidal and<br>pols and abbreviations given in 'Key to<br>n on appended 'Borehole Information S<br>es, Glasgow Road, Kilsyth, Glasgow G659B                                         | Explorate<br>Sheer. |                                                                                                       |                         | hould not be t                                        | aken a       | i s con | ıstant. |                 |                                         | <u> </u>  | BA                                                            | U R Boi                 | rehole L                  | pg 06/0 | 412017                                          |

| ritchies                                 | _                                                                                 | •••           |                         |              | LE L          |         |        |         |          |                  |        |                | Sh            | eet 7 o    | f 11    |           |
|------------------------------------------|-----------------------------------------------------------------------------------|---------------|-------------------------|--------------|---------------|---------|--------|---------|----------|------------------|--------|----------------|---------------|------------|---------|-----------|
| roject Name:                             | Amersham Tunnel to Calvert                                                        |               |                         |              | Survey Gri    |         | em:    |         |          | SGB              |        |                | Type:         |            | CF      | P+F       |
|                                          | 10000 117                                                                         |               |                         |              | Co-ordinate   | es:     |        |         |          | 3.63 m           |        |                | ked By:       |            | JMe     |           |
| roject No:<br>ient:                      | 1G063-AAZ.<br>High Speed 2 (HS2) Ltd                                              |               |                         |              | Ground Le     | vol     |        |         |          | 9.98 m<br>2.15 m |        | Appro<br>Scale | oved By       | <i>c</i> . |         | PM<br>1:2 |
| ngineer:                                 | High Speed 2 (HS2) Ltd                                                            |               |                         |              | GIUUIIU Le    | vei.    |        |         | ,        | 2.15 11          |        |                | ,.<br>Status: |            |         | FIN       |
| ate Started:                             | 24/10/2016                                                                        |               |                         |              | Orientation   | :       |        |         |          | d                | eq.    | •              | Date:         |            | 20/11/  |           |
| ate Completed:                           | 26/10/2016                                                                        |               |                         |              | Inclination:  |         |        |         |          | 90 d             | •      | Final          | Depth:        |            |         | 5.0       |
|                                          |                                                                                   |               | Depth                   |              |               | Sampl   | ing, C | oring a | nd h Sit | uTesti           | ng     |                | TC            | R If min   |         |           |
|                                          | Stratum Description                                                               | Legend        | (Thick-<br>ness)        | Level<br>(m) | Depth         | Туре    | (Dia)  | Rec E   | Blows    | Test             | Test F | Result         | Units R6      | 260 (mmax  | Weter E | Bai       |
|                                          | <u>00 lune lune</u>                                                               |               | (m)                     |              | (m)           | 71 -    | \'mm'  | % (     | mins)    |                  |        | 1              |               |            |         |           |
|                                          | 80 degrees medium spaced, planar<br>enetrative orange staining and                | г             | -                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          | comminuted chalk. (Grade: B5)                                                     | T T           | _                       |              |               |         |        |         |          |                  |        |                |               | NIDC       | ,       |           |
| New Pit Chalk Form<br>30.30-30.40m:Dril. | ationj<br>ling disturbed. Recovered as: off-white                                 | г г           | _                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          | Gravel is weak, law density, off-white, gular fine to coarse. Televiewer shows    |               | -30.40                  | 41.75        |               |         |        |         |          |                  |        |                |               |            |         |           |
| 0                                        | ssible stee fractured zone.                                                       | T T           | -                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          | ry weak locally weak, low density<br>ure set 1:3 to 10 degrees dosely             |               | _                       |              |               |         |        |         |          |                  |        |                | 10            | 0          |         |           |
| paced, undulating s                      | mooth, with black specks and                                                      |               | _                       |              | 30.00 - 31.50 | RC      | 102    |         |          |                  |        |                | 23            | 3          |         |           |
|                                          | taining, infilled (<1mm) with<br>racture set 2: 65 to 80 degrees                  |               | -                       |              |               |         |        |         |          |                  |        |                |               | ,          |         |           |
| edium spaced, plar                       | nar slightly rough, with penetrative                                              |               | _                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
| nalk. (Grade: B5)                        | infilled (<1mm) with comminuted                                                   |               | _                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
| New Pit Chalk Form                       | ation]                                                                            |               | _                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   |               | -                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   |               | _                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   | , r. , r.     | _                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   |               | _<br>-(2.60)            |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   |               |                         |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   |               | _                       |              | 31.80 -31.90  | c       |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   | 1, 1, 1,      | _                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   | ТТТ           | -                       |              |               |         |        |         |          |                  |        |                | 10            | _          |         |           |
|                                          |                                                                                   |               | -                       |              | 31.50 -33.00  | RC      | 102    |         |          |                  |        |                | 31            | 1          |         |           |
|                                          |                                                                                   | Tr Tr         | _                       |              |               |         |        |         |          |                  |        |                | 13            | 3          |         |           |
|                                          |                                                                                   | T T           | _                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   |               | -                       |              |               |         |        |         |          |                  |        |                |               | NIDC       |         |           |
|                                          |                                                                                   |               | _                       |              |               |         |        |         |          |                  |        |                |               | 60         |         |           |
|                                          |                                                                                   | T T           | _                       |              | 22.00.22.05   | 0       |        |         |          |                  |        |                |               | 100        |         |           |
|                                          |                                                                                   | , р.<br>Г. Г. |                         |              | 32.80-32.95   | с       |        |         |          |                  |        |                |               |            |         |           |
| ssumed zone of co                        |                                                                                   | 1 11          | - <del>3</del> 3.00<br> | 39.15        |               |         |        |         |          |                  |        |                |               |            |         |           |
| 33.00-33.40m:                            | Televiewer shows possible dissolution<br>features.                                |               | <br>-(0.40)             |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   |               |                         |              |               |         |        |         |          |                  |        |                |               |            |         |           |
| villing disturbed Va                     | ry weak locally weak, low density                                                 | - p- p-       | -33.40                  | 38.75        |               |         |        |         |          |                  |        |                |               |            |         |           |
| ream CHALK. Fract                        | ure set 1:3 to 10 degrees dosely                                                  |               | _                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          | mooth, with black specks and<br>taining, infilled (<1mm) with                     |               | _                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
| omminuted chalk. F                       | racture set 2: 65 to 80 degrees                                                   |               | -                       |              | 33.00 - 34.50 | RC      | 102    |         |          |                  |        |                | 73            |            |         |           |
|                                          | ar slightly rough, with penetrative<br>infilled (<1mm) with comminuted            |               | -                       |              | 1             |         |        |         |          |                  |        |                | 9             |            |         |           |
| nalk. (Grade: B5)                        |                                                                                   |               |                         |              |               |         |        |         |          |                  |        |                |               |            |         |           |
| lew Pit Chalk Form                       | auonj                                                                             |               | -                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   |               | (2.10)                  |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   |               |                         |              |               |         |        |         |          |                  |        |                |               |            |         |           |
| 34                                       | .35m : 1no. black tubular ffint (90mm).                                           |               | -                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   |               | -                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   |               |                         |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   |               | -                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   | T T           | -                       |              |               |         |        |         |          |                  |        |                |               |            |         |           |
|                                          |                                                                                   | L. L          | _                       |              | 34.50 - 35.50 | RC      | 102    |         |          |                  |        |                |               |            |         |           |
|                                          | and determine the state of the                                                    |               |                         |              |               |         |        |         |          |                  |        |                |               |            |         | L         |
|                                          | sured along borehole axis.                                                        | ther fl.      | atu ati -               | م مصط دا     | ould not be   | okor -  | 0.00-  | otont   |          |                  |        |                |               |            |         |           |
| Jounuwater levels                        | may be subject to seasonal, tidal and o<br>ols and abbreviations given in 'Key to |               | Juation                 |              |               | arei) 9 | is con | จเสมโ.  |          |                  |        |                |               |            |         |           |

Office: BAM Ritchies, Glasgow Road, Kilsyth, Glasgow G65 9BL

| •barn<br>ritchies                             | E                                                                                  | BORE              | HO        | LE L           | 00      | 3                  |                       |             |         | MLO         | rehole I<br>35-CF<br>eet 8 of | R004     |
|-----------------------------------------------|------------------------------------------------------------------------------------|-------------------|-----------|----------------|---------|--------------------|-----------------------|-------------|---------|-------------|-------------------------------|----------|
| Project Name:                                 | Amersham Tunnel to Calvert                                                         |                   |           | Survey Gr      | id Syst | em:                | C                     | SGB         | Ho      | ole Type:   |                               | CP+      |
|                                               |                                                                                    |                   |           | Co-ordinat     | es:     |                    |                       | 13.63 mE    |         | necked By   |                               | JMe,     |
| Project No:                                   | 1G063-AAZ.                                                                         |                   |           |                |         |                    |                       | 49.98 mN    |         | proved B    | y:                            | PN       |
| lient:                                        | High Speed 2 (HS2) Ltd                                                             |                   |           | Ground Le      | evel:   |                    |                       | 72.15 mO    |         | ale:        |                               | 1:       |
| ngineer:                                      | High Speed 2 (HS2) Ltd                                                             |                   |           | <b>a</b>       |         |                    |                       |             |         | og Status:  |                               | FIN      |
| ate Started:                                  | 24/10/2016                                                                         |                   |           | Orientation    |         |                    |                       | deg         |         | int Date:   |                               | 20/11/20 |
| Date Completed:                               | 26/10/2016                                                                         |                   |           | Inclination:   |         |                    |                       | 90 deg      |         | nal Depth:  |                               | 55.0     |
| S                                             | tratum Description                                                                 | Legend (Thick-    | Level     |                | Samp    | 1                  | pring and h S         | itu Testing |         | ult Units R | R Ifmin                       |          |
|                                               |                                                                                    | (m)               | (m)       | Depth<br>(m)   | Туре    | ( <sup>Dia</sup> ) | Rec Blows<br>% (mins) | Test T      | est Res | ult Units R | 6261D (mma)x                  | Weter Ba |
| Drilling disturbed. Ver                       | y weak locally weak, low density                                                   | (,                |           | ( )            |         |                    |                       |             |         |             |                               |          |
|                                               | ure set 1:3 to 10 degrees closely                                                  |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               | nooth, with black specks and<br>aining, infilled {<1mm) with                       | <u> </u>          |           |                |         |                    |                       |             |         |             | 00 NIDO<br>60                 |          |
| comminuted chalk. Fi                          | acture set 2: 65 to 80 degrees                                                     | T T               |           |                |         |                    |                       |             |         | 0           | 100                           |          |
|                                               | r slightly rough, with penetrative<br>nfilled {<1mm) with comminuted               |                   |           |                |         |                    |                       |             |         |             |                               |          |
| chalk. (Grade: B5)                            |                                                                                    | 35.50             | 36.65     |                |         |                    |                       |             |         |             |                               |          |
| New Pit Chalk Forma<br>Drilling disturbed Rec | tion<br>covered as: off-white gravelly SILT.                                       |                   |           |                |         |                    |                       |             |         | 10          | 00                            |          |
|                                               | ensity, off-white and subangular.                                                  | (0.50)            |           | 35.50 - 36.00  | RC      | 102                |                       |             |         | 0           | NIDC                          |          |
| New Pit Chalk Forma                           | tion]<br>Feleviewershows possible dissolution                                      |                   |           |                |         |                    |                       |             |         | C           |                               |          |
| -0                                            |                                                                                    | :0;n=t-at>00      | <br>36.15 |                |         |                    |                       |             |         |             |                               |          |
|                                               | covered as: silty sandy subangular                                                 |                   | _         |                |         |                    |                       |             |         |             |                               |          |
| are weak to medium s                          | strong, medium density, greyish                                                    |                   |           | 36.10 -36.23   | с       |                    |                       |             |         |             |                               |          |
| vhite with black speck<br>New Pit Chalk Forma | ks. (Grade undetermined)                                                           |                   |           |                |         |                    |                       |             |         |             |                               |          |
| 36.15-37.20m: \                               | Neak, high density, light greyish white                                            |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               | s are 40 to BO degrees closely spaced,<br>h, with non penetrative yellow staining. | T T               |           |                |         |                    |                       |             |         |             | NIDO                          |          |
|                                               | disturbed. Partly recovered non-intact.                                            |                   |           |                |         |                    |                       |             |         |             | 120                           |          |
|                                               |                                                                                    |                   |           | 36.00 - 37.50  | RC      | 102                |                       |             |         | 10          | 0                             |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         | 1           | 3                             |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    | <u> </u>          |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    | TT-               |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    | (5.40)            |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    | ┝┸╖┸╼             |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           | 37.50 - 39.00  | RC      | 102                |                       |             |         | 10          |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         | C           |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
| 20.00-20.25m                                  | Medium strong, high density, greyish                                               | <u> </u>          |           |                |         |                    |                       |             |         |             |                               |          |
|                                               | egree planar smooth fracture, with no                                              |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               | infill.                                                                            |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           | 39.35-39.45    | D       |                    |                       |             |         | В           |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         | 2'<br>B     | 1                             |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           | 39.00 - 40.50  | RC      | 102                |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    | p p               |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |
| Stratum depths meas                           | sured along borehole axis.                                                         | 1                 |           |                |         |                    | 1                     |             |         |             |                               | · ·      |
| Groundwater levels n                          | nay be subject to seasonal, tidal and                                              | other fluctuatior | is and sl | nould not be t | aken a  | is cons            | tant.                 |             |         |             |                               |          |
|                                               | ols and abbreviations given in 'Key to                                             |                   | les'      |                |         |                    |                       |             |         |             |                               |          |
| Further details given                         | on appended 'Borehole Information S                                                | Sheer.            |           |                |         |                    |                       |             |         |             |                               |          |
|                                               |                                                                                    |                   |           |                |         |                    |                       |             |         |             |                               |          |

| •barn<br>ritchies                                                                         | E                                                                                                                         | BOF | REF                                                                                         | 10           | LE L                                                                  | 00   | 3            |          |                 |                                                    |                   | N                                                                           | 1L03                           | hole N<br>5-CR<br>et 9 of | 004         |                                                            |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------|------|--------------|----------|-----------------|----------------------------------------------------|-------------------|-----------------------------------------------------------------------------|--------------------------------|---------------------------|-------------|------------------------------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started:<br>Date Completed:  | Amersham Tunnel to Calvert<br>1G063 -AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>24/10/2016<br>26/10/2016 |     |                                                                                             |              | Survey Gri<br>Co-ordinate<br>Ground Le<br>Orientation<br>Inclination: | vel: | em:          |          | 49891<br>19384  | DSGB<br>13.63 n<br>19.98 n<br>72.15 n<br>d<br>90 d | nN<br>nOD<br>leg. | Hole Typ<br>Checked<br>Approve<br>Scale:<br>Log Sta<br>Print Da<br>Final De | d By:<br>d By:<br>itus:<br>te: |                           | JⅣ<br>20/11 | P+RC<br>le, CE<br>PMcG<br>1:25<br>FINAL<br>I/2017<br>5.00m |
|                                                                                           |                                                                                                                           |     | Depth                                                                                       |              | inclination.                                                          |      | ing, C       | oring    | andh Si         |                                                    | 0                 | esult Unit                                                                  |                                | If min                    | 5           | Wel                                                        |
|                                                                                           | Stratum Description                                                                                                       |     | (Thick-<br>ness)<br>(m)                                                                     | Level<br>(m) | Depth<br>(m)                                                          | Туре | (Dia<br>(mm) | Rec<br>% | Blows<br>(mins) | Test                                               | Test R            | esult Unit                                                                  | s RØAD                         | lfave<br>(mna)x           | Weter       | Backfi                                                     |
|                                                                                           |                                                                                                                           |     |                                                                                             |              | 40.10 - 40.30                                                         | С    |              |          |                 |                                                    |                   |                                                                             |                                |                           |             |                                                            |
| 41.3                                                                                      | <u>5-41.40m : Occasional flint framents.</u><br>re loss.                                                                  |     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 30.75        | 40.50 - 42.00                                                         | RC   | 102          |          |                 |                                                    |                   |                                                                             | 60<br>10<br>0                  |                           |             |                                                            |
| Drilling disturbed Re                                                                     | ecovered as: silty sandy subangular                                                                                       |     | -<br>                                                                                       | 30.15        |                                                                       |      |              |          |                 |                                                    |                   |                                                                             |                                |                           |             |                                                            |
| fine to coarse GRAV<br>are weak to medium<br>white with black spec<br>[New Pit Chalk Form | EL with occasional cobbles. Clasts<br>strong, medium density, greyish<br>ks. (Grade undetenmined)                         |     | (0.50)<br>                                                                                  | 29.65        | 42.00 - 43.00                                                         | RC   | 102          |          |                 |                                                    |                   |                                                                             | 100<br>14                      | NIDO                      |             |                                                            |
| density, light greyish                                                                    | white CHALK with abundant fractures, very closely spaced.                                                                 |     |                                                                                             |              |                                                                       |      |              |          |                 |                                                    |                   |                                                                             | 0                              |                           |             |                                                            |
|                                                                                           |                                                                                                                           |     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |              | 43.00 - 43.50                                                         | RC   | 102          |          |                 |                                                    |                   |                                                                             | 100<br>36<br>0                 |                           |             |                                                            |
|                                                                                           |                                                                                                                           |     | -                                                                                           |              | 43.50 - 45.00                                                         | RC   | 102          |          |                 |                                                    |                   |                                                                             | 83<br>31<br>13                 |                           |             |                                                            |
| Assumed zone of co                                                                        | re loss.                                                                                                                  |     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 27.40        | 44.40 - 44.50                                                         | c    |              |          |                 |                                                    |                   |                                                                             |                                |                           |             |                                                            |
| F +450                                                                                    |                                                                                                                           |     |                                                                                             |              |                                                                       |      |              |          |                 |                                                    |                   |                                                                             |                                | NR                        |             |                                                            |
|                                                                                           |                                                                                                                           | T   | -                                                                                           |              |                                                                       |      |              |          |                 |                                                    |                   |                                                                             |                                |                           | 1           |                                                            |

Office: BAM Ritchies, Glasgow Road, Kilsy1h, Glasgow G65 9BL

| •barn<br>ritchies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BO        | RE                               | HO           | LE L                           | 00            | 3      |         |                             |                    |      |                  | ML03                   | hole N<br>5-CR<br>t 10 o | 004   |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------|--------------|--------------------------------|---------------|--------|---------|-----------------------------|--------------------|------|------------------|------------------------|--------------------------|-------|----------------|
| Project Name: Amersham Tunnel to Calvert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                  |              | Survey Gr<br>Co-ordinat        |               | em:    |         | 49891                       | SGB<br>3.63 r      |      |                  | ed By:                 |                          | JM    | P+RC<br>e, CB  |
| Project No: 1G063-AAZ.<br>Client: High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                  |              | Ground Le                      | vel.          |        |         |                             | 19.98 r<br>72.15 r |      | Approv<br>Scale: | ved By:                |                          |       | PMcG<br>1:25   |
| Engineer: High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                  |              |                                |               |        |         |                             | 2.101              | 100  | Log S            | tatus:                 |                          |       | FINAL          |
| Date Started: 24/10/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                  |              | Orientation                    | 1:            |        |         |                             | c                  | leg. | Print D          | ate:                   |                          | 20/11 | /2017          |
| Date Completed: 26/10/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                  |              | Inclination:                   |               |        |         |                             | 90 c               | leg. | Final            | Pepth:                 |                          | 55    | 5.00m          |
| Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Legend    | Depth<br>(Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)                   | Sampl<br>Type |        | •       | and h Si<br>Blows<br>(mins) | tu Testi<br>Test   | •    | esult U          | TCR<br>SCR<br>hits RØ2 | lfave                    | Weter | Well<br>Backfi |
| Weak to medium strong, medium density, light greyish<br>white CHALK with frequent brown laminae (marl wisps).<br>Fracture set 1: horizontal to 10 degrees, closely spaced,<br>smooth planar. Fracture set 2: one 40 degrees fracture,<br>planar smooth, locally infilled (<1mm) with clay. (Grade<br>undetermined)<br>[New Pit Chalk Formation]<br>45.1 - 45.10m : Greenish grey marl seam.<br>45.2 to -45.20m : Drilling disturbed. Recovered non-<br>intact.                                                                                                                                         |           |                                  | 26.25        | 45.00 - 46.50<br>45.70 - 45.95 | RC<br>C       | 102    |         |                             |                    |      |                  | 80<br>45<br>45         | NIDO<br>50<br>150        |       |                |
| Assumed zone of core loss.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | _                                | 20.20        |                                |               |        |         |                             |                    |      |                  |                        |                          |       |                |
| 46.10-46.20m : Televiewer shows possible dissolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | -(0.30)                          |              |                                |               |        |         |                             |                    |      |                  |                        | NR                       |       |                |
| 46.10-46.2011. Interviewent shows possible dissolution<br>feature?<br>Weak to medium strong, medium density, light greyish<br>white CHALK with frequent brown laminae (marl wisps).<br>Fracture set 1: horizontal to 10 degrees, medium<br>spaced, smooth planar, with no infill. Fracture set 2: one<br>40 to 60 degrees widely spaced, planar slightly rough,<br>locally infilled (<1mm) with clay and comminuted chalk.<br>(Grade: B3)<br>[New Pit Chalk Formation]<br>46.80-47.10m : Televiewer shows possible dissolution<br>feature?<br>46.90-47.20m : Drilling disturbed. Recovered non-intact. |           | -46.20                           | 25.95        | 46.50 - 48.00                  | RC            | 102    |         |                             |                    |      |                  | 100<br>23<br>20        | NI<br>60<br>250          |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T T       | -                                |              |                                |               |        |         |                             |                    |      |                  |                        |                          |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | E                                |              |                                |               |        |         |                             |                    |      |                  |                        |                          |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T T       | È.                               |              |                                |               |        |         |                             |                    |      |                  |                        |                          |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L L       | Ē                                |              | 48.38 - 48.53                  | с             |        |         |                             |                    |      |                  |                        |                          |       |                |
| Drilling disturbed, recovered non-intact. Extremely weak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - F F     | 48.55                            | 23.60        |                                |               |        |         |                             |                    |      |                  |                        |                          |       |                |
| to very weak, low density, light greyish white CHALK with<br>abundant randomly orientated fractures, very closely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T T       | ÷                                |              | 10.00 10.50                    | DO            | 400    |         |                             |                    |      |                  | 100                    |                          |       |                |
| spaced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T T       | Ē                                |              | 48.00 - 49.50                  | RC            | 102    |         |                             |                    |      |                  | 20<br>7                |                          |       |                |
| [New Pit Chalk Formation]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | F                                |              |                                |               |        |         |                             |                    |      |                  |                        |                          |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T T       | E                                |              |                                |               |        |         |                             |                    |      |                  |                        |                          |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -                                |              |                                |               |        |         |                             |                    |      |                  |                        |                          |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -                                |              |                                |               |        |         |                             |                    |      |                  |                        |                          |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | E                                |              |                                |               |        |         |                             |                    |      |                  |                        |                          |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | E                                |              |                                |               |        |         |                             |                    |      |                  |                        |                          |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -                                |              |                                |               |        |         |                             |                    |      |                  |                        |                          |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                  |              |                                |               |        |         |                             |                    |      |                  |                        |                          |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | -                                |              |                                |               |        |         |                             |                    |      |                  |                        |                          |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                  | I            |                                |               |        |         |                             |                    |      |                  |                        |                          |       |                |
| Stratum depths measured along borehole axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | I                                |              | 1                              |               |        |         | I                           |                    |      |                  |                        |                          |       | L              |
| Groundwater levels may be subject to seasonal, tidal and<br>Explanation of symbols and abbreviations given in 'Key t<br>Further details given on appended 'Borehole Infonmation                                                                                                                                                                                                                                                                                                                                                                                                                        | o Explora |                                  |              | hould not be t                 | aken a        | as con | istant. |                             |                    |      |                  |                        |                          |       |                |

| ritchies                                       |                                                                                     |            |                                  |              | LE L                      |                 |        |                               |                      |                 |          |                        | et 11 of                      |                |
|------------------------------------------------|-------------------------------------------------------------------------------------|------------|----------------------------------|--------------|---------------------------|-----------------|--------|-------------------------------|----------------------|-----------------|----------|------------------------|-------------------------------|----------------|
| Project Name:                                  | Amersham Tunnel to Calvert                                                          |            |                                  |              | Survey Gri<br>Co-ordinate |                 | em:    | A.C                           | OSGE<br>98913.63     |                 | Hole T   |                        |                               | CF             |
| Project No:                                    | 1G063-AAZ.                                                                          |            |                                  |              | Co-ordinate               | <del>5</del> 5. |        |                               | 98913.63<br>93849.98 |                 |          | ed By:<br>/ed By:      |                               | JM<br>I        |
| lient:                                         | High Speed 2 (HS2) Ltd                                                              |            |                                  |              | Ground Le                 | vel:            |        |                               |                      | mOD             | Scale:   |                        |                               |                |
| ngineer:                                       | High Speed 2 (HS2) Ltd                                                              |            |                                  |              |                           |                 |        |                               |                      |                 | Log S    | tatus:                 |                               | F              |
| ate Started:                                   | 24/10/2016                                                                          |            |                                  |              | Orientation               |                 |        |                               |                      | deg.            | Print D  |                        |                               | 20/11          |
| Date Completed:                                | 26/10/2016                                                                          |            |                                  |              | Inclination:              |                 |        |                               |                      | ) deg.          | FinalD   |                        |                               | 55             |
|                                                | Stratum Description                                                                 | Legend     | Depth<br>(Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)              | Sampl<br>Type   | 1      | oring and<br>Rec Blo<br>% (mi |                      | sting<br>t Test | Result U | TCR<br>SCR<br>nits RØD | R Ifmin<br>R Ifave<br>C (mma) | Weter          |
|                                                | covered non-intact. Extremely weak                                                  | - P- P- P- | -                                | _            |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                | ensity, light greyish white CHALK with<br>orientated fractures, very closely        |            | _                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
| spaced.<br>New Pit Chalk Form                  | action                                                                              |            | _                                |              | 49.50 - 51.00             | RC              | 102    |                               |                      |                 |          |                        |                               |                |
| New Fit Chark Form                             | lation                                                                              |            | -                                |              |                           |                 |        |                               |                      |                 |          | 100                    |                               |                |
|                                                |                                                                                     |            | _                                |              |                           |                 |        |                               |                      |                 |          | 17                     |                               |                |
|                                                |                                                                                     |            | -                                |              |                           |                 |        |                               |                      |                 |          | 0                      |                               |                |
|                                                |                                                                                     |            | _                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     |            | _                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     |            | -                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     |            | -                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     | <u>г г</u> | _<br>(3.95)                      |              |                           |                 |        |                               |                      |                 |          |                        | NIDO                          |                |
|                                                |                                                                                     |            | (0.90)<br>                       |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     |            | _                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     |            | -                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     |            | _                                |              |                           |                 |        |                               |                      |                 |          | 100                    |                               |                |
|                                                |                                                                                     |            | -                                |              | 51.00 - 52.50             | RC              | 102    |                               |                      |                 |          | 7                      |                               |                |
|                                                |                                                                                     |            | -                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     |            |                                  |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     |            | _                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     |            | -                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     |            | _                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
| NA - 1'                                        | Para la colta Pala con la la lata                                                   | T T        | -<br>                            | 19.65        |                           |                 |        |                               |                      |                 |          |                        | <u> </u>                      | _              |
|                                                | lium density, light greyish white nal thin grey laminae (marl wisps).               |            | -                                |              | 52.50-52.80               | с               |        |                               |                      |                 |          |                        |                               |                |
|                                                | ontal to 10 degrees closely spaced ghUy rough, with penetrative orange              |            | _                                |              | 52.50-52.60               | C               |        |                               |                      |                 |          |                        |                               |                |
| brown staining and r                           | no infill. Fracture set 2: 45 to 86                                                 |            | _                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                | ed (60/600/1000), planar smooth nge brown staining and no infill.                   | TT         | _                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
| Fracture set 3: one 8                          | 35 degree fracture, planar smooth,                                                  |            | -                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
| with no infill. (Grade:<br>[New Pit Chalk Form | nation]                                                                             | T T        | _                                |              |                           |                 |        |                               |                      |                 |          | 100                    |                               |                |
|                                                | rilling disturbed. Recovered non-intact.<br>illing disturbed. Recovered non-intact. |            | _                                |              | 52.50 - 54.00             | RC              | 102    |                               |                      |                 |          | 41<br>25               |                               |                |
|                                                | 3                                                                                   | T T        | _                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     |            | -                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     |            | -                                |              |                           |                 |        |                               |                      |                 |          |                        | NI                            |                |
|                                                |                                                                                     |            | (2.50)                           |              |                           |                 |        |                               |                      |                 |          |                        | 80<br>130                     |                |
|                                                |                                                                                     |            | -                                |              |                           |                 |        |                               |                      |                 |          |                        | 150                           |                |
|                                                |                                                                                     |            |                                  |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     | ' I' I'    | _                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     | ' F        | -                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     |            | _                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     |            | _                                |              | 54.00 - 55.00             | RC              | 102    |                               |                      |                 |          | 100<br>46              |                               |                |
|                                                |                                                                                     |            | -                                |              | 54.50 - 54.70             | c               |        |                               |                      |                 |          | 15                     |                               |                |
|                                                |                                                                                     |            | _                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     | THE P      | _                                |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |
|                                                |                                                                                     |            | -                                | 47.45        |                           |                 |        |                               |                      |                 |          |                        |                               |                |
| Boreho                                         | ble Terminated at 55.00m                                                            |            | <del>5</del> 5.00                | 17.15        |                           |                 |        |                               |                      |                 |          |                        |                               | 1              |
| Stratum depths mea                             | asured along borehole axis.                                                         | 1          |                                  |              | I                         |                 |        |                               |                      | - 1             | I        | I                      |                               | ۰ <u>ـــــ</u> |
| Groundwater levels                             | may be subject to seasonal, tidal and                                               |            |                                  |              | nould not be t            | aken a          | as con | istant.                       |                      |                 |          |                        |                               |                |
|                                                | ools and abbreviations given in 'Key to                                             |            |                                  |              |                           |                 |        |                               |                      |                 |          |                        |                               |                |

| h                                                                                                                                     | 9 r                                                         | n                                                                                                               |                                                                                                              |                                                                                                       |                                                                                                            |                                                                                    | -                                         |                                                                                                              |                    |              |                                          |                                                                                     |                                                                                             |                                         |                                                                                    | <b>.</b>                                                                         |                                                                              | _                                                                               |                                                                                                                     |                                                          | Boreho                                                            | le No                                                        | )<br>                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------|--------------|------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------|
| <b>,,. b</b>                                                                                                                          | ritchies                                                    |                                                                                                                 |                                                                                                              | B                                                                                                     | OR                                                                                                         | EH                                                                                 | 0                                         | LE                                                                                                           | IN                 | F            | OR                                       | M                                                                                   | ٩T                                                                                          |                                         | ON                                                                                 | SH                                                                               | EE                                                                           | Γ                                                                               |                                                                                                                     | N                                                        | IL035<br>Sheet                                                    |                                                              |                                                                                 |
| Project N<br>Project N<br>Client:<br>Engineer                                                                                         | ame:<br>o:                                                  | A<br>1<br>F                                                                                                     | G063 -<br>ligh Spe                                                                                           | am Tunn<br>AAZ<br>eed 2 (H<br>eed 2 (H                                                                | S2) L1                                                                                                     | td                                                                                 |                                           |                                                                                                              |                    |              |                                          | Surve<br>Co-or<br>Grou                                                              | rdina                                                                                       | ates:                                   |                                                                                    | 4                                                                                | OSC<br>198913.1<br>193849.1<br>72.                                           | 63 mE                                                                           | C<br>A                                                                                                              | Hole Typ<br>Checked<br>Approve                           | e:<br>I By:<br>d By:                                              | 1012                                                         | CP+RC<br>JMe, CB<br>PMcG<br>FINAL                                               |
| Date Star                                                                                                                             | ted:                                                        | 2                                                                                                               | 4/10/20                                                                                                      | 16                                                                                                    |                                                                                                            |                                                                                    |                                           |                                                                                                              |                    |              |                                          | Orier                                                                               | itatio                                                                                      | n:                                      |                                                                                    |                                                                                  |                                                                              | deg                                                                             |                                                                                                                     | Date:                                                    |                                                                   | 2                                                            | 0/11/2017                                                                       |
| Date Con                                                                                                                              |                                                             |                                                                                                                 | 6/10/20                                                                                                      |                                                                                                       |                                                                                                            |                                                                                    |                                           |                                                                                                              |                    |              | I Explora                                |                                                                                     | ole Inf                                                                                     |                                         |                                                                                    |                                                                                  |                                                                              | 90 deg                                                                          |                                                                                                                     | inal De                                                  |                                                                   |                                                              | 55.00m                                                                          |
| From <ml<br>0.00<br/>1.20<br/>3.20<br/>6.00<br/>21.50</ml<br>                                                                         | To r<br>1.2<br>3.2<br>6.0<br>21.5<br>55.0                   | 0<br>0<br>0<br>60                                                                                               | Tvoe<br>IP<br>CP<br>CP<br>CP<br>RC                                                                           | Start<br>10/10/201<br>10/10/201<br>11/10/201<br>19/10/201<br>24/10/201                                | 16 1<br>16 1<br>16 24                                                                                      | End<br>0/10/2016<br>0/10/2016<br>1/10/2016<br>4/10/2016<br>6/10/2016               | T82<br>T82<br>T82                         | Plant<br>ilated diggir<br>20-758<br>20-756<br>20-758<br>nacchio 305                                          | ig tools           | G            | Barrel<br>eobor-S<br>(146)               | PC                                                                                  | <u>I Bit</u>                                                                                |                                         | M. Gillespi<br>M. Gillespi<br>M. Gillespi<br>M. Gillespi                           | Crew<br>e /J. Shirrs<br>e /J. Shirrs<br>e /J. Shirrs<br>e /J. Shirrs<br>eeves    |                                                                              | Loaae<br>J. Mana<br>J. Mana<br>G. McKe<br>A. McCa<br>N. Chaud                   | s<br>s<br>an<br>w                                                                                                   |                                                          | R                                                                 | <u>emarks</u>                                                |                                                                                 |
|                                                                                                                                       |                                                             |                                                                                                                 |                                                                                                              | 11-Drillina l                                                                                         |                                                                                                            |                                                                                    |                                           |                                                                                                              |                    |              |                                          |                                                                                     |                                                                                             | eter                                    | bv Deoth                                                                           |                                                                                  |                                                                              |                                                                                 |                                                                                                                     |                                                          | er bv Dec                                                         |                                                              |                                                                                 |
| Date<br>10/10/2016<br>10/10/2016<br>11110/2016<br>11/10/2016<br>19/10/2016<br>20/10/2016                                              | 17:3<br>09:3<br>14:3<br>13:0<br>17:3                        | 80<br>80<br>80<br>80<br>90<br>80                                                                                | eoth <ml<br>0.00<br/>3.20<br/>3.20<br/>6.00<br/>6.00<br/>11.00<br/>11.00</ml<br>                             | Casinanl<br>0.00<br>3.20<br>3.20<br>6.00<br>6.00<br>11.00<br>11.00                                    | Dep                                                                                                        | bth Water (m<br>Dry<br>Dry<br>Dry<br>Dry<br>Dry<br>9.00<br>7.00                    | star<br>Enc<br>star<br>Enc<br>star<br>Enc | Remark<br>tt of shift<br>d of shill<br>tt of shift<br>d of shill<br>tt of shift<br>d of shill<br>tt of shift | is                 |              | eoth <ml<br>21.50<br/>55.00</ml<br>      | Dia.I<br>20<br>14                                                                   | 00                                                                                          |                                         | Rem                                                                                | narks                                                                            | Deoth<br>21.5<br>55.0                                                        | 0                                                                               | <u>Dia.rmm</u><br>200<br>146                                                                                        | 1                                                        | <u> </u>                                                          | <u>emarks</u>                                                |                                                                                 |
| 20/10/2016<br>20/10/2016<br>21/10/2016<br>21/10/2016                                                                                  | 17:3                                                        | 80<br>80                                                                                                        | 19.00<br>19.00<br>21.50                                                                                      | 19.00<br>19.00<br>21.50                                                                               |                                                                                                            | 7.00<br>8.00<br>8.00                                                               | Enc                                       | d of shill<br>rt of shift<br>d of shill                                                                      |                    | Fr           | om (m)                                   | То                                                                                  | (m)                                                                                         | Vol                                     | lume (Iltres)                                                                      | wat                                                                              | er Added                                                                     | Records                                                                         | Re                                                                                                                  | marks                                                    |                                                                   |                                                              |                                                                                 |
| 24/10/2016<br>24/10/2016<br>24/10/2016<br>24/10/2016<br>25/10/2016<br>25/10/2016                                                      | 07:3<br>10:3<br>11:3<br>18:2<br>07:3                        | 80 30<br>30 30<br>25 40                                                                                         | 21.50<br>21.50<br>21.50<br>40.50<br>40.50<br>55.00                                                           | 21.50<br>21.50<br>21.50<br>21.00<br>21.00<br>21.00                                                    |                                                                                                            | 8.00<br>8.00<br>6.76<br>6.52<br>6.71                                               | star<br>star<br>Enc<br>Enc<br>star        | rt of shift<br>rt of shift<br>d of shill<br>d of shill<br>rt of shift<br>d of shill                          |                    |              | ,                                        |                                                                                     |                                                                                             |                                         |                                                                                    |                                                                                  |                                                                              |                                                                                 |                                                                                                                     |                                                          |                                                                   |                                                              |                                                                                 |
| From (m)<br>0.50<br>5.00<br>21.50<br>25.65<br>26.50<br>29.50<br>32.50<br>41.50<br>47.50                                               | To (m)<br>6.00<br>21.50<br>26.50<br>27.35<br>42.50<br>46.50 | Client in<br>Client in<br>Recover<br>Run cut<br>Changin<br>Changin<br>Reduce                                    | structed to<br>structed to<br>ring dropp<br>short as no<br>g from PD<br>g from Im<br>d run leng              | canied out i<br>o continue l<br>o commenc<br>ed core - m<br>ot advancin<br>DC bit to Im<br>opregnated | Rem<br>in standp<br>hole with<br>e rotary<br>nostly wa<br>nostly wa<br>pregnate<br>bit to Cu<br>or recover | narks<br>pipe<br>n cable perc<br>coring<br>ashed away<br>ally<br>ed bit<br>ube bit | /                                         | e rig.<br>ing weaker                                                                                         |                    | Fr           | om (m)<br>3.65<br>4.10<br>5.00           | CI<br>To<br>3.7<br>4.2<br>5.2                                                       | 20                                                                                          |                                         | ation (hh:mm)<br>00:50                                                             |                                                                                  | From (i<br>21.00                                                             |                                                                                 |                                                                                                                     | rillino Flus<br>eturns (%)<br>0                          | h Details<br>Flus<br>VVale                                        |                                                              | Colour<br>lo returns                                                            |
| Dale<br>19/10/2016                                                                                                                    | Strike(m<br>7.45                                            | ) caalrci(m)<br>7.45                                                                                            |                                                                                                              | er Strikes<br>Depth (m) S<br>5.20                                                                     | ealed(m)<br>11.00                                                                                          | F                                                                                  | Remar                                     | ks                                                                                                           | Type I<br>SP       | Pipe ID<br>2 |                                          |                                                                                     | ) Dia(r                                                                                     |                                         | ioe Work<br>Pipe Type<br><b>Plain</b>                                              | Remarks                                                                          | From (1                                                                      |                                                                                 | (m)<br>10                                                                                                           | Backfill I<br>legend<br>909                              | Details<br>Upstandi                                               | Desaip                                                       |                                                                                 |
| 19/10/2016<br>19/10/2016<br>19/10/2016                                                                                                | 7.45<br>7.45                                                | 7.45<br>7.45<br>7.45                                                                                            | 10<br>15<br>20                                                                                               | 5.20<br>5.20<br>5.20                                                                                  | 11.00<br>11.00<br>11.00                                                                                    |                                                                                    |                                           |                                                                                                              | SP<br>SP<br>SP     | 2<br>1<br>1  | 0.50<br>0.00<br>16.00                    | 6.00<br>18.00<br>26.00                                                              | 7<br>) 1                                                                                    | 599                                     | Slotted<br>Plain<br>Slotted                                                        |                                                                                  | 0.10<br>0.30<br>0.50<br>6.00<br>18.00<br>26.00                               | 0.<br>0.<br>6.<br>16<br>0 26                                                    | 30<br>50<br>00<br>.00<br>.00                                                                                        | 906<br>903<br>902<br>903<br>902<br>903<br>902<br>903     | Concrete<br>Bentonit<br>Gravel<br>Bentonit<br>Gravel<br>Bentonite | e<br>ie<br>ie                                                |                                                                                 |
| Depth (ml<br>1.65                                                                                                                     | Type<br>s                                                   | N Vslue<br>N=14                                                                                                 | Casing Cr<br>1.65                                                                                            | m ater (<br>Dry                                                                                       | mi SWP                                                                                                     | Pen(mm Bl                                                                          | ows1<br>2                                 | Pen1(mm)<br>75                                                                                               |                    |              | Penetra<br>2(mm)<br>75                   |                                                                                     | Pen3                                                                                        |                                         | ) Blows4<br>3                                                                      | Pen4(mm)<br>75                                                                   | Blows5 F                                                                     | en5(mm<br>75                                                                    | ) Blows                                                                                                             | 6 Pen6(r<br>75                                           |                                                                   | mmer<br>BRK1                                                 | E. Ratio%<br>64                                                                 |
| 2.20<br>3.20<br>4.20<br>6.45<br>7.45<br>9.45<br>9.45<br>10.00<br>11.45<br>12.95<br>14.45<br>12.95<br>14.45<br>12.95<br>20.45<br>21.50 |                                                             | N=40<br>N=43<br>N=44<br>50/245<br>N=12<br>N=6<br>N=8<br>N=13<br>N=16<br>N=54<br>N=54<br>N=54<br>N=17<br>100/135 | 2.20<br>3.20<br>6.45<br>7.45<br>8.45<br>9.45<br>10.00<br>111.45<br>12.95<br>14.45<br>15.95<br>20.45<br>21.50 | Dry<br>Dry<br>Dry<br>Dry<br>5.45<br>6.45<br>7.45<br>8.00                                              |                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0            | 5 5 8 10 5 1 2 2 2 3 2 5 6 8 5 6 25       | 75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>7                              | 578154222333699765 |              | 75 75 75 75 75 75 75 75 75 75 75 75 75 7 | 10<br>10<br>11<br>15<br>3<br>2<br>2<br>2<br>2<br>2<br>10<br>10<br>6<br>4<br>4<br>50 | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 12<br>11<br>14<br>3<br>2<br>2<br>2<br>2<br>5<br>2<br>12<br>11<br>5<br>5<br>4<br>50 | 75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>60 | 10<br>12<br>15<br>3<br>2<br>2<br>2<br>2<br>3<br>6<br>14<br>15<br>5<br>4<br>4 | 75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>7 | 8<br>12<br>10<br>6<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>6<br>6<br>16<br>20<br>0<br>7<br>4<br>5 | 75<br>20<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75 |                                                                   | 9RK1<br>9RK1<br>9RK1<br>9RK1<br>9RK1<br>9RK1<br>9RK1<br>9RK1 | 64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>6 |
|                                                                                                                                       |                                                             |                                                                                                                 |                                                                                                              |                                                                                                       |                                                                                                            |                                                                                    |                                           |                                                                                                              | . =                |              |                                          |                                                                                     |                                                                                             |                                         |                                                                                    |                                                                                  |                                                                              |                                                                                 |                                                                                                                     |                                                          |                                                                   |                                                              |                                                                                 |
| Ground                                                                                                                                | water le                                                    | evels car                                                                                                       | n be sub                                                                                                     | oject to s                                                                                            | easor                                                                                                      |                                                                                    |                                           | son for H<br>other fluc                                                                                      |                    |              |                                          |                                                                                     |                                                                                             |                                         |                                                                                    |                                                                                  |                                                                              |                                                                                 |                                                                                                                     |                                                          |                                                                   |                                                              |                                                                                 |

| -barn<br>ritchies                                                           | E                                                                                            | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HO             | LE L                              | .00          | 3   |   |                             |                                       |                       | N                                                    | 1L03              | hole N<br>5-RC<br>et 1 of | 012                           |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------|--------------|-----|---|-----------------------------|---------------------------------------|-----------------------|------------------------------------------------------|-------------------|---------------------------|-------------------------------|
| Project Name:<br>Project No:<br>lient:<br>ngineer:                          | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Survey G<br>Co-ordina<br>Ground L | tes:         | em: |   | 49873<br>19395              | 9SGB<br>39.32 n<br>50.72 n<br>79.45 n | nE (<br>nN A<br>nOD S | Hole Typ<br>Checked<br>Approved<br>Scale:<br>Log Sta | l By:<br>d By:    |                           | RO+<br>AB,<br>PM<br>1:<br>FIN |
| ate Started:<br>Date Completed:                                             | 19/10/2016<br>25/10/2016                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Orientatio<br>Inclination         |              |     |   |                             | d<br>90 d                             | leg. I                | Print Dat<br>Final De                                | te:               |                           | 21/11/20<br>50.0              |
|                                                                             | Stratum Description                                                                          | Legend (Thick<br>ness)<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - Level<br>(m) | Depth<br>(m)                      | Samp<br>Type | 1   | - | and h Si<br>Blows<br>(mins) | itu Testi<br>Test                     | ng<br>Test Re         | sult Units                                           | TCR<br>SCR<br>RQD | Ifmin<br>Ifave<br>I(mma)x | water                         |
| Grass over dark bro<br>frequent rootlets. Gr<br>coarse flint.<br>[Alluvium] | wn slightly gravelly SILT with<br>avel is angular to subrounded fine to                      | ${} \begin{cases} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2$ | 79.05          | 0.20-0.40                         | в            |     |   |                             |                                       |                       |                                                      |                   |                           | :0;<br>_:-<br>1 5             |
| Soft orangish brown s<br>is angular to subrou<br>\lluviuml                  | slightly sandy gravelly CLAY. Gravel """<br>nded fine to coarse offlint.                     | 1,11,11, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78.85          | 0.40-0.60                         | В            |     |   |                             |                                       |                       |                                                      |                   |                           |                               |
| Structureless CHALI<br>ine to coarse of cha<br>Lewes Nodular Cha            |                                                                                              | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 0.80-1.00                         | В            |     |   |                             |                                       |                       |                                                      |                   |                           |                               |
|                                                                             | <u>. Gavelis subang</u> ulato subroun <u>de</u> el                                           | =)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                   |              |     |   |                             |                                       |                       |                                                      |                   |                           |                               |
| Drillers description:<br>open hole)                                         | CHALK with numerous flints. (Rotary                                                          | 120<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 78.25          |                                   |              |     |   |                             |                                       |                       |                                                      |                   |                           |                               |
|                                                                             |                                                                                              | r -<br>f-<br>f-<br>f-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                   |              |     |   |                             |                                       |                       |                                                      |                   |                           |                               |
|                                                                             |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                   |              |     |   |                             |                                       |                       |                                                      |                   |                           |                               |
|                                                                             |                                                                                              | •<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                   |              |     |   |                             |                                       |                       |                                                      |                   |                           |                               |
|                                                                             |                                                                                              | f-<br>f-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                   |              |     |   |                             |                                       |                       |                                                      |                   |                           |                               |
|                                                                             |                                                                                              | = f-<br>f-<br>f-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                   |              |     |   |                             |                                       |                       |                                                      |                   |                           |                               |
|                                                                             |                                                                                              | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                   |              |     |   |                             |                                       |                       |                                                      |                   |                           |                               |
|                                                                             |                                                                                              | f-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                   |              |     |   |                             |                                       |                       |                                                      |                   |                           |                               |
|                                                                             |                                                                                              | f-<br>f-<br>f -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                   |              |     |   |                             |                                       |                       |                                                      |                   |                           |                               |
|                                                                             |                                                                                              | f-<br>f-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                   |              |     |   |                             |                                       |                       |                                                      |                   |                           |                               |
|                                                                             |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                   |              |     |   |                             |                                       |                       |                                                      |                   |                           |                               |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| -barn<br>ritchies                   | E                                                | BORE                                                 | lOl          | LE L                        | OG                |   |                      |                  | N                    | 1L03                | hole N<br>5-RC<br>et 2 of | 012                 |
|-------------------------------------|--------------------------------------------------|------------------------------------------------------|--------------|-----------------------------|-------------------|---|----------------------|------------------|----------------------|---------------------|---------------------------|---------------------|
| Project Name:                       | Amersham Tunnel to Calvert                       |                                                      |              | Survey Gr                   |                   |   | OSG                  |                  | Hole Typ             |                     |                           | RO+R                |
| Project No:                         | 1G063 -AAZ.                                      |                                                      |              | Co-ordinat                  | es:               |   | 498739.3<br>193950.7 |                  | Checked<br>Approve   |                     |                           | AB, C<br>PMc        |
| Client:<br>Engineer:                | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd |                                                      |              | Ground Le                   | evel:             |   | 79.4                 | 5 mOD            | Scale:<br>Log Sta    | itus:               |                           | 1:25<br>FINA        |
| Date Started:<br>Date Completed:    | 19/10/2016<br>25/10/2016                         |                                                      |              | Orientation<br>Inclination: |                   |   | g                    | - deg.<br>0 deg. | Print Da<br>Final De | te:<br>pth:         |                           | 21/11/201<br>50.00r |
|                                     | Stratum Description                              | Legend (Thick-<br>ness)                              | Level<br>(m) | Depth<br>(m)                | Sampling,<br>Type | - |                      | Test             | Result Unit          | TCR<br>SCR<br>s R&D | Ifave                     | Ve                  |
| Drillers description:<br>open hole) | CHALK with numerous flints. (Rotary              | (m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m) | 69.45        |                             |                   |   |                      |                  |                      |                     |                           |                     |

| •barn                                                                                                                                                                                                                                                                                                   | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         | FН             |       | LEL                      | $\cap$ | 2      |        |                              |               |         | M                   |                             | hole N<br>5-RC         |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------|-------|--------------------------|--------|--------|--------|------------------------------|---------------|---------|---------------------|-----------------------------|------------------------|----------|
| ritchies                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |                |       |                          |        | ]      |        |                              |               |         | IV                  |                             | et 3 of                | -        |
| Project Name:                                                                                                                                                                                                                                                                                           | Amersham Tunnel to Calvert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                |       | Survey Gri<br>Co-ordinat |        | em:    |        |                              | SGB<br>9.32 n |         | Hole Typ<br>Checked |                             |                        | RO+      |
| Designed Max                                                                                                                                                                                                                                                                                            | 40000 447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |       | CO-orumat                | 55.    |        |        |                              |               |         |                     |                             |                        | AB,      |
| Project No:                                                                                                                                                                                                                                                                                             | 1G063-AAZ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                |       | <u> </u>                 |        |        |        |                              | 60.72 n       |         | Approve             | а ву:                       |                        | PN       |
| Client:                                                                                                                                                                                                                                                                                                 | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                |       | Ground Le                | vel:   |        |        | 1                            | '9.45 n       |         | Scale:              |                             |                        | 1:       |
| Engineer:                                                                                                                                                                                                                                                                                               | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                |       |                          |        |        |        |                              |               | l       | _og Sta             | tus:                        |                        | FIN      |
| Date Started:                                                                                                                                                                                                                                                                                           | 19/10/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                |       | Orientation              | :      |        |        |                              | d             | eg. I   | Print Dat           | te:                         |                        | 21/11/20 |
| Date Completed:                                                                                                                                                                                                                                                                                         | 25/10/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                |       | Inclination:             |        |        |        |                              | 90 d          | eg. I   | -inal De            | pth:                        |                        | 50.0     |
|                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         | Depth          |       |                          | Sampl  | ling C | oring  | and <b>h</b> Si              | tu Tosti      | na      |                     | TCR                         | If min                 |          |
|                                                                                                                                                                                                                                                                                                         | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         | hick-          | Level |                          | oumpi  |        | oninge |                              |               | ng      |                     | SCR                         | Ifave                  |          |
|                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         | ess)<br>(m)    | (m)   | Depth<br>(m)             | Туре   | (Dia   | Rec    | Blows<br>(mins) <sub>I</sub> | Test          | Test Re | sult Uni            | ts R <b>Ø</b> 61            | D (mna)x               | Weter E  |
| white CHALK. Fractu<br>closely spaced (65/'<br>with black specks ar<br>Fracture set 3: two v<br>undulating slightly rc<br>angular coarse gravv<br>[Lewes Nodular Cha<br>10.00 - 10.34m : 1<br>coarse angular GR<br>10.61 - 10.90m<br>greyish white grav<br>Gravelis veiy wea<br>1<br>coarse of chalk ar | ong, medium density, light greyish<br>ure set 1: horizontal to 20 degrees,<br>110/180), undulating slightly rough,<br>dr are orange staining, no infill.<br>ertical to 80 degrees fractures,<br>sugh, no infill. With occasional<br>el of rinded flint. (Grade: A3)<br>Ik Formation]<br>Drilling disturbed. Recovered as: fine to<br>AVEL of rinded flint with occasional flint<br>cobbles. Possible flint band.<br>Drilling disturbed. Recovered as: light<br>velly SILT and occasional flint cobbles.<br>M, medium density, subrounded fine to<br>and anaular fine to coarse of rinded flint.<br>re loss. No flush returns at surface. | ₽<br>₽-<br>₽-<br>₽-<br>₽-<br>₽-<br>₽-<br>₽-<br>₽-<br>₽- | 90><br>0.90 e  | 68.55 | 10.00-11.00              | RC     | 120    |        |                              |               |         |                     | 90<br>0<br>0                | NI<br>110<br>220<br>NR |          |
|                                                                                                                                                                                                                                                                                                         | ong, medium density, light greyish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r<br>f-<br>f-<br>f-<br>r-<br>r-                         | 1.50 6         | 67.95 |                          |        | 120    |        |                              |               |         |                     | 0                           |                        | -        |
| closely spaced (65/'<br>with black specks an<br>Fracture set 3: two v<br>undulating slightly rc<br>angular coarse grav.<br>[Lewes Nodular Cha<br>11.50-12.00m : D<br>silty subrounded 1<br>occasional cob<br>medium densi                                                                               | ure set 1: horizontal to 20 degrees,<br>110/180), undulating slightly rough,<br>di rare orange staining, no infill.<br>ertical to 80 degrees fractures,<br>bugh, no infill. With occasional<br>el of rinded fiint. (Grade: A3)<br>lk Formation]<br>rilling disturbed. Recovered as: slightly<br>to rounded fine to coarse GRAVEL with<br>bles of chalk and flint. Clasts are weak,<br>ty, off-white with frequent black specks.<br>rilling disturbed. Recovered non-intact.                                                                                                                                                              |                                                         | 16)            |       | 11.50-12.00              | RC     | 120    |        |                              |               |         |                     | 100<br>0<br>100<br>22<br>22 | 65<br>110              |          |
|                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | με.<br>r-                                               | 10)            |       | 12.50-12.72              | с      |        |        |                              |               |         |                     |                             | 220                    |          |
|                                                                                                                                                                                                                                                                                                         | rilling disturbed. Recovered non-intact.<br>: Drilling disturbed. Recovered as: light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f -<br>f -<br>f -<br>f -<br>f -<br>f -<br>f -<br>f      |                |       |                          |        |        |        |                              |               |         |                     |                             |                        |          |
| greyish white gra                                                                                                                                                                                                                                                                                       | willy SILT with occasional flint cobbles.<br>ak, medium density, subrounded fine to<br>coarse.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                       |                |       |                          |        |        |        |                              |               |         |                     |                             |                        |          |
| 13.40- 13.46m .                                                                                                                                                                                                                                                                                         | Rinded flint fragments (up to 120mm).<br>Possible flint band.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r                                                       |                |       |                          |        |        |        |                              |               |         |                     |                             |                        |          |
| Assumed zone of co                                                                                                                                                                                                                                                                                      | re loss.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f-<br>r-<br>r-<br>r-<br>r-                              | 3.66 6         | 65.79 | 13.00-14.50              | RC     | 120    |        |                              |               |         |                     | 44<br>0<br>0                |                        |          |
|                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f-<br>                                                  | .84)           |       |                          |        |        |        |                              |               |         |                     |                             | NR<br>-                |          |
| Fracture set 1: horizo<br>(65/110/180), undula<br>and rare orange stai<br>degrees to vertical, u                                                                                                                                                                                                        | ong, medium density, CHALK.<br>ontal to 20 degrees closely spaced<br>ting slightly rough, with black specks<br>ning, no infill. Fracture set 3: 80<br>undulating slightly rough, no infill.<br>ular coarse gravel of nodular flint.                                                                                                                                                                                                                                                                                                                                                                                                      | f-<br>f-                                                | 4.50 6<br>.87) | 64.95 |                          |        |        |        |                              |               |         |                     |                             | 65<br>110<br>220       |          |
|                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         | 1              |       | 14.50-15.50              | RC     | 120    |        |                              |               |         | 1                   | 1                           |                        | i 1      |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn<br>ritchies                                                                                                                                                                                                                          | B                                                                                                                                                                                                                                                                                                                                                                                                                                     | SO    | REI                                                                           | HO           | LE L                                 | 00             | G   |   |                             |                                     |     | N                                        |                     | 5-RC<br>et 4 of            | 012           |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------|--------------|--------------------------------------|----------------|-----|---|-----------------------------|-------------------------------------|-----|------------------------------------------|---------------------|----------------------------|---------------|----------------------------|
| Project Name:<br>Project No:                                                                                                                                                                                                               | Amersham Tunnel to Calvert<br>1G063-AAZ.                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                                               |              | Survey Gr<br>Co-ordinat<br>Ground Le | es:            | em: |   | 49873<br>19395              | SGB<br>9.32 n<br>60.72 n<br>'9.45 m | ηN  | Hole Typ<br>Checked<br>Approve<br>Scale: | be:<br>I By:        | <u>x + 01</u>              | RC<br>AE<br>F | 0+<br>B,<br>PN<br>1:2      |
| Client:<br>ingineer:<br>Pate Started:                                                                                                                                                                                                      | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>19/10/2016                                                                                                                                                                                                                                                                                                                                                                        |       |                                                                               |              | Orientatior                          |                |     |   | 1                           | 9.45 n                              |     | Log Sta<br>Print Da                      |                     |                            |               | =IN                        |
| Date Completed:                                                                                                                                                                                                                            | 25/10/2016                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                               |              | Inclination                          |                |     |   |                             | 90 d                                | eg. | Final De                                 | pth:                |                            | 50            | ).0                        |
|                                                                                                                                                                                                                                            | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                   | Legen | Depth<br>(Thick-<br>ness)<br>(m)                                              | Level<br>(m) | Depth<br>(m)                         | Sampli<br>Type | Die | - | andh Sit<br>Blows<br>(mins) | tu Testi<br>Test                    | -   | esult Unit                               | TCR<br>SCR<br>s RQD | lfmin<br>Ifave<br>I(mnna)x | Weter         |                            |
| grey to black fi<br>GRAVEL of rinde<br>14.90 - 14.97m                                                                                                                                                                                      | Ik Fonmation]<br>: Drilling disturl.Jed. Recovered as: dark<br>ne to subangular 10 subrounded coarse<br>d flint and weak, medium density chalk.<br>: Rinded flint fragments (up 10 60mm).<br>Possible flint band.<br>re loss. No flush returns at surface.                                                                                                                                                                            |       | f-<br>f-<br>:::15.37<br>f-<br>f-                                              | 64.08        |                                      |                |     |   |                             |                                     |     |                                          | 87<br>57<br>57      | 65<br>110<br>220           |               |                            |
| 15.37                                                                                                                                                                                                                                      | - 15.50m:Assumed zone of COTE loss.                                                                                                                                                                                                                                                                                                                                                                                                   |       | r-<br>µo.63)<br>r-<br>r-<br>r-                                                |              | 15.50 - 16.00                        | RC             | 120 |   |                             |                                     |     |                                          | 0<br>0<br>0         | NR                         |               |                            |
| Fracture set 1: horiz<br>(651110/180), undula<br>and rare orange stai<br>degrees to vertical, u                                                                                                                                            | ong, medium density, CHALK.<br>ontal to 20 degrees dosely spaced<br>ting slightly rough, with black specks<br>ning, no infill. Fracture set 3: 80<br>undulating slightly rough, no infill.<br>ular coarse gravel of nodular flint.                                                                                                                                                                                                    |       | r-<br>- :00<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r- | 63.45        |                                      |                |     |   |                             |                                     |     |                                          |                     |                            | -             |                            |
| [Lewes Nodular Cha                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | r-<br>t<1.10)<br>r-<br>r-<br>f-<br>f-<br>f-<br>r-                             |              | 16.00 - 17.10                        | RC             | 120 |   |                             |                                     |     |                                          | 100<br>24<br>24     | 65<br>110<br>220           |               |                            |
| Assumed zone of co                                                                                                                                                                                                                         | re loss. No flush returns at surface.                                                                                                                                                                                                                                                                                                                                                                                                 |       | r-<br>-17.10<br>r-<br>r-<br>r-                                                | 62.35        |                                      |                |     |   |                             |                                     |     |                                          | 0                   |                            | -             |                            |
|                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | f-{0.40)<br>f-<br>r-<br>r-<br>7.50                                            | 61.95        | 17.10 - 17.50                        | RC             | 120 |   |                             |                                     |     |                                          | 0                   | NR                         |               |                            |
| frequent thin light gro<br>set 1: horizontal to 2<br>(200/450/850), undu<br>specks, rare orange<br>40 degrees to 50 de<br>(210/400/560), undu<br>Fracture set 3: 60 to<br>(200/250/335), undu<br>With occasional nod<br>[Lewes Nodular Cha | sity, light greyish white CHALK with<br>y laminations (marl wisps). Fracture<br>0 degrees medium to widely spaced<br>lating slightly rough, with black<br>staining and no infill. Fracture set 2:<br>grees medium spaced<br>lating slightly rough, with no infill.<br>70 degrees, medium spaced<br>lating slightly rough, with no infill.<br>ular flints. (Grade: A 1/2)<br>lk Formation]<br>illing disturlJed. Recovered non-intact. |       | 1                                                                             |              | 17.50 - 19.00                        | RC             | 120 |   |                             |                                     |     |                                          | 100<br>59<br>47     |                            |               |                            |
| 10.00                                                                                                                                                                                                                                      | - 19.10m : Assumed zone of COTE loss.                                                                                                                                                                                                                                                                                                                                                                                                 |       | f-<br>f-<br>f-<br>f-                                                          |              | 18.68 - 18.85                        | i c            |     |   |                             |                                     |     |                                          | _                   |                            |               |                            |
|                                                                                                                                                                                                                                            | illing disturlJed. Recovered non-intact.                                                                                                                                                                                                                                                                                                                                                                                              |       | -<br>                                                                         |              |                                      |                |     |   |                             |                                     |     |                                          | 93<br>57<br>57      |                            |               | 6<br>600<br>50<br>50<br>50 |
|                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | r-<br>r-<br>r-<br>r-<br>r-                                                    |              | 19.00-20.50                          | RC             | 120 |   |                             |                                     |     |                                          |                     |                            | 1             | 0 4 0 4 0 4                |

| •barn                               | E                                                                                                                                                                                                                                                     | BORE                           | НО           | LE L                        | 00    | 3                       |          |                 |                   |          | N                   | IL03             | hole N<br>5-RC<br>et 5 of | 012           |                                         |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|-----------------------------|-------|-------------------------|----------|-----------------|-------------------|----------|---------------------|------------------|---------------------------|---------------|-----------------------------------------|
| Project Name:                       | Amersham Tunnel to Calvert                                                                                                                                                                                                                            |                                |              | Survey Gr                   |       | em:                     |          |                 | SGB               |          | lole Typ            |                  |                           |               | +RC                                     |
| Project No:                         | 1G063-AAZ.                                                                                                                                                                                                                                            |                                |              | Co-ordinat                  | es:   |                         |          |                 | 9.32 r<br>50.72 r |          | hecked              | •                |                           |               | 8, CB<br>McG                            |
| Client:                             | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                |                                |              | Ground Le                   | evel: |                         |          |                 | ′9.45 n           |          | cale:               | ,.               |                           |               | 1:25                                    |
| Engineer:                           | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                |                                |              |                             |       |                         |          |                 |                   |          | og Sta              |                  |                           |               | INAL                                    |
| Date Started:<br>Date Completed:    | 19/10/2016<br>25/10/2016                                                                                                                                                                                                                              |                                |              | Orientation<br>Inclination: |       |                         |          |                 | d<br>90 d         | •        | rint Dat<br>inal De |                  |                           | 21/11/2<br>50 | 2017<br>.00m                            |
|                                     |                                                                                                                                                                                                                                                       | Depth                          |              |                             |       | ing, C                  | oring a  | indh Si         | tu Testi          | na       |                     | TCR              | lf min                    |               |                                         |
|                                     | Stratum Description                                                                                                                                                                                                                                   | Legend (Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)                | Туре  | ( <sup>Dia</sup><br>mm) | Rec<br>% | Blows<br>(mins) | Test              | Test Res | sult Unit           | SCR<br>RØJD      | lfave<br>(mnna)x          | Weter B       | Wel<br>Backfi                           |
| 20.78-21.oom:Dri<br>21.35-21.91m:Dr | : Rinded flint fragments (up to 55mm).<br>Possible flint band.<br>20.78m : Brachiopod fossil (40mm).<br>Illing disturbed. Recovered non-intact.<br>rilling disturbed. Recovered non-intact.<br>Ingular medium to Coarse gravel of flint<br>fragments. |                                |              | 20.50 - 22.00               | RC    | 120                     |          |                 |                   |          |                     | 100<br>40<br>36  |                           |               | හිදා හිදා හිදා හිදා හිදා හිදා හිදා හිදා |
|                                     | rilling disturbed. Recovered non-intact.<br>gular medium to coarse gravel of rinded<br>flint fragments and finger flint.                                                                                                                              |                                |              | 22.12 - 22.32               | с     |                         |          |                 |                   |          |                     |                  | NI<br>100<br>430          |               | <u> </u>                                |
| 22.83-22.96m:Dr                     | illing disturbed. Recovered non-intact.                                                                                                                                                                                                               |                                |              | 22.00 - 23.50               | RC    | 120                     |          |                 |                   |          |                     | 100<br>100<br>56 |                           |               | o ở c ở c ở c ở c ở c ở c ở c ở c ở c   |
|                                     | rilling disturbed. Recovered non-intact.<br>medium to coarse gravel of rinded flint.                                                                                                                                                                  |                                |              |                             |       |                         |          |                 |                   |          |                     |                  |                           |               | 80 890 890 8                            |
| 23.81 - 23.83m                      | : Rinded flint fragments (up to 40mm).<br>Possible flint band.                                                                                                                                                                                        |                                |              | 23.50 - 25.00               | RC    | 120                     |          |                 |                   |          |                     | 100<br>33<br>33  |                           |               | රං වැං වැං වැං වැං වැං වැං වි<br>       |
| 24.73                               | 3 - 24.77m : Nodular flint (up to 50mm).                                                                                                                                                                                                              |                                |              |                             |       |                         |          |                 |                   |          |                     |                  |                           | 0             | 360 360 360<br>1                        |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn                                                                                                                                            | B                                                                                                                                                                                                                                                                                                         | BORE                                                                           | HO    | LE L                     | 00    | 3           |                     |                 |                 | N                 | IL03            | hole N<br>5-RC<br>et 6 of | 012                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------|--------------------------|-------|-------------|---------------------|-----------------|-----------------|-------------------|-----------------|---------------------------|---------------------------------|
| Project Name:                                                                                                                                    | Amersham Tunnel to Calvert                                                                                                                                                                                                                                                                                |                                                                                |       | Survey Gri<br>Co-ordinat | -     | em:         | O<br>49873          | SGB<br>9.32 n   |                 | ole Typ<br>necked | e:              |                           | RO+F<br>AB, C                   |
| roject No:<br>lient:                                                                                                                             | 1G063 -AAZ.<br>High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                     |                                                                                |       | Ground Le                |       |             | 19395               |                 | nN Ap<br>nOD So | prove<br>ale:     | d By:           |                           | PM<br>1:2                       |
| igineer:<br>ate Started:<br>ate Completed:                                                                                                       | High Speed 2 (HS2) Ltd<br>19/10/2016<br>25/10/2016                                                                                                                                                                                                                                                        | Inclina                                                                        | tion  | Orientatior<br>90 deg.   | :     |             |                     | d               |                 | ig Sta<br>int Dat |                 |                           | FIN<br>21/11/20<br>50.00        |
|                                                                                                                                                  | Stratum Description                                                                                                                                                                                                                                                                                       | Legend (Thick-                                                                 | Level |                          | Sampl | -           | <br>and h Sit       |                 |                 |                   | TCR<br>SCR      | If min<br>If ave          | Weter W                         |
| 25.00.25.00m                                                                                                                                     |                                                                                                                                                                                                                                                                                                           | ness)<br>(m)                                                                   | (m)   | Depth<br>(m)             | Туре  | Dia<br>(mm) | <br>Blows<br>(mins) | Test            | Test Resu       | t Units           | RQD<br>%        | lf max<br>(mm)            | B                               |
| greyish white si<br>chalk and nint. Clas<br>density, off-white cha                                                                               | : Drilling disturbed. Recovered as: light<br>lightly sandy fine to coarse GRAVEL of<br>its are weak to medium strong, medium<br>alk with some dark grey to black rinded<br>flint fragments.                                                                                                               | ⊧-<br> -<br> -<br> -<br>25.60                                                  | 53.85 | 25.00 - 25.65            | RC    | 120         |                     |                 |                 |                   | 100<br>0<br>0   | NI<br>490                 | 1d<br>1d'<br>1d<br>1d<br>1d     |
| coarse subangular G<br>and high density. Top<br><u>ewes Nodular Cha</u><br>Veak, medium dens<br>requent thin light gre<br>tet 1: horizontal to 2 | sity, light greyish white CHALK with<br>ey laminations (marl wisps), Fracture<br>0 degrees medium to widely spaced                                                                                                                                                                                        | ≥-25.65<br><br><br><br><br>po.85)                                              | 53.80 | 25.65 - 26.50            | RC    | 120         |                     |                 |                 | -                 | 24              |                           | 1 d<br>1 d<br>1 d<br>1 d<br>1 d |
| pecks, rare orange<br>40 degrees to 50 deg<br>(210/400/560), undu<br>Fracture set 3:60 to<br>(200/250/335), undu<br>With occasional nod          | Ilating slightly rough, with black<br>staining and no infill. Fracture set 2:<br>grees medium spaced<br>Ilating slightly rough, with no infill.<br>70degrees, medium spaced<br>Ilating slightly rough, with no infill.<br>Iular flints. (Grade: A1/2)                                                     | L26.50                                                                         | 52.95 |                          |       |             |                     |                 |                 | -                 | -               | NR                        |                                 |
| With occasional ang                                                                                                                              | IIK Formation]<br>illingdisturbed. Recovered non-intact.<br>jular medium 10 coae gravel of rinded<br>flint fraaments.<br>ore loss. No flush returns at surface.                                                                                                                                           | r-<br>-<br>-<br>-<br>-<br>-<br>-                                               |       | 26.50-27.3               | 6 RC  | 120         |                     |                 |                 |                   | 0<br>0          | -                         | 1d<br>1d                        |
| requent thin light gre<br>set 1: horizontal to 20<br>(200/450/850), undu<br>black specks, rare o                                                 | sity, light greyish white CHALK with<br>ey laminations (marl wisps). Fracture<br>0 degrees medium to widely spaced<br>lating slightly rough, with frequent<br>range staining and no infill. Fracture                                                                                                      |                                                                                | 52.10 | 27.35 - 28.00            | RC    | 120         |                     |                 |                 |                   | 100<br>15<br>15 |                           | - 10<br>10<br>10<br>10          |
| undulating slighUy n<br>70 degrees, medium<br>slightly rough, no inf<br>gravel of flint and oc<br>Lewes Nodular Cha<br>27.35 - 28.40m : D        | es medium spaced (210/400/560),<br>ough, no infill. Fracture set 3: 60 to<br>a spaced (200/250/335), undulating<br>fill. With occasional angular coarse<br>casional flint cobbles. (Grade: A 1/2)<br>(Ik Formation]<br>rrilling disturbed. Recovered non-intact.<br>gular medium 10 coae gravel of rinded | r-<br>r-<br>p1.05)<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r- |       | 27.75-27.85              | D     |             |                     |                 |                 | -                 | - 15            | 20<br>50<br>120           | 10<br>10<br>10<br>10            |
| Assumed zone of co                                                                                                                               | <i>flint fragments.</i><br>ore loss. Core loss presumed to be<br>due to flint.                                                                                                                                                                                                                            | 28.40                                                                          | 51.05 | 28.00 - 29.50            | RC    | 120         |                     |                 |                 |                   | 27<br>0         |                           |                                 |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           | r-<br>H1.10><br>r-<br>r-<br>r-<br>r-<br>r-<br>r-                               |       |                          |       |             |                     |                 |                 |                   | 0               | NR<br>-                   | 1c<br>1c<br>1c                  |
|                                                                                                                                                  | sity, light greyish white CHALK with                                                                                                                                                                                                                                                                      | f-<br>[9_50                                                                    | 49.95 |                          |       |             |                     |                 |                 |                   |                 |                           | 0<br>0<br>0                     |
| frequent thin light gre<br>set 1: horizontal to 2<br>(200/450/850), undu                                                                         | ey laminations (marl wisps). Fracture<br>0 degrees medium to widely spaced<br>lating slightly rough, with frequent                                                                                                                                                                                        | t<0.31)                                                                        |       | 19.00-40.25              |       |             |                     | Falling<br>Head | 1.2E00          | 5 mis             |                 |                           | < <br> <                        |
| slack specksoratege                                                                                                                              | zasqeestainingpacednezinfilloErsetyre                                                                                                                                                                                                                                                                     | t29.81                                                                         | 49.64 |                          |       |             |                     |                 |                 |                   |                 |                           | 1d                              |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn<br>ritchies                           | E                                                                                 | BOR          | E                               | HO           | LE L          | 00            | 3                     |     |                            |                    |                | Μ         | L03                | hole N<br>5-RC<br>et 7 of | 012    |             |
|---------------------------------------------|-----------------------------------------------------------------------------------|--------------|---------------------------------|--------------|---------------|---------------|-----------------------|-----|----------------------------|--------------------|----------------|-----------|--------------------|---------------------------|--------|-------------|
| Project Name:                               | Amersham Tunnel to Calvert                                                        |              |                                 |              | Survey Gri    |               | em:                   |     |                            | SGB                |                | lole Typ  |                    |                           |        | D+R         |
| Project No:                                 | 1G063-AAZ.                                                                        |              |                                 |              | Co-ordinate   | es:           |                       |     |                            | 39.32 r<br>50.72 r |                | hecked    | •                  |                           |        | B, C<br>PMc |
| Client:                                     | High Speed 2 (HS2) Ltd                                                            |              |                                 |              | Ground Le     | vel:          |                       |     |                            | 79.45 r            |                | cale:     | г Бу.              |                           |        | 1:25        |
| Engineer:                                   | High Speed 2 (HS2) Ltd                                                            |              |                                 |              |               |               |                       |     |                            |                    | L              | .og Stat  | tus:               |                           | F      | FINA        |
| Date Started:                               | 19/10/2016                                                                        |              |                                 |              | Orientation   | :             |                       |     |                            | 0                  | •              | Print Dat |                    |                           | 21/11/ |             |
| Date Completed:                             | 25/10/2016                                                                        |              |                                 |              | Inclination:  |               |                       |     |                            | 90 c               | 0              | inal De   |                    |                           | 50     | 100.C       |
| S                                           | Stratum Description                                                               | Legend (1    | Depth<br>Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)  | Sampl<br>Type | ing, C<br>Dia<br>(mm) | Rec | andh Si<br>Blows<br>(mins) | tu Test            | Ing<br>Test Re | sult Unit | TCR<br>SCR<br>s RD |                           | water  | We<br>Bacl  |
|                                             | ugh, no infill. Fracture set 3: 60 to spaced (200/250/335), undulating            | 3            | 80.08                           | 49.37        | 30.00 - 30.10 | D             |                       |     |                            |                    |                |           |                    |                           |        | 0000        |
| gravel of flint and occ                     | II. With occasional angular coarse<br>casional flint cobbles. (Grade: A 1/2)      |              |                                 |              | 29.50 - 31.00 | RC            | 120                   |     |                            |                    |                |           |                    |                           |        | 30,00       |
| [Lewes Nodular Chal<br>29.50 - 29.81m : N   | K Formation]<br>Nodular flint fragments {up t0 100mm).<br>Possible flint band.    |              |                                 |              |               |               |                       |     |                            |                    |                |           | 89<br>10           |                           |        | 000         |
| strong, high density (                      |                                                                                   |              |                                 |              |               |               |                       |     |                            |                    |                |           | 0                  |                           |        | 50.00       |
|                                             | Ik Formation                                                                      |              |                                 |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 0000        |
| set 1: horizontal to 20                     | D degrees medium to widely spaced<br>ating slightly rough, with frequent          |              |                                 |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 0000        |
| black specks, rare or                       | ange staining and no infill. Fracture es medium spaced (210/400/560),             |              | -                               |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 0000        |
|                                             | ugh, no infill. Fracture set 3: 60 to spaced (200/250/335), undulating            |              | 2.42)                           |              |               |               |                       |     |                            |                    |                |           |                    | 20<br>50                  |        | 000         |
|                                             | II. With occasional angular coarse casional flint cobbles. (Grade: A 1/2)         |              | ,_,                             |              |               |               |                       |     |                            |                    |                |           |                    | 120                       |        | 80          |
| [Lewes Nodular Chal                         | lk Formation]<br>30.08 - 30.12m : Grey marl band.                                 | <u>r</u> -r- |                                 |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 600         |
|                                             | Iling disturbed. Recovered non-intact.<br>ular medium to coarse gravel of rinded  |              |                                 |              |               |               |                       |     |                            |                    |                |           | 95                 |                           |        | 000         |
| 30.69 - 30.70m:                             | flint fragments.<br>Drilling disturbed. Recovered as: light                       |              |                                 |              | 31.00 -32.50  | RC            | 120                   |     |                            |                    |                |           | 15<br>0            |                           |        | 00          |
| ar                                          | e subangular GRAVEL of chalk. Clasts<br>e strong and high density. Chalk Rock.    |              |                                 |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 0000        |
|                                             | illing disturbed. Recovered non-intact.<br>ular medium to coarse gravel of rinded |              | -                               |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 000         |
|                                             | flint fragments.<br>- 31.00m : Assumed zone of core Joss.                         |              |                                 |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 000         |
|                                             | illing disturbed. Recovered non-intact.<br>ular medium t0 coarse gravel of rinded | TTT-         |                                 |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 60          |
| 31.25-31.34m                                | flint fragments.<br>Drilling disturbed. Recovered as: light:                      | ТТЗ          | 32.50                           | 46.95        |               |               |                       |     |                            |                    |                |           |                    |                           |        | 600         |
|                                             | e subangular GRAVEL of chalk. Clasts<br>e strong and high density. Chalk Rock.    |              |                                 |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 00<br>00    |
| 31.34-32.42m:Dri                            | illing disturbed. Recovered non-intact.<br>ular medium to coarse gravel of rinded |              |                                 |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 00          |
| <b>J</b>                                    | flint fragments.<br>- 32.50m : Assumed zone of core loss.                         |              |                                 |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 000         |
| Medium strong, medi                         | ium density, greyish white CHALK grey laminations (marl wisps).                   |              | -                               |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 0000        |
| Fracture set 1: horizo                      | ontal to 20 degrees, extremely                                                    |              |                                 |              |               |               |                       |     |                            |                    |                |           | 100                |                           |        | 000         |
|                                             | aced (8/68/125), undulating slightly ecks, rare orange staining and no            |              |                                 |              | 32.50 - 34.00 | RC            | 120                   |     |                            |                    |                |           | 57<br>24           |                           |        | 000         |
|                                             | 60 to 80 degrees, undulating slighUy ecks, orange staining and no infill.         |              |                                 |              |               |               |                       |     |                            |                    |                |           | 21                 |                           |        | 800         |
| Possibly Chalk Rock.<br>[Lewes Nodular Chal | (Grade: A4)                                                                       | <u> </u>     |                                 |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 8           |
|                                             | ik i offiaionj                                                                    |              |                                 |              |               |               |                       |     |                            |                    |                |           |                    | 8                         |        | 8           |
|                                             |                                                                                   | r            | 4.50)                           |              |               |               |                       |     |                            |                    |                |           |                    | 68<br>125                 |        | 8           |
|                                             |                                                                                   |              |                                 |              | 33.90 - 34.00 | D             |                       |     |                            |                    |                |           |                    |                           |        | 00          |
|                                             | Drilling disturbed. Recovered as: light                                           |              | -                               |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 80          |
|                                             | esubangular GRAVEL of chalk. Clasts<br>e strong and high density. Chalk Rock.     |              |                                 |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 000         |
|                                             |                                                                                   |              |                                 |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 0000        |
|                                             |                                                                                   |              |                                 |              |               |               |                       |     |                            |                    |                |           | 97                 |                           |        | 000         |
|                                             |                                                                                   |              |                                 |              |               |               |                       |     |                            |                    |                |           | 27<br>7            |                           |        | 000         |
|                                             |                                                                                   |              |                                 |              | 24.00 05.55   |               | 100                   |     |                            |                    |                |           |                    |                           |        | 000         |
|                                             |                                                                                   |              |                                 |              | 34.00 - 35.50 | кС            | 120                   |     |                            |                    |                |           |                    |                           |        | 000         |
|                                             |                                                                                   |              |                                 |              |               |               |                       |     |                            |                    |                |           |                    |                           |        | 000         |
|                                             |                                                                                   |              | - 1                             |              |               |               |                       |     |                            |                    |                |           |                    | ĺ                         |        |             |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn<br>ritchies                                                                                                                                                                                                                                                                                             | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BORE                           | 10           | LE L                           | 00      | 3     |           |                  |                  |           | Μ               | L03            | hole N<br>5-RC<br>et 8 of | 012   |                                                              |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|--------------------------------|---------|-------|-----------|------------------|------------------|-----------|-----------------|----------------|---------------------------|-------|--------------------------------------------------------------|------------|
| Project Name:                                                                                                                                                                                                                                                                                                 | Amersham Tunnel to Calvert                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |              | Survey Gr                      |         | em:   |           |                  | GB               |           | Іе Тур          | e:             |                           | R     | 0+R(                                                         | 2          |
| Project No:                                                                                                                                                                                                                                                                                                   | 1G063-AAZ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |              | Co-ordinat                     | es:     |       |           | 198739<br>193950 |                  |           | ecked<br>provec | -              |                           |       | B, CI<br>PMc0                                                | - 1        |
| Client:                                                                                                                                                                                                                                                                                                       | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |              | Ground Le                      | evel:   |       |           |                  | ).72 n<br>).45 n |           | ale:            | і Бу.          |                           |       | 1:25                                                         | - 1        |
| Engineer:                                                                                                                                                                                                                                                                                                     | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |              |                                |         |       |           |                  |                  | Lo        | g Stat          | tus:           |                           | F     | FINA                                                         | L          |
| Date Started:                                                                                                                                                                                                                                                                                                 | 19/10/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |              | Orientation                    |         |       |           |                  | d                | 0         | nt Dat          |                |                           | 21/11 |                                                              |            |
| Date Completed:                                                                                                                                                                                                                                                                                               | 25/10/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Depth                          |              | Inclination:                   |         | ing C | oring and | dh Situ          | 90 d             | -         | nal Dep         | otn:<br>TCR    | <b>If</b> min             | 50    | 0.00n                                                        | n<br>—     |
| :                                                                                                                                                                                                                                                                                                             | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Legend (Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)                   | Туре    | -     | Rec Bl    |                  | Test             | Test Resu | It Units        | SCR<br>RØD     | lfave<br>(mma)x           | Weter | We<br>Back                                                   | ell<br>fil |
| 35.50 - 35.63m :<br>greyish white coars<br>ar<br>36.26 - 36.34m : Dr                                                                                                                                                                                                                                          | - 35.50m : Assumed zone of core loss.<br>: Drilling disturl.Jed. Recovered as: light<br>e subangular GRAVEL of chalk. Clasts<br>re strong and high density. Chalk Rock.                                                                                                                                                                                                                                                                                                                                  |                                |              | 35.50 -37.00<br>36.30 - 36.40  | RC<br>C | 120   |           |                  |                  |           |                 | 98<br>33<br>8  | 8<br>68<br>125            |       | න් හිර                   |            |
| Weak, medium dens<br>frequent thin light gre<br>set 1: horizontal to 2/<br>(200/450/850), unduli<br>black specks, rare or<br>set 2: 40 to 50 degre<br>undulating slighUy ro<br>Fracture set 3: 60 de<br>spaced (200/250/335<br>(Grade: A1/2)<br>[New Pit Chalk Form<br>37.00-37.57m : Dr<br>37.89-38.29m : Dr | - 27.00m : Assumed zone of core less<br>ity, light greyish white CHALK and<br>ey laminations (mar1 wisps). Fracture<br>0 degrees, medium to widely spaced<br>ating sligh11y rough, with frequent<br>range staining and no infill. Fracture<br>ees medium spaced (210/400/560),<br>pugh, with black specks and no infill.<br>egrees to 70 degrees medium<br>b), undulating slighUy rough, no infill.<br>ration]<br>rilling disturIJed. Recovered non-intact.<br>rilling disturIJed. Recovered non-intact. |                                | 42.45        | 37.00 -38.50                   | RC      | 120   |           |                  |                  |           |                 | 86<br>6<br>0   |                           |       | 20 500 500 500 500 500 500 500 500 500 5                     |            |
|                                                                                                                                                                                                                                                                                                               | illing disturlJed. Recovered non-intact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |              | 38.80 - 38.95<br>38.50 - 40.00 |         | 120   |           |                  |                  |           |                 | 89<br>20<br>20 | 70<br>150<br>370          |       | छ <u>े. किंग के</u> किंग के कि |            |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn<br>ritchies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | В                                                                                                                                                                           | OF      | REI                       | HO           | LE L                                                                | 00           | 3      |         |                            |                                                    |                       | N                                                                             | IL03                          | hole N<br>5-RC<br>et 9 of | 012                   |                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------|--------------|---------------------------------------------------------------------|--------------|--------|---------|----------------------------|----------------------------------------------------|-----------------------|-------------------------------------------------------------------------------|-------------------------------|---------------------------|-----------------------|-----------------------------------------------------------------|
| Project Name:       Amersham Tunne         Project No:       1G063-AAZ.         Client:       High Speed 2 (HS         Engineer:       High Speed 2 (HS         Date Started:       19/10/2016         Date Completed:       25/10/2016                                                                                                                                                                                                                                                                                                 | 62) Ltd                                                                                                                                                                     |         |                           |              | Survey Gr<br>Co-ordinat<br>Ground Le<br>Orientatior<br>Inclination: | es:<br>evel: | em:    |         | 49873<br>19395             | 9SGB<br>39.32 r<br>50.72 r<br>79.45 r<br>c<br>90 c | nE (<br>nN )<br>nOD S | Hole Typ<br>Checked<br>Approved<br>Scale:<br>Log Sta<br>Print Dat<br>Final De | l By:<br>d By:<br>tus:<br>te: |                           | Al<br>ا<br>ا<br>21/11 | O+RC<br>B, CB<br>PMcG<br>1:25<br>FINAL<br>//2017<br>0.00m       |
| Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                             | Legend  | Depth<br>(Thick-<br>ness) | Level<br>(m) | Depth                                                               |              | -      | -       | andh Si<br>Blows<br>(mins) | tu Testi                                           | · ·                   |                                                                               | TCR                           | lfmin<br>Ifave<br>(mma)x  |                       | Well<br>Backfi                                                  |
| 40.00-40.94m : Drilling disturbed. Reco<br>40.61 - 40.74m : Rinded flint fragme                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                             |         | (m)                       | 38.51        | (m)<br>40.00 - 41.50                                                | RC           | 120    |         | (mins)                     |                                                    |                       |                                                                               | 63<br>0<br>0                  | 70<br>150<br>370          |                       | 200 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 |
| Weak, medium density, light greyish whi<br>frequent thin light grey laminations (mar                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             | T.T.    | <br><br><br><br><br>      | 37.95        |                                                                     |              |        |         |                            |                                                    |                       |                                                                               |                               | NR                        |                       |                                                                 |
| (a) (200/450/850), undulating slightly rough<br>(200/450/850), undulating slightly rough<br>black specks, rare orange staining and r<br>set 2: 40 to 50 degrees medium spaced<br>undulating slightly rough, with black spe<br>Fracture set 3: 60 degrees to 70 degree<br>spaced (200/250/335), undulating slightl<br>(Grade: A1/2)<br>[New Pit Chalk Formation]<br>41.50-41.84m:Drillin disturbed. Reco                                                                                                                                 | to widely spaced<br>with frequent<br>no infill. Fracture<br>(210/400/560),<br>cks and no infill.<br>s medium<br>y rough, no infill.                                         |         | (0.60)                    | 37.35        | 41.50 - 42.50                                                       | RC           | 120    |         |                            |                                                    |                       |                                                                               | 60<br>14<br>14                | 70<br>150<br>370          |                       |                                                                 |
| Assumed zone of core loss. No flush ret<br>Weak, medium density, light greyish whi<br>frequent thin light grey laminations (mar<br>set 1: horizontal to 20 degrees, medium<br>(200/450/850), undulating slightly rough<br>black specks, rare orange staining and r<br>set 2: 40 to 50 degrees medium spaced<br>undulating slightly rough, with black spe<br>Fracture set 3: 60 degrees to 70 degree<br>spaced (200/250/335), undulating slightl<br>(Grade: A1/2)<br>[New Pit Chalk Formation]<br>43.00-43.52m: Drilling disturbed. Reco | te CHALK and<br>I wisps). Fracture<br>to widely spaced<br>, with frequent<br>no infill. Fracture<br>(210/400/560),<br>cks and no infill.<br>s medium<br>y rough, no infill. |         |                           | 36.95        | 42.50 - 43.00<br>42.73 - 43.00                                      | RC<br>C      | 120    |         |                            |                                                    |                       |                                                                               | 100<br>60<br>60               |                           |                       |                                                                 |
| 44.50-44.91m : Drilling disturbed. Reco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | overed non-intact.                                                                                                                                                          |         |                           |              | 43.00 - 44.50                                                       | RC           | 120    |         |                            |                                                    |                       |                                                                               | 100<br>25<br>25               |                           |                       |                                                                 |
| Stratum depths measured along boreho<br>Groundwater levels may be subject to s<br>Explanation of symbols and abbreviation<br>Further details given on appended 'Bore                                                                                                                                                                                                                                                                                                                                                                    | seasonal, tidal and o<br>ns given in 'Key to E                                                                                                                              | Explora |                           |              | hould not be t                                                      | aken a       | us con | istant. |                            |                                                    |                       |                                                                               |                               |                           | I                     | <u> </u>                                                        |

| •barn                                                                          | E                                                                                                                                                                                                                               | BORE                                  | НО    | LE L                        | 00           | 3      |         |                             |                            |      | M                               | L03               | hole N<br>5-RC<br>t 10 of | 012         |                       |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------|-----------------------------|--------------|--------|---------|-----------------------------|----------------------------|------|---------------------------------|-------------------|---------------------------|-------------|-----------------------|
|                                                                                | mersham Tunnel to Calvert                                                                                                                                                                                                       |                                       |       | Survey Gr<br>Co-ordinat     | -            | em:    |         | 49873                       | )SGB<br>39.32 r<br>50.72 r |      | Hole Typ<br>Checked<br>Approved | By:               |                           | A           | O+RC<br>B, CB<br>PMcG |
| Client: H<br>Engineer: H                                                       | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd                                                                                                                                                                                |                                       |       | Ground Le                   |              |        |         |                             | 79.45 r                    | nOD  | Scale:<br>Log Stat              | tus:              |                           | F           | 1:25<br>FINAL         |
|                                                                                | 9/10/2016<br>25/10/2016                                                                                                                                                                                                         | 1                                     | 1     | Orientation<br>Inclination: |              |        |         |                             | c<br>90 c                  | leg. | Print Dat<br>Final De           | oth:              |                           | 21/11<br>50 | /2017<br>0.00m        |
| Stra                                                                           | atum Description                                                                                                                                                                                                                | Legend (Thick<br>ness)<br>(m)         |       | Depth<br>(m)                | Samp<br>Type | 1      | •       | and h Si<br>Blows<br>(mins) |                            |      | esult Units                     | TCR<br>SCR<br>RØD |                           | Weter       | Well<br>Backfi        |
| Recovered as: light g<br>of chalk with occasio<br>medium strong,               | ing disturbed. Recovered non-intact.<br>rreyish white fine to coarse GRAVEL<br>nal chalk cobbles. Gravel is weak to<br>medium density, off-white with black<br>e orange staining. Possibly fractured<br>zone?                   |                                       |       | 44.50 - 46.00               | RC           | 120    |         |                             |                            |      |                                 | 100<br>43<br>43   |                           |             |                       |
|                                                                                | ng disturbed. Recovered non-intact.<br>ar medium to coarse gravel of rinded                                                                                                                                                     |                                       |       | 45.84-45.94                 | c            |        |         |                             |                            |      |                                 |                   |                           |             |                       |
|                                                                                | rmeaium to coarse gravel or indee<br>flint fragments.                                                                                                                                                                           |                                       |       | 46.00 - 47.50               | RC           | 120    |         |                             |                            |      |                                 | 88<br>15<br>13    | 70<br>150<br>370          |             |                       |
| Recovered as: ligf<br>coarse GRAVEL of cha<br>weak to medium strong<br>47.32-4 | nt greyish white slightly sandy fine to<br>alk with rare chalk cobbles. Gravel is<br>g and medium density, off-white with<br>frequent black specks.<br>7.50m :Assumed zone of core Joss.<br>ng disturbed. Recovered non-intact. |                                       |       |                             |              |        |         |                             |                            |      |                                 |                   |                           |             |                       |
| 48.14-48.31m:Drillir                                                           | ng disturbed. Recovered non-intact.                                                                                                                                                                                             |                                       |       | 47.50 - 48.50               | ) RC         | 120    | 0       |                             |                            |      |                                 | 90<br>16<br>16    |                           |             |                       |
| Possibly New Pit Marl 2<br>[New Pit Chalk Formati                              | eyish green slighUy silty MARL.<br>?? (Grade Undetermined)<br>on]<br>3.50m:Assumed zone of core Joss.                                                                                                                           |                                       | 31.13 |                             |              |        |         |                             |                            |      |                                 |                   | NIDO                      |             |                       |
| Drilling disturbed. Weak<br>white CHALK with frequ                             | r, medium density, light greyish<br>uent thin light grey laminations<br>s vertical, undulating slightly<br>ade: A1?)                                                                                                            |                                       | 30.80 | 48.74-48.84                 | D            |        |         |                             |                            |      |                                 |                   |                           |             |                       |
|                                                                                |                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · |       | 49.03-49.13<br>48.50-50.00  | D<br>RC      | 120    |         |                             |                            |      |                                 | 85<br>0<br>0      | NIDO                      |             |                       |
| Assumed zone of core                                                           | loss.                                                                                                                                                                                                                           | 49.77                                 | 29.68 |                             |              |        |         |                             |                            |      |                                 |                   | NR                        |             |                       |
| r Boreho1e                                                                     | Flerminated at50.com+                                                                                                                                                                                                           | + <i>-</i> 5uoo                       | 29.45 |                             |              |        |         |                             |                            |      |                                 |                   |                           | -           |                       |
| Groundwater levels ma<br>Explanation of symbols                                | red along borehole axis.<br>ay be subject to seasonal, tidal and<br>s and abbreviations given in 'Key to<br>n appended 'Borehole Information :                                                                                  | Exploratory Ho                        |       | hould not be t              | aken a       | as con | hstant. |                             |                            |      |                                 |                   | L                         | 1           | L                     |

Г

Office: BAM Ritchies, Glasgow Road, Kilsyth, Glasgow G65 9BL

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>,,.b</b>                                                                                    | <b>a r</b> ]<br>itchie:                      |                                                |                                                                                       | BO                                                                                                                            | REH                                                                                                        | OLE                                                                                                | IN     | FOR                                                                                                                                                   | MA                | ΓI    | ON             | SHI              | EET                                                                           |                                           |                      | MLO                                       | rehole N<br>35-RC<br>neet 1 of                        | 012                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------|----------------|------------------|-------------------------------------------------------------------------------|-------------------------------------------|----------------------|-------------------------------------------|-------------------------------------------------------|---------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Project No<br>Client:                                                                          | 0:                                           | I                                              | 1G063<br>High Sp                                                                      | -AAZ<br>eed 2 (HS2                                                                                                            | !) Ltd                                                                                                     |                                                                                                    |        |                                                                                                                                                       | Co-ordin          | ates  |                |                  | 98739.32<br>93950.72                                                          | mN                                        | Che<br>App<br>Log    | ecked By<br>proved B<br>g Status          | y:                                                    | AB, CB<br>PMcG<br>FINAL                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |                                              |                                                |                                                                                       |                                                                                                                               |                                                                                                            |                                                                                                    |        |                                                                                                                                                       | Inclinatio        | on:   |                |                  |                                                                               |                                           |                      |                                           |                                                       |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |                                              |                                                |                                                                                       |                                                                                                                               |                                                                                                            | Plant                                                                                              |        |                                                                                                                                                       |                   |       | Ria (          |                  |                                                                               |                                           |                      | Inspection                                |                                                       | (S                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.20<br>10.00<br>29.50                                                                         | 10.0<br>29.5<br>32.5                         | 0<br>0<br>0                                    | RO<br>RC<br>RC                                                                        | 19/10/2016<br>20/10/2016<br>20/10/2016                                                                                        | 19/10/2016<br>20/10/2016<br>21/10/2016                                                                     | Cornacchio 30<br>Cornacchio 30                                                                     | 5      | T6-146                                                                                                                                                | PCD<br>Impregnate | ed    | A.Rob<br>A.Rob | oinson<br>oinson | <b>A.R</b><br>A.<br>A.                                                        | obinson<br>Barnard<br>Barnard             |                      | Rotaiy ope<br>Rotaiy cor<br>Rotaiy cor    | en hole<br>ed<br>ed                                   |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date                                                                                           | Tim                                          | ie D                                           |                                                                                       |                                                                                                                               |                                                                                                            | Remark                                                                                             | s      | Deoth <ml< td=""><td></td><td></td><td></td><td>arks</td><td>Deoth <m< td=""><td></td><td></td><td>Diameter b</td><td></td><td>s</td></m<></td></ml<> |                   |       |                | arks             | Deoth <m< td=""><td></td><td></td><td>Diameter b</td><td></td><td>s</td></m<> |                                           |                      | Diameter b                                |                                                       | s                                           |
| 201011       1100       0.00       0.00       End orbit       Form (10)       To (0)       Water Reso       Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19/10/2016<br>20/10/2016<br>20/10/2016<br>21/10/2016<br>21/10/2016<br>24/10/2016<br>24/10/2016 | 18:3<br>07:3<br>18:1<br>07:3<br>15:0<br>08:4 | 0<br>5<br>60<br>00<br>00                       | 10.00<br>10.00<br>31.00<br>26.52<br>41.18<br>40.89                                    | 10.00<br>10.00<br>31.00<br>28.52<br>41.18<br>40.89<br>20.50                                                                   | 3.91<br>13.36<br>13.27<br>13.32<br>13.34<br>13.33                                                          | End of shill<br>start of shift<br>End of shill<br>start of shift<br>End of shill<br>start of shift |        | 10.00<br>50.00                                                                                                                                        | 166<br>146        |       |                |                  | 50.00                                                                         | 14                                        |                      |                                           |                                                       |                                             |
| Term (n)         To (n)         Term (n)         To (n)         Prove (n)                                                                                                                                                                                                                   |                                                                                                |                                              |                                                |                                                                                       |                                                                                                                               | 13.35                                                                                                      |                                                                                                    |        | From (m)                                                                                                                                              | To (m)            | Vo    | olume (litres) | wate             | er Added Re                                                                   |                                           | Rema                 | irks                                      |                                                       |                                             |
| 1000<br>1000<br>1000<br>1000<br>1000         1000<br>1000<br>1000         1000<br>1000<br>1000         1000<br>1000         1000         1000<br>1000         1000<br>1000         1000<br>1000         1000<br>1000         1000<br>1000         1000<br>1000         1000<br>1000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         100 |                                                                                                |                                              |                                                | Dept                                                                                  |                                                                                                                               |                                                                                                            |                                                                                                    |        |                                                                                                                                                       |                   |       |                |                  |                                                                               |                                           |                      |                                           |                                                       |                                             |
| Date         Strategy         Jesteries         Dept         Type         Perform                                                                                                                                                                                                                                                                                                    | 19.00<br>25.85<br>26.50<br>29.50<br>32.50<br>41.50                                             | 40.25<br>26.50<br>27.35<br>42.50             | Droppe<br>Run cu<br>Changi<br>Changi<br>Reduce | ed core. wa<br>t short as r<br>ng from P(<br>ng from Im<br>ed run leng<br>ed core. wa | earned out in s<br>shed away whi<br>iot advancing a<br>CD to Impregna<br>ipregnated to C<br>th after poor re<br>shed away whi | tandpipe<br>ilst trying to reco<br>as expected.<br>ated drill bit.<br>Cube drill bit.<br>ecovery on previo | ous run.                                                                                           |        |                                                                                                                                                       |                   |       |                | 1001             | 1.20<br>10.00<br>11.00<br>12.00<br>13.00                                      | 10.00<br>11.00<br>12.00<br>13.00<br>14.50 | 50<br>90<br>90<br>90 | -100<br> -90<br>0<br> -90<br> -90<br>0    | VValer<br>Nater<br>VValer<br>VValer<br>Nater<br>Nater | Nhite<br>o<br>returns o<br>returns<br>Nhite |
| SP       1       20.00       40.00       60       Solited       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00       10.00 </td <td>Dale</td> <td>Strike(m</td> <td>) caalrci(m</td> <td></td> <td></td> <td>ed(m) R</td> <td>emarks</td> <td></td> <td>ipe ID From(m</td> <td>n) To (m) D</td> <td>a(mm)</td> <td>Pipe Type</td> <td>Remarks</td> <td></td> <td></td> <td>leg</td> <td>gend</td> <td>Desa</td> <td></td>                                                                                                         | Dale                                                                                           | Strike(m                                     | ) caalrci(m                                    |                                                                                       |                                                                                                                               | ed(m) R                                                                                                    | emarks                                                                                             |        | ipe ID From(m                                                                                                                                         | n) To (m) D       | a(mm) | Pipe Type      | Remarks          |                                                                               |                                           | leg                  | gend                                      | Desa                                                  |                                             |
| Depth (m)       Type       N Value       Casino Cm       Nature (m)       BW Pen (m)       Biows1 Pen/1 (m)       Biows2 Pen/2 (m)       Biows3 Pen/2 (                                                                                                      |                                                                                                |                                              |                                                |                                                                                       |                                                                                                                               |                                                                                                            |                                                                                                    | SP     | 1 20.00                                                                                                                                               | 40.00             | 50    | Slotted        |                  | 0.10<br>0.50<br>19.00                                                         | 0.50<br>19.00<br>40.25                    | 9<br>9<br>9          | 006 <b>Co</b><br>003 <b>Be</b><br>002 Gra | n <b>crete</b><br>ntonite<br>avel                     |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Depth (ml                                                                                      | Туре                                         | N Vslue                                        | Casino C                                                                              | m ater (m)                                                                                                                    | SWPen(mm Blo                                                                                               | ws1 PenHmm)                                                                                        |        |                                                                                                                                                       |                   |       |                | Pen4(mm)         | Blows5 Fen                                                                    | 5(mm) Blo                                 | ows6                 | Pen6(mm)                                  | Hammer                                                | E. Ratio%                                   |
| Groundwater levels can be subject to seasonal, tidal and other fluctuations and should not be taken as constant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                |                                              |                                                |                                                                                       |                                                                                                                               |                                                                                                            | Reason for H                                                                                       | oleTer | mination: 1                                                                                                                                           | Reached           | sche  | duled de       | pth              |                                                                               |                                           |                      |                                           |                                                       |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ground                                                                                         | water le                                     | evels ca                                       | ın be sul                                                                             | bject to sea                                                                                                                  |                                                                                                            |                                                                                                    |        |                                                                                                                                                       |                   |       |                |                  |                                                                               |                                           |                      |                                           |                                                       |                                             |

ь.

| -barn                                                      | E                                                                                                                                              | BOI        | RE                                                                                     | HO           | LE L         | .00      | 3   |   |                            |                    |     | ľ                 | <b>/LO</b> 3         | ehole N<br>5 <b>5-R0</b><br>et 1 of | 001    |                      |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------|--------------|--------------|----------|-----|---|----------------------------|--------------------|-----|-------------------|----------------------|-------------------------------------|--------|----------------------|
| Project Name:                                              | Amersham Tunnel to Calvert                                                                                                                     |            |                                                                                        |              | Survey G     | rid Syst | em: |   | C                          | SGB                |     | Hole Ty           | pe:                  |                                     |        | RO                   |
|                                                            |                                                                                                                                                |            |                                                                                        |              | Co-ordina    | ites:    |     |   |                            | 53.96 n            |     | Checke            | -                    |                                     |        | e, CB                |
| Project No:<br>Client:                                     | 1G063-AAZ.                                                                                                                                     |            |                                                                                        |              | Ground L     | avalı    |     |   |                            | 11.88 r<br>76.00 n |     | Approve<br>Scale: | ed By:               |                                     |        | PMcG                 |
| Engineer:                                                  | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd                                                                                               |            |                                                                                        |              | Ground L     | evel.    |     |   |                            | 76.00 11           | IOD | Log St            | atus:                |                                     |        | 1:25<br>INAL         |
| Date Started:                                              | 10/10/2016                                                                                                                                     |            |                                                                                        |              | Orientatio   | n:       |     |   |                            | d                  | eg. | Print Da          |                      |                                     | 20/11/ |                      |
| Date Completed:                                            | 17/10/2016                                                                                                                                     | - <b>.</b> |                                                                                        |              | Inclination  | 1:       |     |   |                            | 90 d               | eg. | Final D           | epth:                |                                     | 50     | .00m                 |
| Ş                                                          | Stratum Description                                                                                                                            | Legen      | Depth<br>(Thick-<br>ness)<br>(m)                                                       | Level<br>(m) | Depth<br>(m) | Sampl    | 1   | - | andh Si<br>Blows<br>(mins) |                    | -   | Result Un         | TCR<br>SCF<br>ts RØE | Ifave                               | water  | Vel<br>ckf           |
| MADE GROUND: Gr<br>gravelly clay with free<br>Made Groundl | ass over dark brown slightly sandy<br>quent rootlets.                                                                                          | - <br>.    | r-<br>>-0.10                                                                           | 75.90        |              |          |     |   |                            |                    |     |                   |                      |                                     |        | :0: <sub>2</sub> , , |
| with occasional stran<br>angular to subrounde              | ark brown slightly sandy gravelly clay<br>ids of string. Sand is fine. Gravel is<br>ed fine to coarse of various<br>brick fragments and flint. |            | 50.50)                                                                                 |              | 0.50         | В        |     |   |                            |                    |     |                   |                      |                                     |        | ;;;<br>IZ<br>;z ,,   |
| [Made Ground]                                              | s <u>andy gravelly (C</u> AY_Sand i <b>≴</b> in <u>e</u> ""                                                                                    |            | -0.50<br>>-                                                                            | 75.40        |              |          |     |   |                            |                    |     |                   |                      |                                     |        | i/ '                 |
|                                                            | ubrounded fine to coarse of various $f$ :                                                                                                      | . 1:"""    | f-                                                                                     |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        | ,,<br>,,<br>7        |
| 11 including                                               | flint.                                                                                                                                         | f:s=:      | <b>-</b><br>:[<0.60)                                                                   |              | 1.1          | В        |     |   |                            |                    |     |                   |                      |                                     |        | ,,,                  |
|                                                            |                                                                                                                                                | ,,         |                                                                                        | - 4 00       |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                | q          | r-                                                                                     | 74.80        |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            | ight brown sandy CLAY. (Rotary                                                                                                                 | . * *      | 1.20                                                                                   |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
| open hole)                                                 |                                                                                                                                                |            | r-<br>f-                                                                               |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | f-<br>f                                                                                |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | f-                                                                                     |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | I-                                                                                     |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | r-<br>k-                                                                               |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | 1<br>f                                                                                 |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                | 11         | f-                                                                                     |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | r                                                                                      |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | (<2.30)                                                                                |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                | -          | t-                                                                                     |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                | f          | r-<br>r-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f- |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | r<br>r                                                                                 |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | r-<br>f_                                                                               |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | -<br>-                                                                                 |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                | 11         | <b>1-</b><br>3.50                                                                      | 72.50        |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
| Drillers description: C open hole)                         | Coarse SAND and GRAVEL. (Rotary                                                                                                                |            | r-<br>f-<br>f-                                                                         | 12.00        |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | f                                                                                      |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                | -          | f.                                                                                     |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | r-                                                                                     |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | f-                                                                                     |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | r<br>[<3.00)                                                                           |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                | - •        | <b>I</b> -                                                                             |              |              |          |     |   |                            |                    |     |                   |                      |                                     | .      |                      |
|                                                            |                                                                                                                                                |            | r-<br>f-                                                                               |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            |                                                                                        |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | i-                                                                                     |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | r                                                                                      |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |
|                                                            |                                                                                                                                                |            | [                                                                                      |              |              |          |     |   |                            |                    |     |                   |                      |                                     |        |                      |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant. Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| -barn<br>ritchies                                                                                                                                                | BOI    | RE                               | HOI          | LEL                               | .00  | 3   |     |               |                                       |          | M                                                     | L03                    | hole N<br><b>5-R0</b><br>et 2 of   | 001                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------|--------------|-----------------------------------|------|-----|-----|---------------|---------------------------------------|----------|-------------------------------------------------------|------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Project Name:     Amersham Tunnel to Calvert       Project No:     1G063-AAZ.       Client:     High Speed 2 (HS2) Ltd       ngineer:     High Speed 2 (HS2) Ltd |        |                                  |              | Survey G<br>Co-ordina<br>Ground L | tes: | em: |     | 49865<br>1942 | )SGB<br>53.96 n<br>11.88 n<br>76.00 n | nE<br>nN | Hole Typ<br>Checked<br>Approved<br>Scale:<br>Log Stat | e:<br>By:<br>I By:     |                                    | R<br>JMe, C<br>PMc<br>1:25<br>FINA                                                                        |
| Date Started:         10/10/2016           Date Completed:         17/10/2016                                                                                    |        |                                  |              | Orientatio<br>Inclinatior         |      |     |     |               | d<br>90 c                             | •        | Print Dat<br>Final De                                 |                        |                                    | 20/11/201<br>50.00r                                                                                       |
| Stratum Description                                                                                                                                              | Legend | Depth<br>(Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)                      |      | Dia | Rec | Blows         | itu Testi<br>Test 1                   |          | sult Units                                            | TCR<br>SCR<br>RQD<br>% | If min<br>If ave<br>If max<br>(mm) | water Bad                                                                                                 |
| Drillers description: Coarse SAND and GRAVEL. (R<br>open hole)                                                                                                   | btary  |                                  |              |                                   |      |     |     |               |                                       |          |                                                       |                        |                                    | 16<br>1c1<br>1c1<br>1 =<br>1 =<br>1c1<br>1c1<br>1c1<br>1 =<br>1 =<br>1 =<br>1 =<br>1 =<br>1 =<br>1 =<br>1 |
| Drillers description: Brownish yellow SAND. (Rotary<br>open hole)                                                                                                |        |                                  | 69.50        |                                   |      |     |     |               |                                       |          |                                                       |                        |                                    | $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$                                     |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| -barn<br>ritchies                                                     | L                                                                                                          | BOF    | RE                                                                                        | HOI          | LE L                                            | .00                 | 3    |     |                  |                                            |                                     | Μ                                                               | L03                                | hole N<br><b>5-R0</b><br>et 3 of | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------|--------------|-------------------------------------------------|---------------------|------|-----|------------------|--------------------------------------------|-------------------------------------|-----------------------------------------------------------------|------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Name:<br>Project No:<br>Dlient:<br>ingineer:<br>Date Started: | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>10/10/2016 |        |                                                                                           |              | Survey G<br>Co-ordina<br>Ground L<br>Orientatio | tes:<br>evel:<br>n: | em:  |     | 4986<br>1942     | DSGB<br>53.96 r<br>11.88 r<br>76.00 r<br>d | nE C<br>nN A<br>nOD S<br>L<br>eg. F | lole Typ<br>checked<br>pprovec<br>cale:<br>.og Sta<br>Print Dat | be:<br>By:<br>d By:<br>tus:<br>te: |                                  | F<br>JMe, (<br>PM<br>1:2<br>FIN,<br>20/11/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Date Completed:                                                       | 17/10/2016<br>Stratum Description                                                                          | Legend | Depth<br>(Thick-<br>ness)                                                                 | Level<br>(m) | Inclination<br>Depth                            | Sampl               | Dia  | Rec | and h S<br>Blows |                                            | ing                                 | inal De                                                         | TCR<br>SCR                         | lf min<br>If ave<br>If max       | 50.00<br>water W<br>Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Drillers description:<br>open hole)                                   | Brownish yellow SAND. (Rotary                                                                              |        | (m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)                                      |              | (m)<br>10.43<br>10.43<br>11.21                  | EW<br>EW            | (mm) |     |                  |                                            |                                     |                                                                 |                                    | (mm)                             | 16           1c1           1c1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1 <tr td=""></tr> |
|                                                                       |                                                                                                            |        |                                                                                           |              |                                                 |                     |      |     |                  |                                            |                                     |                                                                 |                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Drillers description<br>(Rotary open hole)                            | : CHALK with flint gravel bands.                                                                           | - •    | r-<br>13.80<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r- | 62.20        |                                                 |                     |      |     |                  |                                            |                                     |                                                                 |                                    |                                  | 101<br>1<br>101<br>101<br>101<br>101<br>105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| -barn<br>ritchies                                                                        |                                                                                                                          | BO     | REI                                                      | HOI          | LEL                                                            | .00                 | 6   |     |                                |                                                      |                                      | Μ                                                                    | L03                                 | hole N<br><b>5-R0</b><br>et 4 of   | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------|--------------|----------------------------------------------------------------|---------------------|-----|-----|--------------------------------|------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------|-------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started:<br>Date Completed: | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>10/10/2016<br>17/10/2016 |        |                                                          |              | Survey G<br>Co-ordina<br>Ground L<br>Orientatio<br>Inclinatior | tes:<br>evel:<br>n: | em: |     | 498653<br>19421                | 6GB<br>3.96 mE<br>1.88 mN<br>6.00 mC<br>deg<br>90 de | E Cł<br>I Ap<br>DD So<br>Lo<br>g. Pr | ole Typ<br>necked<br>oprove<br>cale:<br>og Sta<br>rint Dat<br>nal De | be:<br>By:<br>d By:<br>tus:<br>tus: |                                    | R<br>JMe, C<br>PMc<br>1:25<br>FINA<br>20/11/201<br>50.00r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                          | Stratum Description                                                                                                      | Legend | Depth<br>(Thick-<br>ness)<br>(m)                         | Level<br>(m) | Depth<br>(m)                                                   |                     | Dia | Rec | ind h Situ<br>Blows<br>mins) T | uTestin                                              | -                                    |                                                                      | TCR<br>SCR                          | If min<br>If ave<br>If max<br>(mm) | water Bac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (Rotary open hole)                                                                       | CHALK with flint gravel bands.                                                                                           |        | F-<br>F-<br>F-<br>F-<br>F-<br>F-<br>F-<br>F-<br>F-<br>F- | 57.00        |                                                                |                     |     |     |                                |                                                      |                                      |                                                                      |                                     |                                    | $ \begin{array}{c} 166\\ 1c16\\ 1c16\\$ |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| -barn<br>ritchies                                                                        |                                                                                                                          | BOREHO                           | LE LOG                                                                                |                                                                      | ML03                                                                                              | nole No:<br><b>5-R0001</b><br>it 5 of 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started:<br>Date Completed: | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>10/10/2016<br>17/10/2016 |                                  | Survey Grid System:<br>Co-ordinates:<br>Ground Level:<br>Orientation:<br>Inclination: | OSGB<br>498653.96 mE<br>194211.88 mN<br>76.00 mOD<br>deg.<br>90 deg. | Hole Type:<br>Checked By:<br>Approved By:<br>Scale:<br>Log Status:<br>Print Date:<br>Final Depth: | RO<br>JMe, CB<br>PMcG<br>1:25<br>FINAL<br>20/11/2017<br>50.00m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Drillers descriptior<br>with possible flint b<br>open hole)                              | Stratum Description<br>n: No flush returns at surface. CHALK<br>bands and softer horizons. (Rotary                       | Legend (PARR- Level<br>ness) (m) | Depth Dia Red                                                                         | g and h Situ Testing<br>c Blows<br>(mins) Test Test R                | TCR<br>RQD<br>Result Units %                                                                      | $ \begin{array}{ c c c c } & \text{If min} \\ \text{If max} \\ \text{If max} \\ \text{(mm)} \end{array} \text{ water } \begin{array}{ c c c c } & \text{Well} \\ & \text{Backfill} \\ & \text{Backfill} \\ & \text{Icl6} & \text{Icl6} & \text{Icl6} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                          |                                                                                                                          |                                  |                                                                                       |                                                                      |                                                                                                   | $\begin{vmatrix}  c 6: \\   & = \\   & = \\   & = \\  c 6: \\  c 6: \\  c 6: \\   & = \\   & = \\  c 6: \\  c 6: \\  c 6: \\ \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                          | reasured along borehole axis.                                                                                            |                                  |                                                                                       |                                                                      |                                                                                                   | $   \begin{array}{c}     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     6 \\     1 \\     6 \\     1 \\     6 \\     1 \\     6 \\     1 \\     6 \\     1 \\     6 \\     1 \\     6 \\     1 \\     6 \\     1 \\     6 \\     1 \\     6 \\     1 \\     6 \\     1 \\     1 \\     6 \\     1 \\     1 \\     6 \\     1 \\     1 \\     6 \\     1 \\     1 \\     6 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     $ |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| -barr<br>ritchies                                                                        | 1                                                                                                                        | BOREHO                               | LE LOG                                                                                |                                                                      | ML03                                                                                              | nole No:<br><b>5-R0001</b><br>t 6 of 10                                                     |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started:<br>Date Completed: | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>10/10/2016<br>17/10/2016 |                                      | Survey Grid System:<br>Co-ordinates:<br>Ground Level:<br>Orientation:<br>Inclination: | OSGB<br>498653.96 mE<br>194211.88 mN<br>76.00 mOD<br>deg.<br>90 deg. | Hole Type:<br>Checked By:<br>Approved By:<br>Scale:<br>Log Status:<br>Print Date:<br>Final Depth: | RO<br>JMe, CB<br>PMcG<br>1:25<br>FINAL<br>20/11/2017<br>50.00m                              |
| Drillers description<br>with possible flint b<br>open hole)                              | Stratum Description<br>I: No flush returns at surface. CHALK<br>vands and softer horizons. (Rotary                       | Legend (PRRR- Level<br>ness) (m)<br> | Depth   Dia Rea<br>(m) Type (mm) %                                                    | c Blows<br>(mins) Test Test R                                        | SCR<br>RQD<br>Result Units %                                                                      | If ave water Well/<br>If max water Backfill<br>(mm) I 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|                                                                                          |                                                                                                                          |                                      |                                                                                       |                                                                      |                                                                                                   | $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                          |
|                                                                                          | easured along borehole axis.                                                                                             |                                      |                                                                                       |                                                                      |                                                                                                   |                                                                                             |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| -barn<br>ritchies                                                     | I                                                                                                          | BOREHOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E LOG                                                                 |                                                           | ML035                                                                             | ole No:<br>5 <b>-R0001</b><br>t 7 of 10                          |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started: | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>10/10/2016 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Survey Grid System:<br>Co-ordinates:<br>Ground Level:<br>Orientation: | OSGB<br>498653.96 mE<br>194211.88 mN<br>76.00 mOD<br>deg. | Hole Type:<br>Checked By:<br>Approved By:<br>Scale:<br>Log Status:<br>Print Date: | RO<br>JMe, CB<br>PMcG<br>1:25<br>FINAL<br>20/11/2017             |
| Date Completed:                                                       | 17/10/2016                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Inclination:                                                          | 90 deg.                                                   | Final Depth:                                                                      | 50.00m                                                           |
| ş                                                                     | Stratum Description                                                                                        | Legend (Pepth- Level<br>ness) (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Depth Dia Re                                                          | g and h Situ Testing<br>c Blows<br>5 (mins) Test Test F   | CR<br>SCR<br>RQD<br>Result Units %                                                | If min<br>If ave<br>If max<br>(mm)<br>Well/<br>Backfi            |
| Drillers description: N<br>with possible flint bar<br>open hole)      | No flush returns at surface. CHALK<br>hds and softer horizons. (Rotary                                     | Iness)       (III)         (III)       (IIII)         (III)       (IIII) <td< td=""><td>(m) Type (mm) %</td><td>6 (mins) Test Test F</td><td>Result Units %</td><td><math display="block">\begin{array}{c} 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100</math></td></td<> | (m) Type (mm) %                                                       | 6 (mins) Test Test F                                      | Result Units %                                                                    | $\begin{array}{c} 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100$ |
|                                                                       |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                                                           |                                                                                   | 1 6                                                              |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| -barn<br>ritchies                                                                        |                                                                                                                          | BOREHOI                              | E LOG                                                                                 |                                                                      | ML03                                                                                              | nole No:<br><b>5-R0001</b><br>t 8 of 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started:<br>Date Completed: | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>10/10/2016<br>17/10/2016 |                                      | Survey Grid System:<br>Co-ordinates:<br>Ground Level:<br>Orientation:<br>Inclination: | OSGB<br>498653.96 mE<br>194211.88 mN<br>76.00 mOD<br>deg.<br>90 deg. | Hole Type:<br>Checked By:<br>Approved By:<br>Scale:<br>Log Status:<br>Print Date:<br>Final Depth: | RO<br>JMe, CB<br>PMcG<br>1:25<br>FINAL<br>20/11/2017<br>50.00m                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Drillers descriptior<br>with possible flint b<br>open hole)                              | Stratum Description                                                                                                      | Legend (PARK- Level<br>ness) (m)<br> | Depth Dia Rec                                                                         | g and h Situ Testing<br>Blows<br>(mins) Test Test R                  | TCR<br>RQD<br>Result Units %                                                                      | $\begin{array}{c c} \text{If min} \\ \text{If ave} \\ \text{If max} \\ \text{(mm)} \end{array} \text{ water } \begin{array}{c} \text{Well/} \\ \text{Backfill} \\ \hline \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                             |
|                                                                                          | reasured along borehole axis.                                                                                            |                                      |                                                                                       |                                                                      |                                                                                                   | 1       =         1       =         1       c16:         1       =         1       =         1       =         1       =         1       =         1       =         1       =         1       =         1       =         1       =         1       =         1       =         1       6         1       6         1       6         1       6         1       6         1       6         1       6         1       6         1       6         1       6         1       6         1       6         1       6 |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| -barn<br>ritchies                                                                        | l I                                                                                                                      | BOREHO                                   | LE LOG                                                                                |                                                                      | ML03                                                                                              | hole No:<br><b>5-R0001</b><br>et 9 of 10                                            |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started:<br>Date Completed: | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>10/10/2016<br>17/10/2016 |                                          | Survey Grid System:<br>Co-ordinates:<br>Ground Level:<br>Orientation:<br>Inclination: | OSGB<br>498653.96 mE<br>194211.88 mN<br>76.00 mOD<br>deg.<br>90 deg. | Hole Type:<br>Checked By:<br>Approved By:<br>Scale:<br>Log Status:<br>Print Date:<br>Final Depth: | RO<br>JMe, CB<br>PMcG<br>1:25<br>FINAL<br>20/11/2017<br>50.00m                      |
|                                                                                          | Stratum Description                                                                                                      | Legend (THICR- Level<br>ness) (m)<br>(m) | Depth Dia Re                                                                          | ng and h Situ Testing<br>ec Blows<br>% (mins) Test Test R            | TCR<br>SCR<br>RQD<br>Result Units %                                                               | If min<br>If ave<br>If max<br>(mm) water Well/<br>Backfi                            |
| open hole)                                                                               | No flush returns at surface. CHALK.                                                                                      |                                          |                                                                                       |                                                                      |                                                                                                   | $ \begin{array}{c} 16\\ 1c16\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$ |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

|                                             | -                                                                  | 501    | ΚΕΙ                                    | HOI          | LE L                              | .00           | 5   |     |                              |                                   |                          |                                    |                        | <b>5-R0</b><br>t 10 of             |                            |
|---------------------------------------------|--------------------------------------------------------------------|--------|----------------------------------------|--------------|-----------------------------------|---------------|-----|-----|------------------------------|-----------------------------------|--------------------------|------------------------------------|------------------------|------------------------------------|----------------------------|
| roject Name:<br>roject No:<br>lient:        | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd |        |                                        |              | Survey G<br>Co-ordina<br>Ground L | tes:          | em: |     | 49865<br>19421               | SGB<br>3.96 m<br>1.88 m<br>6.00 m | nE Ch<br>nN Ap<br>nOD Sc | ile Typ<br>ecked<br>proveo<br>ale: | be:<br>By:<br>d By:    |                                    | R<br>JMe, C<br>PMc<br>1:25 |
| ngineer:<br>ate Started:                    | High Speed 2 (HS2) Ltd<br>10/10/2016                               |        |                                        |              | Orientatio                        |               |     |     |                              | de                                | eg. Pr                   | g Sta<br>int Dat                   | ie:                    | ;                                  | FINA<br>20/11/201          |
| ate Completed:                              | 17/10/2016                                                         |        |                                        |              | Inclination                       |               |     |     |                              | 90 d                              | -                        | nal De                             |                        | <u> </u>                           | 50.00                      |
|                                             | Stratum Description                                                | Legend | Depth<br>(Thick-<br>ness)<br>(m)       | Level<br>(m) | Depth<br>(m)                      | Sampl<br>Type | Dia | Rec | and h Sit<br>Blows<br>(mins) |                                   | ng<br>Test Resu          | It Units                           | TCR<br>SCR<br>RQD<br>% | If min<br>If ave<br>If max<br>(mm) | water Ba                   |
| Drillers description:<br>(Rotary open hole) | : No flush returns at surface. CHALK.                              | -      | f=<br>f=<br>f=<br>f=<br>f=             |              |                                   |               |     |     |                              |                                   |                          |                                    |                        |                                    | 106<br>1c1<br>1c1          |
|                                             |                                                                    |        |                                        |              |                                   |               |     |     |                              |                                   |                          |                                    |                        |                                    | 1 =                        |
|                                             |                                                                    | _      | r<br>r-<br>f-                          |              |                                   |               |     |     |                              |                                   |                          |                                    |                        |                                    | + =<br>1c1<br>1c1          |
|                                             |                                                                    | _      | f-<br>f<br>r-<br>r-                    |              |                                   |               |     |     |                              |                                   |                          |                                    |                        |                                    | 1                          |
|                                             |                                                                    |        | r-<br>f-<br>f-<br>f-<br>r-             |              |                                   |               |     |     |                              |                                   |                          |                                    |                        |                                    | 1<br>1c1<br>1c1            |
|                                             |                                                                    | -      | r-<br>r-<br>r-<br>f-<br>f-             |              |                                   |               |     |     |                              |                                   |                          |                                    |                        |                                    | 1c1<br>1<br>1              |
|                                             |                                                                    |        | f-<br>r-<br>r<br>r-                    |              |                                   |               |     |     |                              |                                   |                          |                                    |                        |                                    | 1<br>  1c <br>  1c         |
|                                             |                                                                    |        | r-<br>f-<br>f-<br>r-<br>r-<br>tf-i.50) |              |                                   |               |     |     |                              |                                   |                          |                                    |                        |                                    | 101<br>101<br>1            |
|                                             |                                                                    | _      | f-<br>f-<br>f-                         |              |                                   |               |     |     |                              |                                   |                          |                                    |                        |                                    | 1                          |
|                                             |                                                                    | _      | f=<br>f=<br>f=<br>f=                   |              |                                   |               |     |     |                              |                                   |                          |                                    |                        |                                    | 1c<br>1c                   |
|                                             |                                                                    | -      | f=<br>f=<br>f=<br>f=<br>f=             |              |                                   |               |     |     |                              |                                   |                          |                                    |                        |                                    | 1                          |
|                                             |                                                                    |        | r-<br>r-<br>r-<br>f-<br>f-             |              |                                   |               |     |     |                              |                                   |                          |                                    |                        |                                    | 1c1<br>1c1                 |
|                                             |                                                                    | -      | F<br>F<br>F<br>F                       |              |                                   |               |     |     |                              |                                   |                          |                                    |                        |                                    | 1c1<br>1<br>1              |
|                                             |                                                                    |        | f-<br>f-<br>f-<br>t-                   |              |                                   |               |     |     |                              |                                   |                          |                                    |                        |                                    | 101                        |
|                                             |                                                                    |        | r-<br>F-<br>F-                         |              |                                   |               |     |     |                              |                                   |                          |                                    |                        |                                    | 10<br>10<br>10             |
|                                             |                                                                    |        | -<br>-<br>-<br>-<br>-                  |              |                                   |               |     |     |                              |                                   |                          |                                    |                        |                                    | 16<br>16                   |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

|                                                                                                | a rr                                                              | l          |                                                                                                                                                                                                                                                                                                                                                                                 | B                                                | DR            | EH                                         | OLE                                                                                                               | E IN                   | JF    | FOR                                                                                                                                                                                                                         | M                    | 47             | <b>F</b> I(   | ON                    | SH                                                                                                                   | EET                                                                                                           | •                                    |               | Μ                                           | Borehole<br>L035-R0<br>Sheet 1 c                                          | 0001                                         |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|---------------|-----------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|---------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|
| Project N<br>Project N<br>Client:<br>Engineer                                                  | lo:                                                               | ŕ          | G063<br>High Sp                                                                                                                                                                                                                                                                                                                                                                 | M Tunne<br>AAZ<br>eed 2 (H<br>eed 2 (H           | 52) Lt        | td                                         |                                                                                                                   |                        |       |                                                                                                                                                                                                                             | Surv<br>Co-o<br>Grou | rdina          | ates          |                       |                                                                                                                      | OSGE<br>98653.96<br>94211.88<br>76.00                                                                         | mE                                   |               | Hole Typ<br>Checkec<br>Approvec<br>Log Stat | d By:<br>d By:                                                            | RO<br>JMe, CB<br>PMcG<br>FINAL<br>20/11/2017 |
| Date Sta<br>Date Cor                                                                           |                                                                   |            | 0/10/20                                                                                                                                                                                                                                                                                                                                                                         |                                                  |               |                                            |                                                                                                                   |                        |       |                                                                                                                                                                                                                             | Orier<br>Inclir      | natior         | n:            |                       |                                                                                                                      |                                                                                                               | - deg.<br>) deg.                     | I             | Final De                                    | pth:                                                                      | 50.00m                                       |
| From <ml<br>0.00<br/>1.20</ml<br>                                                              | To rm<br>1.20<br>50.00                                            | 1          | Tvoe<br>IP<br>RO                                                                                                                                                                                                                                                                                                                                                                | Start<br>11110120<br>11/10120                    | 16 1<br>16 17 | End<br>1/1012016<br>7/1012016              | Pl<br>Insulated di<br>P450                                                                                        | lant                   |       | ated Explora<br>Barrel<br>Geobor-S<br>(146)                                                                                                                                                                                 | Dril                 | ole Inf        | form          | Ria (<br>S. K         |                                                                                                                      | J.                                                                                                            | Loaaer<br>Dudson<br>S. Kelly         |               |                                             | Rema                                                                      | rks                                          |
| Date                                                                                           | Time                                                              | D          | Bolir<br>eoth <ml< td=""><td>11-Drillina F<br/>Casinanl</td><td></td><td>s<br/>oth Water (m)</td><td>Ren</td><td>marks</td><td>_</td><td>Deoth <ml< td=""><td></td><td>Diam<br/>Imml</td><td></td><td>bv Deoth<br/>Rem</td><td>arks</td><td>Deoth <r< td=""><td>nl Dia</td><td>Casi<br/>a.rmm</td><td></td><td>er by Deoth<br/>Rema</td><td>rks</td></r<></td></ml<></td></ml<> | 11-Drillina F<br>Casinanl                        |               | s<br>oth Water (m)                         | Ren                                                                                                               | marks                  | _     | Deoth <ml< td=""><td></td><td>Diam<br/>Imml</td><td></td><td>bv Deoth<br/>Rem</td><td>arks</td><td>Deoth <r< td=""><td>nl Dia</td><td>Casi<br/>a.rmm</td><td></td><td>er by Deoth<br/>Rema</td><td>rks</td></r<></td></ml<> |                      | Diam<br>Imml   |               | bv Deoth<br>Rem       | arks                                                                                                                 | Deoth <r< td=""><td>nl Dia</td><td>Casi<br/>a.rmm</td><td></td><td>er by Deoth<br/>Rema</td><td>rks</td></r<> | nl Dia                               | Casi<br>a.rmm |                                             | er by Deoth<br>Rema                                                       | rks                                          |
| 10/1012016<br>10/10/2016<br>1111012016<br>11/1012016<br>12/10/2016<br>12/10/2016<br>13/10/2016 | 5 14:15<br>1B:OC<br>5 11:15<br>5 17:30<br>OB:40<br>17:30<br>OB:45 | )          | 0.00<br>0.00<br>19.00<br>19.00<br>46.00<br>46.00                                                                                                                                                                                                                                                                                                                                | 0.00<br>0.00<br>19.00<br>19.00<br>46.00<br>46.00 |               | Dry<br>Dry<br>9.55<br>9.95<br>B.05<br>8.30 | start of shif<br>End of shill<br>start of shif<br>End of shifl<br>start of shif<br>End of shill<br>start of shifl | <br>ft<br> <br> <br>ft |       | 15.00<br>50.00                                                                                                                                                                                                              | 1)<br>1.             | 68<br>46       |               |                       |                                                                                                                      | 15.00<br>50.00                                                                                                |                                      | 168<br>146    |                                             |                                                                           |                                              |
| 13/10/2016<br>14/10/2016<br>14/10/2016<br>17/10/2016                                           | OB:30<br>14:15                                                    | )          | 50.00<br>50.00<br>50.00<br>50.00                                                                                                                                                                                                                                                                                                                                                | 50.00<br>50.00<br>50.00<br>0.00                  |               | 9.35<br>9.35<br>9.30                       | End of shill<br>start of shif<br>Hole compl<br>start of shif                                                      | ft<br>lete             | -     | From (m)                                                                                                                                                                                                                    | То                   | (m)            | Vo            | lume (lltres)         | wate                                                                                                                 | r Added Re                                                                                                    | ecords                               | Re            | emarks                                      |                                                                           |                                              |
| 17/10/2016                                                                                     |                                                                   |            | 50.00                                                                                                                                                                                                                                                                                                                                                                           | 0.00<br>Related F                                | emark         | s                                          | End of shill                                                                                                      |                        |       |                                                                                                                                                                                                                             | C                    | hiselli        | in <b>i</b> D | etails                |                                                                                                                      | 1                                                                                                             |                                      | D             | Prillino Flus                               | sh Details                                                                |                                              |
| From (m)<br>0.00                                                                               | To (m)<br>50.00                                                   | water q    | uality logg                                                                                                                                                                                                                                                                                                                                                                     | er installed                                     |               | harks<br>Ipipe                             |                                                                                                                   |                        |       | From (m)                                                                                                                                                                                                                    | Το                   | (m)            | Du            | ration (hh:mm)        | Tool                                                                                                                 | From (m)<br>1.20<br>19.00<br>19.50                                                                            | To (r<br>19.0<br>19.5<br>50.0        | i0<br>i0      | teturns (%)<br>100-100<br>0 - 50<br>0       | Flush<br>Polymer-<br>Polymer-<br>Purebore<br>Polymer-<br>Purebore         | Colour<br>No returns                         |
| Dale                                                                                           | Strike(m)                                                         | caalrci(m) |                                                                                                                                                                                                                                                                                                                                                                                 | er Strikes<br>Depth (m) S                        | ealed(m)      | R                                          | emarks                                                                                                            | Туре                   | e Pip | ID From(m                                                                                                                                                                                                                   | ) To (m              | 1) <b>DB</b> ( | (mm)          | ioe Work<br>Pipe Type | Remarks                                                                                                              | From (m)                                                                                                      |                                      |               | Backfill [<br>legend                        | Des                                                                       | aiption                                      |
|                                                                                                |                                                                   |            |                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |               |                                            |                                                                                                                   | SP                     |       | 1 0.00                                                                                                                                                                                                                      | 5.00                 | D <b>B</b>     |               | Plain                 | water<br>quality<br>monitor<br>installed in<br>standpipe<br>water<br>quality<br>monitor<br>installed in<br>standpipe | 0.00<br>0.10<br>1.00<br>2.50<br>4.50                                                                          | 0.10<br>1.00<br>2.50<br>4.50<br>50.0 |               | 910<br>906<br>904<br>903<br>902             | Flush cover U<br>headworks co<br>Concrete<br>Grout<br>Bentonite<br>Gravel |                                              |
| Depth (ml                                                                                      | Type N                                                            | Vslue      | Casino (                                                                                                                                                                                                                                                                                                                                                                        | m ater (                                         | ni SWP        | en(mm Blo                                  | ws1 Pen1(r                                                                                                        |                        |       | dard Penetra<br>Pen2(mml                                                                                                                                                                                                    |                      |                |               | nl Blows4             | Pen4(mml I                                                                                                           | Blows5 Fe                                                                                                     | n5(mml                               | Blow          | s6 Pen6(r                                   | mml Hamm                                                                  | er E. Ratio%                                 |
|                                                                                                |                                                                   |            |                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |               |                                            |                                                                                                                   |                        |       |                                                                                                                                                                                                                             |                      |                |               |                       |                                                                                                                      |                                                                                                               |                                      |               |                                             |                                                                           |                                              |
| <u> </u>                                                                                       |                                                                   |            |                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |               |                                            | Reasonfo                                                                                                          | or Hole T              | ern   | nination: F                                                                                                                                                                                                                 | Reach                | edso           | che           | duled de              | pth                                                                                                                  |                                                                                                               |                                      |               |                                             |                                                                           |                                              |
|                                                                                                | water lev<br>tchies, G                                            |            |                                                                                                                                                                                                                                                                                                                                                                                 | -                                                |               |                                            | and other i<br>9BL                                                                                                | fluctuati              | ons   | s and sho                                                                                                                                                                                                                   | uld no               | t be t         | ake           | en as con             | istant.                                                                                                              |                                                                                                               |                                      |               |                                             | BAM R Info                                                                | o 06/04/2017                                 |

| -barn<br>ritchies                                                                        | E                                                                                                                                                                                                                     | BORE                                                                                                          | EHO    | LEL                                                            | OG          |                                    |                                                           |                                            | ML03                                                                             | ehole N<br>85-RC<br>et 1 of   | 013                                                                                               |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------|-------------|------------------------------------|-----------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started:<br>Date Completed: | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>10/10/2016<br>19/10/2016                                                                                              |                                                                                                               |        | Survey G<br>Co-ordina<br>Ground L<br>Orientatio<br>Inclination | evel:<br>n: |                                    | OSGB<br>602.06 mE<br>083.53 mN<br>85.82 mC<br>de<br>90 de | E Che<br>N App<br>DD Sca<br>Log<br>g. Prin | e Type:<br>ecked By:<br>proved By:<br>lle:<br>g Status:<br>nt Date:<br>al Depth: |                               | RO+R(<br>PMcG, Cl<br>PMcd<br>1:25<br>FINA<br>21/11/201<br>61.50r                                  |
|                                                                                          | Stratum Description                                                                                                                                                                                                   | Legend (Th<br>nes<br>(n                                                                                       | s) (m) | Depth<br>(m)                                                   | Sampling, C | Coring and h<br>Rec Blow<br>% (min |                                                           | g<br>Test Resul                            | TCF<br>SCF<br>t Units RQL                                                        | R Ifmin<br>R Ifave<br>(mnna)k | Ve<br>water E ck                                                                                  |
| frequent rootlets. Gr<br>\ [Topsoil]<br>دلامت: رابع المعالية<br>subangular flint cobb    | t brown slightly gravelly CLAY with<br>ravel is subangular fine to coarse of<br>ish brow <u>n g</u> ravel ly-CLAYwit <u>hocasional</u><br>bles. Gravel is angular to subrounded +<br>bus lithologies including flint. | 0<br>/_;_:_:-><br><u>-</u><br><u>-</u><br><u>-</u><br><u>-</u><br><u>-</u><br><u>-</u><br><u>-</u><br><u></u> | 85.62  |                                                                |             |                                    |                                                           |                                            |                                                                                  |                               | *2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| Drillers description: 3<br>CLAY. Gravel is of fl                                         | Soft to finm yellowish brown gravelly<br>lint. (Rotary open hole)                                                                                                                                                     |                                                                                                               | 84.62  |                                                                |             |                                    |                                                           |                                            |                                                                                  |                               |                                                                                                   |
| Drillers description:<br>(Rotary open hole)                                              | Creamish white CHALK with flints.                                                                                                                                                                                     |                                                                                                               | 84.02  |                                                                |             |                                    |                                                           |                                            |                                                                                  |                               |                                                                                                   |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| Project No:     1G063 - AAZ.     Co-ordinates:     498602.06 mE     Checked By:     PMcG       Project No:     1G063 - AAZ.     194083.53 mN     Approved By:     P       Client:     High Speed 2 (HS2) Ltd     Ground Level:     85.82 mOD     Scale:       Engineer:     High Speed 2 (HS2) Ltd     Log Status:     F       Date Started:     10/10/2016     Orientation:     deg.     Print Date:     21/11/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -barn<br>ritchies                                            | BOI | REI                | HOI          | LE L       | .00   | 3   |                |                    |          | N                   | ML03           | ehole N<br>5-RC<br>et 2 of | 013                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----|--------------------|--------------|------------|-------|-----|----------------|--------------------|----------|---------------------|----------------|----------------------------|---------------------------------------|
| Engineer:       High Speed 2 (HS2) Ltd       Log Status:       Log Status:       P         Date Strated:       10/10/2016       00/de;       Print Jate:       2/11/Late:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Project No: 1G063 -AAZ.                                      |     |                    |              | Co-ordina  | ites: | em: | 49860<br>19408 | 02.06 r<br>83.53 r | mE<br>mN | Checked<br>Approve  | vpe:<br>ed By: |                            | RO+RO<br>PMcG, CE<br>PMcC             |
| Stratum Description         Legend ness<br>(m)         Depth<br>(m)         Type         RMR b         Test Result Units         SCR Itave<br>rest Result Units         Note of the transformation of transformatio of transformatio of transformation of transformatio of transforma | Engineer: High Speed 2 (HS2) Ltd<br>Date Started: 10/10/2016 |     |                    |              | Orientatio | in:   |     | č              | C                  | deg.     | Log Sta<br>Print Da | ate:           |                            | 1:25<br>FINAI<br>21/11/2017<br>61.50m |
| (Rotary open hole)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |     | nd (Thick<br>ness) | Level<br>(m) |            |       |     |                |                    |          | esult Uni           | SCR            | Ifave                      | Ve                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |     | n                  |              |            |       |     |                |                    |          |                     |                |                            |                                       |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant. Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

Further details given on appended 'Borehole Infonmation Sheer.

Office: BAM Ritchies, Glasgow Road, Kilsyth, Glasgow G65 9BL

BAM R Borehole Log 06/0412017

| -barn<br>ritchies                                                                        | l                                                                                                              | BOR    | E               | IOH            | LE L                                                           | .00                    | G       |                           |            |                                 | Ν                                                                         | NL03                                     | ehole N<br>5-RC<br>et 3 of | 013                                                               |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------|-----------------|----------------|----------------------------------------------------------------|------------------------|---------|---------------------------|------------|---------------------------------|---------------------------------------------------------------------------|------------------------------------------|----------------------------|-------------------------------------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started:<br>Date Completed: | Amersham Tunnel to Calvert<br>1G063 -AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>10/10/2016    |        |                 |                | Survey G<br>Co-ordina<br>Ground L<br>Orientatio<br>Inclinatior | ates:<br>.evel:<br>on: | em:     |                           | -          | 6 mE<br>3 mN<br>2 mOD<br>- deg. | Hole Ty<br>Checke<br>Approve<br>Scale:<br>Log Sta<br>Print Da<br>Final De | rpe:<br>d By:<br>ed By:<br>atus:<br>ate: |                            | RO+RC<br>PMcG, CI<br>PMcC<br>1:25<br>FINA<br>21/11/2013<br>61.50n |
| Date Completed.                                                                          | 19/10/2016<br>Stratum Description                                                                              | Legend | ness)           | - Level<br>(m) | Depth                                                          |                        | 1       | ring and<br>Rec B<br>% (r | dh Situ Te | 0 deg.<br>esting<br>st Test     | Result Uni                                                                |                                          | R Ifmin<br>Ifave<br>(mma)  |                                                                   |
| Drillers description:<br>(Rotary open hole)                                              | Creamish white CHALK with flints.                                                                              |        |                 |                | (m)                                                            | EW<br>EW               |         |                           |            |                                 |                                                                           |                                          |                            |                                                                   |
|                                                                                          |                                                                                                                |        | -<br>           |                |                                                                |                        |         |                           |            |                                 |                                                                           |                                          |                            | o<br>l cPo<br>o<br>l cPo<br>o<br>l cPo<br>o<br>l cPo              |
| Groundwater levels                                                                       | easured along borehole axis.<br>s may be subject to seasonal, tidal a<br>nbols and abbreviations given in 'Key |        | :00<br>tuations |                | nould not be                                                   | taken a                | as cons | stant.                    |            |                                 |                                                                           |                                          |                            | 1 cP<br>0<br>1 cP                                                 |

| •barn                                                                          | E                                                                                                                                                                                               | BOR                                                                              | REI                             | HO             | LE L                           | 00    | 3                  |          |                 |         |          | Ν        | IL03           | hole N<br>5-RC  | 013                              |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------|----------------|--------------------------------|-------|--------------------|----------|-----------------|---------|----------|----------|----------------|-----------------|----------------------------------|
| ritchies<br>Project Name:                                                      | Amersham Tunnel to Calvert                                                                                                                                                                      |                                                                                  |                                 |                | Survey Gri                     | -     | em:                |          |                 | SGB     |          | ole Typ  | e:             | et 4 of         | RO+                              |
| Project No:                                                                    | 10062 447                                                                                                                                                                                       |                                                                                  |                                 |                | Co-ordinate                    | es:   |                    |          |                 | 2.06 n  |          | hecked   |                |                 | PMcG,                            |
| roject No:                                                                     | 1G063-AAZ.                                                                                                                                                                                      |                                                                                  |                                 |                | 0                              | 1     |                    |          |                 | 3.53 n  |          | oprove   | а ву:          |                 | PN                               |
| lient:                                                                         | High Speed 2 (HS2) Ltd                                                                                                                                                                          |                                                                                  |                                 |                | Ground Le                      | vel:  |                    |          | 5               | 85.82 m |          | cale:    |                |                 | 1:                               |
| ngineer:                                                                       | High Speed 2 (HS2) Ltd                                                                                                                                                                          |                                                                                  |                                 |                |                                |       |                    |          |                 |         |          | og Sta   |                |                 | FI                               |
| ate Started:                                                                   | 10/10/2016                                                                                                                                                                                      |                                                                                  |                                 |                | Orientation                    | :     |                    |          |                 | d       | eg. P    | rint Dat | e:             |                 | 21/11/2                          |
| ate Completed:                                                                 | 19/10/2016                                                                                                                                                                                      |                                                                                  |                                 |                | Inclination:                   |       |                    |          |                 | 90 d    | eg. F    | nal De   | pth:           |                 | 61.5                             |
|                                                                                |                                                                                                                                                                                                 |                                                                                  | Depth                           |                |                                | Sampl | ing, C             | oring    | andh Sit        | u Testi | ng       |          | TCR            | If min          |                                  |
|                                                                                | Stratum Description                                                                                                                                                                             | Legend                                                                           | (Thick-<br>ness)<br>(m)         | Level<br>(m)   | Depth<br>(m)                   | Туре  | ( <sup>Dia</sup> ) | Rec<br>% | Blows<br>(mins) | Test    | Test Res | ult Unit | SCR<br>Rଷ୍ଟପ   | lfave<br>(mna)x | Weter Ba                         |
| subrounded fine to c                                                           | HALK recovered as: black angular to<br>oarse GRAVEL of rinded flint with<br>Presumed chalk washed away<br>lk Formation]                                                                         | f-<br>f-<br>p                                                                    | -<br>00.SS)                     |                |                                |       |                    |          |                 |         |          |          |                | -<br>NIDO<br>-  | , <u>8, 0, 8, 0, 8, 0</u> , 8, 0 |
|                                                                                | re loss. Driller notes very weak<br>resumed chalk scrubbed away by                                                                                                                              | r.                                                                               | 5.56                            | 70.26          | 15.00 - 16.50                  | RC    | 102                |          |                 |         |          |          | 37<br>0        | f               |                                  |
| 0 0                                                                            |                                                                                                                                                                                                 | r.<br>f.<br>f.<br>f.<br>r.                                                       | -<br>-<br>-<br>10.94)           |                |                                |       |                    |          |                 |         |          |          | 0              | _<br>NR         | 808080                           |
|                                                                                |                                                                                                                                                                                                 | r.<br>r.<br>f.<br>f.                                                             | -                               | 00.07          |                                |       |                    |          |                 |         |          |          |                |                 | 808080                           |
| recovered as: light g<br>gravelly SILT. Grave                                  | covered non-intact. CHALK<br>reyish white slightly sandy slighUy<br>I is very weak, low density, light                                                                                          |                                                                                  | 6.50<br>::16.72                 | 69.32<br>69.10 |                                |       |                    |          |                 |         |          |          |                |                 | - 80804                          |
|                                                                                | unded fine and medium of chalk.<br>It gravel of flint fragments. (Grade<br>Ik Formationl                                                                                                        | F.<br>F.<br>F.                                                                   | -                               | 00110          | 16.50 - 17.50                  | RC    | 102                |          |                 |         |          |          | 22<br>0        |                 | 50808                            |
|                                                                                | re loss. Driller notes very weak<br>resumed chalk scrubbed away by                                                                                                                              | r.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1. | _<br>J0.78)<br>_<br>_<br>_<br>_ |                |                                |       |                    |          |                 |         |          |          | Ō              | NR<br>-         | 0 8 0 8 0 8 0                    |
| Fractures are randor                                                           | density, light greyish white CHALK.<br>nly orientated, very closely spaced<br>ating and planar slightly rough, with                                                                             |                                                                                  | 7.50                            | 68.32          |                                |       |                    |          |                 |         |          |          | 90             | 40              | 80808                            |
| frequent black and b<br>[Lewes Nodular Cha<br>17.50- 17.63m : I                | rown specks. (Grade: A4)<br>lk Formation]<br>Rinded nodular flint fragment (130mm).<br>Possible flint band.                                                                                     | 8                                                                                | 8''''<br>00                     | 67.82          | 17.70 - 17.76<br>17.50 - 18.00 |       | 100<br>102         |          |                 |         |          |          | 18<br>0        | 40<br>40<br>60  | 8080<br>8080<br>80               |
| 17.95<br>Very weak locally e<br>density, light greyish<br>and rare rounded fin | Drilling disturbed, recovered non-intact.<br>- 18.00m: Assumed zone of core Joss.<br>xtremely weak, medium locally low<br>white CHALK with rare black specks<br>ger flint nodules (up to 60mm). | - F-<br>F-<br>F-                                                                 | -                               |                | 18.00 - 18.50                  | RC    | 102                |          |                 |         |          |          | 100<br>8<br>0  |                 | 80808<br>0                       |
|                                                                                |                                                                                                                                                                                                 | G                                                                                | 21.15)                          |                | 18.50 - 18.76                  | с     | 100                |          |                 |         |          | -        | - N            | 220             | 8080                             |
|                                                                                | Drilling disturbed, recovered non-intact.                                                                                                                                                       | f-                                                                               | -                               |                |                                | -     |                    |          |                 |         |          |          |                | 300             | 80808                            |
|                                                                                | ded nodular flint fragment (90mm) with<br>ion cavities (upto 20mm). Possible flint                                                                                                              | f.                                                                               | -19.15                          | 66.67          | 18.50 - 19.50                  | RC    | 102                |          |                 |         |          |          | 65<br>46<br>46 | f               | 20 20 S                          |
|                                                                                | band.<br>re loss. Driller notes very weak<br>resumed chalk scrubbed away by                                                                                                                     |                                                                                  |                                 |                |                                |       |                    |          |                 |         |          |          |                |                 | 08080                            |
| -                                                                              |                                                                                                                                                                                                 | p                                                                                | o.BS)                           |                |                                |       |                    |          |                 |         |          |          |                | NR              | 5080808<br>80808                 |
|                                                                                |                                                                                                                                                                                                 |                                                                                  |                                 | 65.82          |                                |       |                    |          |                 |         |          |          |                |                 | 00                               |
|                                                                                |                                                                                                                                                                                                 | -                                                                                |                                 |                | 1 I                            |       |                    |          | . I             |         |          |          |                |                 | 1                                |

| •barn<br>ritchies                                                                                                                                            | E                                                                                                                                                                                                                                                            | BOR                        | EH                            | 0           | LE L                           | 00            | 3          |                                        |                    |               | N         | /L03                 | hole N<br>5-RC<br>et 5 of  | 013                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|-------------|--------------------------------|---------------|------------|----------------------------------------|--------------------|---------------|-----------|----------------------|----------------------------|----------------------------------------------|
| Project Name:                                                                                                                                                | Amersham Tunnel to Calvert                                                                                                                                                                                                                                   |                            |                               |             | Survey Gr                      |               | em:        |                                        | DSGB               | _             | Hole Ty   |                      |                            | RO+R                                         |
| Project No:                                                                                                                                                  | 1G063-AAZ.                                                                                                                                                                                                                                                   |                            |                               |             | Co-ordinat                     | es:           |            |                                        | 02.06 r<br>83.53 r |               | Checkee   |                      |                            | PMcG, C<br>PMc                               |
| lient:                                                                                                                                                       | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                       |                            |                               |             | Ground Le                      | vel:          |            |                                        | 85.82 r            |               | Scale:    | и Бу.                |                            | 1:2                                          |
| ngineer:                                                                                                                                                     | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                       |                            |                               |             |                                |               |            |                                        |                    |               | Log Sta   | atus:                |                            | FIN                                          |
| ate Started:                                                                                                                                                 | 10/10/2016                                                                                                                                                                                                                                                   |                            |                               |             | Orientation                    | c             |            |                                        | 0                  | leg.          | Print Da  | te:                  |                            | 21/11/20                                     |
| Date Completed:                                                                                                                                              | 19/10/2016                                                                                                                                                                                                                                                   |                            |                               |             | Inclination:                   |               |            |                                        | 90 c               | leg.          | Final De  | pth:                 |                            | 61.50                                        |
|                                                                                                                                                              | Stratum Description                                                                                                                                                                                                                                          | Legend (TI                 | epth<br>nick- L<br>ess)<br>m) | evel<br>(m) | Depth<br>(m)                   | Sampl<br>Type | 1          | oring and h S<br>Rec Blows<br>% (mins) |                    | ing<br>Test F | Result Un | TCR<br>SCF<br>ts RØJ | lfmin<br>Ifave<br>D(mnna)k | W<br>Weter Bac                               |
| CHALK with rare gre<br>no.) 40 to 60 degrees<br>frequent black and b<br>degrees to vertical, u<br>frequent black speck<br>[Lewes Nodular Cha<br>20.00-20.10n |                                                                                                                                                                                                                                                              |                            |                               |             | 19.50-21.00<br>20.35-20.40     | RC<br>D       | 102<br>100 |                                        |                    |               |           | 67<br>19<br>15       |                            | රේ පිරි පිරි පිරි පිරි පිරි පිරි පිරි පි     |
| 21.00                                                                                                                                                        | -21.10m :Assumed zone of core loss.                                                                                                                                                                                                                          |                            |                               |             | 20.90-21.00                    | D             |            |                                        |                    |               |           |                      | NI                         | 500000                                       |
|                                                                                                                                                              | inded nodular and sheet flint fragments<br>{up to BOmm). Possible flint band.                                                                                                                                                                                | <b>1 1 1 1 1 1 1 1 1 1</b> | .24)                          |             | 21.14                          |               |            |                                        |                    |               |           | 90                   | NI<br>50<br>230            | 800 800 800 1                                |
|                                                                                                                                                              |                                                                                                                                                                                                                                                              |                            |                               |             | 21.00 - 22.00                  | RC            | 102        | 2                                      |                    |               |           | 7 0                  |                            | රේ පිරි විසි විසි විසි විසි විසි විසි විසි ව |
|                                                                                                                                                              | Rinded nodular flint fragment (70mm).<br>Possible flint band.<br>pre loss. Driller notes very weak                                                                                                                                                           |                            | 6                             | 3.58        | 22.00 - 22.50                  | RC            | 102        |                                        |                    |               |           | 48<br>0<br>0         |                            | 960 960 960                                  |
| CHALK with flints. P flints during drilling.                                                                                                                 | resumed chalk scrubbed away by                                                                                                                                                                                                                               | <br>0<br>                  | .75)                          |             |                                |               |            |                                        |                    |               |           |                      | NR                         | රේ පිරි පිරි පිරි පිරි පිරි පිරි පිරි පි     |
| with rare thin grey m<br>Fractures are randor<br>fractures. Fracture s<br>spaced (10/80/210m<br>rough, with frequent                                         | density, light greyish white CHALK<br>nart laminations and burrows.<br>mly orientated. Some distinct<br>et 3: 70 degrees to vertical closely<br>m}, undulating and planar slighUy<br>black specks, locally with orange<br>ed (<1mm) with a veneer of greyish |                            | <del>,.99 </del> 62           | 2.83        | 22.50 - 23.50                  | RC            | 102        |                                        |                    |               |           | 51<br>0<br>0         |                            | හි ඉති ඉති ඉති ඉති ඉති ඉති ඉති ඉති ඉති ඉත    |
| [Lewes Nodular Cha                                                                                                                                           | alk Formation]                                                                                                                                                                                                                                               | kt.t                       |                               |             | 23.58-23.64                    | D             | 100        |                                        |                    |               |           |                      |                            | 0000                                         |
| 23.20-23.35m                                                                                                                                                 | Rinded nodular flint fragments {up to<br>50mm). Possible flint band.                                                                                                                                                                                         |                            |                               |             | 23.50-24.00                    | RC            | 102        |                                        |                    |               |           | 100<br>12            |                            | 000                                          |
|                                                                                                                                                              |                                                                                                                                                                                                                                                              |                            | <del>.31)</del>               |             |                                |               |            |                                        |                    |               |           | 0<br>87<br>18<br>14  | NI<br>210                  | දී මෙම මෙම මෙම මෙම මෙම මෙම මෙම               |
| 24.76-24.85m:i                                                                                                                                               | Frequent rinded nodular flint fragments<br>(up to 50mm).                                                                                                                                                                                                     |                            |                               |             | 24.00 - 25.50<br>24.80 - 25.02 | RC<br>C       | 102<br>100 |                                        |                    |               |           |                      |                            | 00000                                        |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn                                                                                                                                                                                                 | E                                                                                                                              | BORE                                                                    | HO             | LE L                           | 00             | 3                         |   |                            |                 |      | r                 | ML03                | ehole I<br>85-RC<br>et 6 of | 013                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------|--------------------------------|----------------|---------------------------|---|----------------------------|-----------------|------|-------------------|---------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------|
| Project Name:                                                                                                                                                                                         | Amersham Tunnel to Calvert                                                                                                     |                                                                         |                | Survey Gri<br>Co-ordinate      | -              | em:                       |   |                            | 9SGB<br>92.06 r | nE   | Hole Ty<br>Checke | pe:                 |                             | RO+<br>PMcG,                                                                                                        |
| Project No:                                                                                                                                                                                           | 1G063-AAZ.                                                                                                                     |                                                                         |                |                                |                |                           |   |                            | 33.53 r         |      | Approve           | ed By:              |                             | PN                                                                                                                  |
| lient:                                                                                                                                                                                                | High Speed 2 (HS2) Ltd                                                                                                         |                                                                         |                | Ground Le                      | vel:           |                           |   | 8                          | 35.82 r         | nOD  | Scale:            |                     |                             | 1::                                                                                                                 |
| ngineer:                                                                                                                                                                                              | High Speed 2 (HS2) Ltd                                                                                                         |                                                                         |                |                                |                |                           |   |                            |                 |      | Log St            | atus:               |                             | FIN                                                                                                                 |
| ate Started:                                                                                                                                                                                          | 10/10/2016                                                                                                                     |                                                                         |                | Orientation                    | 1:             |                           |   |                            | C               | leg. | Print Da          | ate:                |                             | 21/11/20                                                                                                            |
| Date Completed:                                                                                                                                                                                       | 19/10/2016                                                                                                                     |                                                                         |                | Inclination:                   |                |                           |   |                            | 90 c            | leg. | Final D           | epth:               |                             | 61.5                                                                                                                |
|                                                                                                                                                                                                       | Stratum Description                                                                                                            | Legend (Thick<br>ness)<br>(m)                                           | - Level<br>(m) | Depth<br>(m)                   | Sampli<br>Type | ng, Co<br>(Dia<br>(mini), | - | andh Si<br>Blows<br>(mins) | tu Test<br>Test | -    | esult Uni         | TCR<br>SCF<br>s RØD | R Ifave                     |                                                                                                                     |
| with rare thin grey m<br>Fractures are rando<br>fractures. Fracture s<br>spaced (10/80/210m<br>rough, with frequent                                                                                   | alk Formation]                                                                                                                 | r-<br><br><br><br><br><br><br><br><br><br><br><br><br>-                 | 60.52          | 25.50 - 27.00                  | RC             | 102                       |   |                            |                 |      |                   | 30<br>4<br>0        | NI<br>210<br>               | පිරි මුදිර මුදිර මුදිර මුදිර මුදිර මුදිර මුදිර මුදිර මුදිර<br>මුදිර මුදිර මුදිර මුදිර මුදිර මුදිර මුදිර මුදිර මුදිර |
|                                                                                                                                                                                                       |                                                                                                                                | f-                                                                      |                |                                |                |                           |   |                            |                 |      |                   |                     |                             | 00                                                                                                                  |
|                                                                                                                                                                                                       |                                                                                                                                | -26.55                                                                  | 59.27          |                                |                |                           |   |                            |                 |      |                   |                     | ' <u> </u>                  | - 00                                                                                                                |
| very weak, medium                                                                                                                                                                                     | ecovered non-intact. Recovered as:<br>density, light greyish white gritty<br>ire randomly orientated. (Grade<br>alk Formation] | Q0.45)<br>f-<br>f-                                                      |                | 26.75 - 26.81                  | D              | 100                       |   |                            |                 |      |                   |                     | NIDO<br>-                   | გ <u>ი</u> ფი ფი გ                                                                                                  |
|                                                                                                                                                                                                       |                                                                                                                                | ::7.00                                                                  | 58.82          |                                |                |                           |   |                            |                 |      |                   |                     |                             | - 00                                                                                                                |
| Assumed zone of co                                                                                                                                                                                    |                                                                                                                                | r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-    | 58.20          | 27.00 - 28.00                  | RC             | 102                       |   |                            |                 |      |                   | 38<br>12<br>12      | -<br>NR<br>-                |                                                                                                                     |
| white CHALK with ra<br>burrows. Fracture se<br>undulating locally str<br>specks. Fracture set<br>spaced (430mm), pl<br>black specks. (Grad<br>[Lewes Nodular Cha<br>27.80 - 28.00<br>28.10 - 28.20m : | alk Formation]<br>0m : Rare rinded nodular and sheet flint<br>fragments (up to 40mm).<br>Rinded nodular flint fragment (100mm) | -21.02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 50.20          | 28.22 - 28.27<br>28.00 - 28.50 | D<br>RC        | 100<br>102                |   |                            |                 |      |                   | 100<br>18<br>0      |                             | හිදු හිදු හිදු හිදු හිදු හිදු හි                                                                                    |
| 28.50                                                                                                                                                                                                 | ownish orange silt coating (up10 5mm).<br>0-28.78m : Assumed zone of core loss.                                                | r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>tJ2.38)                       |                |                                |                |                           |   |                            |                 |      |                   | _                   | -<br>NIDO                   | 960 860 860<br>860 860 860                                                                                          |
| 28.85-29.00                                                                                                                                                                                           | )m : Rare bivalve fossil fragments (upt0<br>30mm).                                                                             | r                                                                       |                | 28.50 - 30.00                  | RC             | 102                       |   |                            |                 |      |                   | 81<br>27            | -                           | 96 80 86 6                                                                                                          |
|                                                                                                                                                                                                       |                                                                                                                                | τ<br>τ<br>τ<br>τ<br>τ<br>τ<br>τ<br>τ<br>τ<br>τ<br>τ<br>τ<br>τ<br>τ      |                | 20.30 - 30.00                  |                | 102                       |   |                            |                 |      |                   | 27<br>20            |                             | හිද හිද හිද හිද හිද හිද                                                                                             |
|                                                                                                                                                                                                       |                                                                                                                                | :00                                                                     | 55.82          |                                |                | 1                         |   |                            |                 |      |                   |                     |                             | 1                                                                                                                   |

| ritchies                                     |                                                                                                             |        |                                   |              |                            |                     |         | 0000                          | Sh                       | )35-R<br>neet7c                          | of 13 |                   |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------|-----------------------------------|--------------|----------------------------|---------------------|---------|-------------------------------|--------------------------|------------------------------------------|-------|-------------------|
| Project Name:                                | Amersham Tunnel to Calvert                                                                                  |        |                                   |              | Survey Grid<br>Co-ordinate |                     | em:     | OSGB<br>498602.06 mE          | Hole Type:<br>Checked By |                                          | PMc   |                   |
| Project No:<br>Slient:                       | 1G063 -AAZ.<br>High Speed 2 (HS2) Ltd                                                                       |        |                                   |              | Ground Lev                 | /el·                |         | 194083.53 mN<br>85.82 mOD     | Approved E<br>Scale:     | y:                                       |       | PMc<br>1:2        |
| ngineer:                                     | High Speed 2 (HS2) Ltd                                                                                      |        |                                   |              |                            |                     |         |                               | Log Status               | :                                        |       | FINA              |
| Date Started:                                | 10/10/2016                                                                                                  |        |                                   |              | Orientation                |                     |         | deg.                          | Print Date:              |                                          | 21/1  |                   |
| Date Completed:                              | 19/10/2016                                                                                                  | 1      | Inclina                           | tion:        | 90 deg.                    | 0                   |         | Final Dept                    |                          |                                          |       | 1.50              |
|                                              | Stratum Description                                                                                         | Legend | (Thick-<br>ness)                  | Level<br>(m) | Depth                      | <u>Samp</u><br>Type | Dia Rec | Blows<br>(uiting) Test Test R | esult Units RO           | CR Ifmir<br>Ifav<br>QD <sub>1</sub> Ifma | x     | , Wo<br>Ba        |
| Assumed zone of co                           | reloss.                                                                                                     |        | (m)<br>=                          |              | (m)                        |                     | (mm) %  | (mins)                        |                          | % (mm                                    | )     | 1d'               |
|                                              |                                                                                                             |        | r                                 |              |                            |                     |         |                               |                          | _                                        |       | 1ď                |
|                                              |                                                                                                             |        | po.56)<br>r-<br>r-                |              |                            |                     |         |                               |                          | NR<br>-                                  |       | 1d'               |
| Vory work modium                             | density, grevish white locally light                                                                        |        | r₋<br>≸⊶v0.56                     | 55.26        |                            |                     |         |                               |                          | f                                        | _     | 1d'6              |
|                                              | with locally with grey mart burrows.                                                                        |        | r-                                |              | 30.60 - 30.76              | с                   | 100     |                               | 6                        | 3                                        |       | 1d'               |
|                                              | mly orientated. Some distinct<br>set2:60 to 65 degrees, closely                                             |        |                                   |              | 30.00-31.50                | RC                  | 102     |                               | 1<br>1                   | 6                                        |       | 1d'6              |
|                                              | m), with frequent black specks,<br>taining. (Grade: A4)                                                     |        | f=                                |              |                            |                     |         |                               |                          | I                                        |       | 1d'               |
| Lewes Nodular Cha                            | lk Formation]                                                                                               |        | f<br>r-                           |              |                            |                     |         |                               |                          |                                          |       | 1ď                |
|                                              | 30.56 - 30.70m : Drilling disturbed.                                                                        |        | F=                                |              |                            |                     |         |                               |                          |                                          |       | 10                |
|                                              |                                                                                                             |        | r-<br>r-<br>f-                    |              |                            |                     |         |                               |                          |                                          |       | 1.1               |
|                                              |                                                                                                             |        | f-<br>f-                          |              |                            |                     |         |                               |                          |                                          |       |                   |
| 31.50                                        | - 31.75m : Assumed zone of core loss.                                                                       |        | r-<br>t<2.09)                     |              |                            |                     |         |                               | _                        | NI<br>80<br>15(                          |       | 1d'(<br>1d'(      |
|                                              |                                                                                                             |        | r-                                |              |                            |                     |         |                               |                          | 150                                      | )     | 1d                |
|                                              | 31.75-31.85m : Drilling disturbed.                                                                          |        | f-<br>f-                          |              |                            |                     |         |                               |                          |                                          |       | 1d                |
|                                              |                                                                                                             |        | r-<br>r-                          |              | 31.50 - 32.50              | RC                  | 102     |                               | 7<br>1                   | 5                                        |       | 1d'               |
|                                              |                                                                                                             |        | r-<br>r-                          |              |                            |                     |         |                               |                          | 1                                        |       | 1ď                |
|                                              | nillingdisturbed, recovered non-intact.<br>nded finger fiint nodules (up 10 60mm).                          |        | r-<br>f-                          |              |                            |                     |         |                               |                          | ·                                        |       | ld                |
|                                              | - · · · /                                                                                                   |        | f-<br>f-                          |              |                            |                     |         |                               |                          |                                          |       |                   |
| 32.50                                        | - 32.65m : Assumed zone of core loss.                                                                       |        | r-<br>r-                          |              |                            |                     |         |                               | _                        | -                                        |       | ld                |
| Drilling disturbed, re                       | covered non-intact. Medium strong,                                                                          |        | -<br>32.65                        | 53.17        |                            |                     |         |                               |                          | 0 -                                      | -     | 1d'               |
| very high density, gro                       | eyish white CHALK. Fractures are                                                                            |        | f-                                |              | 32.50 - 33.00              | RC                  | 102     |                               | 2                        | 2<br>NIDC                                | )     | 1d                |
| randomly orientated,                         | planar slighUy rough, with frequent                                                                         |        | po.35)                            |              |                            |                     |         |                               | -2                       | 2 30                                     | _     |                   |
|                                              | with black and orange staining.<br>nodules (up to 20mm), glauconitic                                        |        | f a 2.00                          | E0 00        |                            |                     |         |                               |                          | 50                                       |       | 1ď                |
| nodules (up to 10mr                          | n), bioturbation cavities (up to                                                                            |        | f-a-3.00<br>r-<br>r-              | 52.82        |                            |                     |         |                               |                          |                                          |       | 1cf               |
| undetermined)                                | tic staining. Chalk Rock. (Grade                                                                            |        | f-<br>f-                          |              |                            |                     |         |                               |                          |                                          |       |                   |
| Lewes Nodular Cha<br>32.65-32.69m:Or         | ange and brownish orange conchoidal                                                                         |        | po.55)                            |              |                            |                     |         |                               |                          | NF<br>_                                  |       |                   |
| Assumed zone of co                           | stainina.<br>preloss.                                                                                       |        | r-<br>r-                          | E0.07        |                            |                     |         |                               |                          |                                          | _     | 1c1               |
| •                                            | covered non-intact. Recovered as:<br>barse GRAVEL. Gravel is medium                                         |        | 33.55<br>f-<br>f-                 | 52.27        |                            |                     |         |                               |                          |                                          | -     |                   |
| 0                                            | nsity, greyish white chalk. Chalk                                                                           |        | po.35)                            |              | 33.00-34.50                | RC                  | 102     |                               |                          | 4 NID                                    | 0     | lcf               |
| Lewes Nodular Cha                            | alk Formation!                                                                                              | -      | 33.90                             | 51.92        |                            |                     |         |                               | (                        | ) -                                      |       | lct               |
| high density, greyish                        | eak locally very weak, medium and<br>white nodular CHALK with frequent<br>traclasts (up to 70mm). Fractures |        | r-<br>r-<br>t <sup>(</sup> ≂0.60) |              |                            |                     |         |                               |                          | løe                                      |       |                   |
|                                              | ) vertical, undulating slighUy rough, ted. Some distinct fractures.                                         |        | f-                                |              |                            |                     |         |                               |                          |                                          | _     |                   |
|                                              | pecks, locally infilled (up to 5mm)                                                                         |        |                                   |              |                            |                     |         |                               |                          | 70                                       |       | 0_                |
| with light greyish whi<br>[Lewes Nodular Cha | te silt. (Grade: C4)<br>Ik Formation]                                                                       |        | 4.50                              | 51.32        |                            |                     |         |                               |                          |                                          |       | l <f<br>⊛</f<br>  |
| Assumed zone of co                           | 34.23-34.50m : Drillina disturbed.<br>re loss.                                                              |        | f-<br>f-                          |              |                            |                     |         |                               |                          |                                          |       | l <f< td=""></f<> |
|                                              |                                                                                                             |        | (<0.75)                           |              | 34.76-34.83                | D                   | 100     |                               |                          | NF<br>-                                  | 2     | 80<br>1d          |
|                                              |                                                                                                             |        | r-<br>r-<br>f-                    |              |                            |                     |         |                               |                          |                                          |       |                   |
|                                              |                                                                                                             |        |                                   |              |                            |                     |         |                               |                          |                                          |       |                   |

| Traged Name:         Ameriham Tunnelu Calvert         Survey Grif System:         DSGB         Hole Type:         RD-H           Traged Nom:         10083-AAZ         10083-AAZ         1908353-30         Constraints::         1908353-30         PPM66.         PM66.         PM66.         PM66.         PM66.         PM67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •barn                                                                                                                        | E                                                                                                          | BOR                        | E         | HO    | LE L          | 00    | 3      |       |       |         |            | N       | IL03         | hole 1<br>5-RC      | 2013     | 3                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------|-----------|-------|---------------|-------|--------|-------|-------|---------|------------|---------|--------------|---------------------|----------|--------------------------|
| Line:         High Speed 2 (H32) Lid         Conduct Level:         B 52 mOD Section:         T mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project Name:                                                                                                                |                                                                                                            |                            |           |       |               |       | em:    |       | 49860 | 02.06 r | nE Ch      | ecked   | ie:<br>I By: |                     | R<br>PMc | G, C                     |
| ngingene:         High Spend 2 (HS2) Lid         Los 2010201         Los 2010201         Los 2011201         Los 2011201201         Los 2011201         Los 201120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Client:                                                                                                                      |                                                                                                            |                            |           |       | Ground Le     | vel:  |        |       |       |         |            |         | u Бу.        |                     |          | 1:2                      |
| James Completed         19/10/2016         Interfunction         0 0 deg         Final Depth         Final Depth         Final Depth         60 5 5           Simum Description         Immunol (n)         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ngineer:                                                                                                                     | • • • •                                                                                                    |                            |           |       |               |       |        |       |       |         |            |         | tus:         |                     |          | FIN                      |
| Stratum Description         Level<br>(m)         Sampling Compared bits<br>(m)         Sampling Compared bits<br>(m)         Setting (m)         Setting (m) <td>Date Started:</td> <td>10/10/2016</td> <td></td> <td></td> <td></td> <td>Orientation</td> <td>:</td> <td></td> <td></td> <td></td> <td> d</td> <td>leg. Pri</td> <td>int Dat</td> <td>ie:</td> <td></td> <td>21/1</td> <td>1/20</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date Started:                                                                                                                | 10/10/2016                                                                                                 |                            |           |       | Orientation   | :     |        |       |       | d       | leg. Pri   | int Dat | ie:          |                     | 21/1     | 1/20                     |
| Strutin Discription         Lease         Output         Type         Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date Completed:                                                                                                              | 19/10/2016                                                                                                 | I                          | Inclina   | tion: | 90 deg.       |       |        |       |       | Fina    | al Depth:  |         |              |                     | 6        | 1.50                     |
| Status         Desk         Type         Dial Res         Booth         Dial Res         Dial Res         Dial Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | Stratum Description                                                                                        | d                          | Pienetik- | Level |               | Sampl | ing, C | oring | andhS | ituTest | ing        |         | 36R          | If <sub>i</sub> min |          | W                        |
| Dilling disturbed. Weak locally vary weak, medum and<br>high directly gravely while nodular CHALK with frequent<br>back speeds.         35.25         50.57         34.50-36.00         RC         102           Dilling disturbed. Weak locally vary weak, medum and<br>high directly gravely back (2008) speed (2006) 000000,<br>locally high gravely while nodular.         35.25         50.57         34.50-36.00         RC         102           New weak is the counter of the fragments<br>are randomly orientated. (course shull).         0.0751         0.0751         0.0751         0.0751           Grave Call         0.0751         0.0751         0.0751         0.0751         0.0751           Sate Transform of the fragments<br>(1000)         0.0751         0.0751         0.0751         0.0751           Sate Transform of the fragments<br>(1000)         0.0751         0.0751         0.0751         0.0751           Sate Transform of the fragments<br>(1000)         0.0751         0.0751         0.0751         0.0751           Sate Transform of the fragments<br>(1000)         0.051         0.0751         0.0751         0.0751           Sate Transform of the fragments<br>(1000)         0.051         0.0751         0.0751         0.0751           Sate Transform of the fragments<br>(1000)         0.0751         0.0751         0.0751         0.0751           Sate Transform of the fragments<br>(1000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | Suatum Description                                                                                         | Legend                     | ness)     |       |               | Туре  |        |       |       | Test    | Test Resul | t Units | RQD          | lf max              | Weter    | Ba                       |
| Uning disturbed. Veak locally very weak, medulum and<br>might disturbed. Veak locally very weak, medulum and<br>might disturbed. Veak locally weak, medulum and<br>for an endomy orientated. closely spaced (306:000mm),<br>unituation gisthyty rough, with request black spacek,<br>disturbed register that disturbed.<br>Second with medule of the formation<br>second with medule of                                                                                                                     | Assumed zone of co                                                                                                           | re loss.                                                                                                   | f-<br>f-                   |           |       |               |       |        |       |       |         |            |         |              |                     |          | 1d'<br>1d                |
| Lewsys-Bogly 6x/P blinking stabuloud, recovered non-intact.       r         Recovered as: brownich while medium of anit tragmant.       56:5:36.77.3         35:77:36.00       7.00         35:77:36.00       20min): Chark Rock         35:77:36.00       20min): Chark Rock         7:73:00       26.00 - 37.50       RC       100         100       7.73:00       26.00 - 37.50       RC       102         101       101       101       101       101         102       7.73:4       48.47       26.00 - 37.50       RC       102         103       100       101       101       101       101         104       101       101       101       101       101         105       17.73:4       48.47       102       101       101         106       101       101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | high density, greyish<br>subrounded chalk int<br>are randomly orientat<br>undulating slighUy ro<br>locally infilled (up to s | white nodular CHALK with frequent<br>tradasts (up to 70mm). Fractures<br>ted, closely spaced (30/60/90mm), | 1-<br>1-<br>1-<br>1-<br>1- |           | 50.57 | 34.50-36.00   | RC    | 102    |       |       |         |            |         |              |                     | -        | 1ď<br>1ď<br>1ď<br>1ď     |
| gravely fin to coarse SAND. Grave is subconded for to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [Lewes Nodular Chal                                                                                                          |                                                                                                            | f=                         |           |       |               |       |        |       |       |         |            |         |              |                     |          | ld<br>1d                 |
| 35.77 - 36.00m       :Omit : Omiting disturbed, feedweet on on-intect.<br>Medum strong, were high density, greysh wither of LALK<br>with Tate observative sample and observative sample and the observative                                                                                                                                                                                                                                                                                                                         | gravelly fine to coars                                                                                                       | se SAND. Gravel is subrounded fine to<br>medium of flint fragments.                                        | f-                         | · .00     | 49.82 |               |       |        |       |       |         |            |         |              |                     |          | 1ď                       |
| 20mmil: Chark Rock       1         Charling Sight/Dec/Very weak, medium and<br>Expression/Edd Akk Intradests (Cally Very weak, medium and<br>Subrunded Akk Intradests (Cally Controls<br>are randomly control of Chark Kink Intervent<br>Subrunded Akk Intradests (Cally Controls<br>are randomly control of Chark Kink Intervent<br>Subrunded Akk Intradests (Cally Foreign and<br>Cally Infiled (Cally Foreign and<br>Cally Infiled (Cally Foreign and<br>Cally Infiled (Cally Foreign and<br>Cally Infiled (Cally Foreign and<br>Call Akk Intradests (Cally Foreign and<br>Cally Infiled (Cally Foreign and<br>Cally Infiled (Cally Foreign and<br>Call Akk Intradests (Call Cally Foreign and<br>Call Akk Intradests (Cally Foreign and<br>Call Akk Intradests (Cally Foreign and<br>Call Akk Intradests (Cally Foreign and<br>Call Akk Intradests (Call Cally Foreign and<br>Call Akk Intradests (Call Call Call Akk Intradests (Call Call Call Akk Intradests (Call Cal                                                                                                                                                                                                                                                      | 35.77 - 36.00m : D<br>Medium strong, v                                                                                       | Prilling disturbed, recovered non-intact.<br>Prince of the recovered non-intact.                           | -                          | ,         | 40.47 |               |       |        |       |       |         |            |         |              | NR<br>-             |          | 1 d                      |
| high density, greyteh white nodular CHALK with frequent lack specks, subrounded chalk intradasts (up to 70mm). Fractures are randomly orientated, closely spaced (30/60/90mm), Hogel (Crade: C4) (10, 200 mm) with light greytsh white silt. (11, 200 mm) with light greytsh white motified and greyth white silt. (11, 200 mm) with light greytsh white motified greytsh greytsh white motified greytsh g                                                                                                                                                                                                                                                                                       |                                                                                                                              | 20mm) Chalk Rock                                                                                           | F-                         | -30.33    | 49.47 | 36.37-36.50   | ) c   | 100    |       |       |         |            |         |              | r                   |          | 1d'<br>1d'(              |
| undualing sliphUy rough, with frequent black specks,<br>(Grade: C4)<br>(Grade: C4)<br>(Lewes Nodular Chaik Formation]<br>Very thinly to thinly bedded light greyish green clayey<br>MARL with frequent black specks,<br>are randomly orientated, closely spaced<br>(Jackews Nodular Chaik Formation]<br>Very thinly to thinly bedded light greyish white sitt.<br>(Grade: C4)<br>(Grade: C4)<br>(Grad |                                                                                                                              |                                                                                                            |                            |           |       | 36.00 - 37.5  | 0 RC  | 10     | 2     |       |         |            |         | 77<br>23     |                     |          | 1d<br>1d'é               |
| Very thinky to thinky bedded light greyish green clayey       37.33       48.49       7.39       48.43         Very thinky to thinky bedded light greyish green clayey       7.39       48.43       10.36       10.36         Drilling disturbed, Weak locally very weak locally weak medium density, grey ish white locate 200       37.50 - 38.50       RC       102         Failing disturbed recovered as brownish weak with requert black speecks, locally very weak locally weak medium and high density, grey ish white mottled and speeck local very weak locally weak, high locally medium density, light revish white revisit is the revisit of the revisit is the revisit is the revisit of the revisit is the revisit is the revisit of the revisit is the revisit of the revisit is the revisit of the revisit is the revisit i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | undulating slighUy ro<br>locally infilled (up to 5                                                                           | ough, with frequent black specks,                                                                          | HI<br>f=                   | 0.98)     |       |               |       |        |       |       |         |            |         | 10           |                     |          | 1d'<br>1d'               |
| Very miny to miny bodded light greysh green clayey       7.39       48.43         MARL with frequent burrows. Chalk Rock Marl.       40.36)         Drilling disturbed. Weak locally very weak, medium and high density, greysh white rodular CHALK. Fractures are randomly orientated. closely spaced (30/60/90mm), undulating sightly rough, with frequent back specks, locally infilled (up to Smm) with light greysh white sit.       37.75       48.07         I (and Light Greysh with requert black specks, locally infilled (up to Smm) with light greysh white sit.       37.75       48.07         I (and Light Greysh with requert black specks, locally infilled (up to Smm) with light greysh white sit.       37.50 - 38.50       RC       102         I (and Light Greysh with requert black specks, locally infilled (up to Smm) with light greysh white sit.       50       75       11         I (and C: CH)       Chalk Rock.       F(0.30)       48.50       47.32         Weak Medium and high density, greysh white mottled greysh white mottled grey CHALK. Fracture set 1: (1 no.) 10 degrees, planar speces, locally with light greysh white frequent black specks.       50.75       50.75         Wery weak locally weak, high locally medium density, greysh white frequent black specks.       50.75       46.27       53.50       76         Very weak locally weak, high locally medium density, informations (marwisps). Fractures are randomly orientated. Some gister fractures are 1: predominations (marwisps). Fractures are randomly orientated. Some gister fractures are 1: predominations (ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [Lewes Nodular Chal                                                                                                          | lk Formation]                                                                                              | 1.<br>                     |           |       |               |       |        |       |       |         |            |         |              |                     |          | 1d                       |
| Automote 2010 of conductor       Image: Section of conductor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                              |                                                                                                            | f-                         |           |       |               |       |        |       |       |         |            |         |              |                     |          | 1c<br>1d                 |
| Drilling disturbed. Weak locally very weak, medium and<br>high Bensity, grey ish white moduliar CHALK with frequent<br>are randomly orientated. closely spaced (30/60/90mm),<br>undulating slightly rough, with frequent black specks,<br>locally infilied (up to 5mm) with light grey ish white sitt.<br>(Grade: C4)<br>Lewes Nodular Chalk Formation]       37.75 48.07<br>14.50 - 61.50       arc       Id         37.75 - 38.05m : Drilling disturbed Recovered as brownish<br>white medium to ccarse SAND.<br>Weak, medium and high density, grey ish white CHALK.<br>New Pit Chalk Formation?!       arc       Id         38.50 - 38.00       RC 102       Failing<br>Head       for<br>90       Ni         60       Ni<br>90       Ni       Ic         30         Id         60       Ni<br>90           81dFlightly Grege State S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Assumeded Herofte                                                                                                            | Ke Forgenation]                                                                                            | / fJi<br>f-                | 0.36)     |       |               |       |        |       |       |         |            |         |              | NR                  |          | 1d                       |
| are randomly orientated. Closely spaced (30/60/90mm),<br>undulating slightly rough, with frequent black specks,<br>locally infilled (up to 5mm) with light greyish white silt.<br>(Grade: C4)<br>(Lewes Nodular Chalk Formation]       37.50 - 38.50 RC 102       102       Falling<br>Head       mis       9<br>0       NI<br>10       IC         37.75 - 38.05m : Drilling disturbed Recovered as brownish<br>white medium to coarse SAND.<br>38.15 - 38.05m : Drilling disturbed, recovered non-intact.<br>Medium strong, very high density, greyish white CHALK,<br>Chalk Rock, r       8.50       47.32       47.32       60       NI<br>20       60       NI<br>20       102         Weak, medium and high density, greyish white CHALK<br>becks. With Graques (2) Alcresto Beges end VEM cal<br>extremely, undulating slightly rough, with frequent black<br>becks. With Graques and Dlack statining. (Grade: A475)<br>New Pit Chalk Formation ?!       38.50 - 39.00 RC       102       102       60       NI<br>20       10         Very weak locally weak, high locally medium density,<br>light greyish white CHALK with rare thin grey laminations<br>(mart wisps). tractures are rule of proteintated.<br>New Pit Chalk Formation ?!       39.00 - 40.50 RC       102       10       10       10         Very weak locally weak, high locally medium density,<br>light greyish white CHALK with rare thin grey laminations<br>(mart wisps). tractures are rule of proteintated.<br>Do.90)       39.00 - 40.50 RC       102       13       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drilling disturbed. We<br>high density, greyish                                                                              | eak locally very weak, medium and white nodular CHALK with frequent                                        |                            | 37.75     | 48.07 |               |       |        |       |       |         |            |         |              | f                   | -        | 1d'6                     |
| white medium 10 coarse SAND.       8.50       47.32         38.15 - 38.30m : Drilling disturbed, recovered non-intact.       60       Ni         Medium and high density, greyish white (HALK, Fracture set 1: (1 no.) 10 degrees, planar       102       38.50 - 39.00 RC       102         Siightly Grugb, with frequent black specks and grey cal extremely, undulating slightly, rough, with frequent black staming. (Grade: A47/5)       38.50 - 39.00 RC       102       0       102         New Pit Chalk Formation?!       Assumed zone of core loss.       50.75)       50.75)       102       102       102         Very weak locally weak, high locally medium density, light greyish white CHALK with rare thin grey laminations (marine species, Fracture set 1: predominantly nonzontal and vertical externes of core loss.       102       102       102       103         (arrow weak locally weak, high locally medium density, honzontal and vertical extreme set 1: predominantly nonzontal and vertical extreme set 1: predominantly nonzontal and vertical extreme set 1: predominantly nonzontal and vertical extremest of core local set 1: predominantly nonzontal and vertical extremest of core local set 1: predominantly nonzontal and vertical extremest of core local set 1: predominantly nonzontal and vertical extremest of core local set 1: predominantly nonzontal and vertical extremest of core local set 1: predominantly nonzontal and vertical extremest of core local set 1: predominantly nonzontal and vertical extremest of core local set 1: predominantly nonzontal and vertical extremest of core local set 1: predominantly forecal extremest if the remet is the remet is the remet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | undulating slighUy ro<br>locally infilled (up to §<br>(Grade: C4)<br>[Lewes Nodular Chal                                     | bugh, with frequent black specks,<br>5mm) with light greyish white silt.<br>Ik Formation]                  | i-<br>f-<br>f-<br>f-       | o.75)     |       |               | 0 RC  | 10     | 2     |       |         |            | mis     | 9            |                     |          | 10<br>1cf<br>1cf         |
| Chalk Rock.       F{0.30}         Weak, medium and high density, greyish white mottled<br>grey CHALK. Fracture set 1: (1 no.) 10 degrees, planar       38.50 - 39.00       RC       102         Slightly Greyish white mottled<br>grey CHALK. Fracture set 1: (1 no.) 10 degrees, planar       38.80       47.02       38.50 - 39.00       RC       102         Slightly Greyish white Status (2 no.) 10 degrees, planar       538.80       47.02       38.50 - 39.00       RC       102         Slightly Greyish white Status (2 no.) 10 degrees, planar       538.80       47.02       47.02       38.50 - 39.00       RC       102         New Pit Chalk Formation?!       50.75)       50.75)       50.75)       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       102       103       102       102       103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                              | white medium to coarse SAND.                                                                               | -                          | 8.50      | 47 32 |               |       |        |       |       |         |            |         |              |                     | -        |                          |
| grey CHALK. Fracture set 1: (1 No.) 10 degrees, planar       >-38.80       47.02         slightlig output with frequent blacks set of grey call       -       -         stightlig output with frequent black statistical extremely, undulating slightly, output, with frequent black       -       -         New Pit Chalk Formation?!       -       -       -       -         New Pit Chalk Formation?!       -       -       -       -       -         Very weak locally weak, high locally medium density, light greyish white CHALK with rare thin grey laminations (marlwisps). Fractures are randomly orientated. Some distinct fractures. Fracture set 1: predominantly norizontal and vertical very closely spaced       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td< td=""><td>Weak, medium and h</td><td><u>Chalk Rock.</u><br/>high density, greyish white mottled</td><td>1 F.</td><td>(0.30)</td><td></td><td>38.50-39.00</td><td>RC</td><td>102</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Weak, medium and h                                                                                                           | <u>Chalk Rock.</u><br>high density, greyish white mottled                                                  | 1 F.                       | (0.30)    |       | 38.50-39.00   | RC    | 102    |       |       |         |            |         |              |                     |          |                          |
| New Pit Chalk Formation?!       -       -       IU         Assumed zone of core loss.       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | slightly rough with fr                                                                                                       | equent black specks and grey                                                                               |                            | -38.80    | 47.02 |               |       |        |       |       |         |            | -       |              |                     | -        |                          |
| Very weak locally weak, high locally medium density,<br>light greyish white CHALK with rare thin grey laminations<br>(marl wisps). Fractures are randomly orientated. Some<br>distinct fractures. Fracture set 1: predominantly<br>horizontal and vertical very closely spaced<br>(30(40(190 mm) undulation sliptly, rough with frequent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | New Pit Chalk Form                                                                                                           | ation?!                                                                                                    | -<br>f-<br>p(              | o.75)     |       |               |       |        |       |       |         |            |         |              | NĪR                 |          | 1cf<br>1                 |
| Very weak locally weak, high locally medium density,<br>light greyish white CHALK with rare thin grey laminations<br>(marl wisps). Fractures are randomly orientated. Some<br>distinct fractures. Fracture set 1: predominantly<br>horizontal and vertical very closely spaced<br>(30/40/140mm) undulating slightly, rough with frequent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              |                                                                                                            |                            |           |       |               |       |        |       |       |         |            |         |              |                     |          | l <f<br>G f</f<br>       |
| (30/40/190mm) undulating slightly rough with frequent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | light greyish white Cł<br>(marl wisps). Fractur                                                                              | HALK with rare thin grey laminations es are randomly orientated. Some                                      | f-                         |           | 46.27 | 39.00-40.50   | ) RC  | 102    |       |       |         |            |         |              | <b>f</b>            | -        | l≷F<br>I <f< td=""></f<> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                              |                                                                                                            | f-                         |           |       | 39.90 - 40.10 | с     | 100    |       |       |         |            |         |              |                     |          | lu                       |

| •barn                                 | E                                                                                                            | SUI     | ΚΕΙ                   | HU             | LE L         |       | כ       |       |                 |                  |         |                     |            | 5-RC(<br>et 9 of 1 |             |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------|---------|-----------------------|----------------|--------------|-------|---------|-------|-----------------|------------------|---------|---------------------|------------|--------------------|-------------|
| Project Name:                         | Amersham Tunnel to Calvert                                                                                   |         |                       |                | Survey Gr    |       | em:     |       |                 | SGB              |         | Hole Typ            |            |                    | RO+         |
| Project No:                           | 1G063-AAZ.                                                                                                   |         |                       |                | Co-ordinat   | es:   |         |       |                 | 2.06 n<br>3.53 n |         | Checked<br>Approvec | •          | 1                  | PMcG,<br>PM |
| Client:                               | High Speed 2 (HS2) Ltd                                                                                       |         |                       |                | Ground Le    | evel: |         |       |                 | 5.82 m           |         | Scale:              | т Бу.      |                    | 1:          |
| ingineer:                             | High Speed 2 (HS2) Ltd                                                                                       |         |                       |                |              |       |         |       |                 |                  |         | Log Stat            | lus:       |                    | ۶IN         |
| Date Started:                         | 10/10/2016                                                                                                   |         |                       |                | Orientation  | ו:    |         |       |                 | d                | eg.     | Print Dat           | e:         | 2                  | 21/11/20    |
| Date Completed:                       | 19/10/2016                                                                                                   |         |                       |                | Inclination: |       |         |       |                 | 90 d             | eg.     | Final Dep           | oth:       |                    | 61.5        |
|                                       | Stratum Description                                                                                          | Legend  | Depth<br>(Thick-      | Level          |              | Sampl | ling, C | oring | and <b>h</b> Si | tu Testi         | ng      |                     | TCR<br>SCR | If min<br>If ave   |             |
|                                       | Stratum Description                                                                                          | Legend  | ness)<br>(m)          | (m)            | Depth<br>(m) | Туре  | (Pia)   | Rec   | Blows,          | Test             | Test Re | esult Unit          |            |                    |             |
| [New Pit Chalk Form                   | stained black. (Grade: A4)<br>ation]<br>ling disturbed Recovered as brownish<br>white medium to coarse SAND. |         | f-<br>f-              |                |              |       |         |       |                 |                  |         |                     |            | NI<br>80<br>190    | 80 80 80    |
|                                       | reyish green silty MARL. Upper                                                                               | ł       | f- <b>b</b> ∰5        | 45.37<br>45.32 |              |       |         |       |                 |                  |         |                     |            |                    | 0000        |
| Glynde Marl.<br>New Pit Chalk Form    | ation                                                                                                        |         | -<br>f-<br>f-         |                |              |       |         |       |                 |                  |         |                     |            | -                  | 000         |
| Assumed zone of co                    |                                                                                                              |         | t<0.40)               |                |              |       |         |       |                 |                  |         |                     |            | NR                 | 000         |
|                                       |                                                                                                              |         | r-<br>f-              |                |              |       |         |       |                 |                  |         |                     |            | -                  | de o        |
|                                       | locally low density, greyish white                                                                           | 1       | 0.90<br>f-            | 44.92          | 40.50-41.50  | RC    | 102     |       |                 |                  |         |                     | ବଦ         | f                  | d           |
|                                       | e randomly orientated. Some acture set 2: 50 degrees closely                                                 |         | f-                    |                |              |       | -       |       |                 |                  |         |                     | 11         |                    | o           |
| spaced, planar and u                  | undulating slightly rough, with                                                                              |         | 4 -<br>[-             |                |              |       |         |       |                 |                  |         |                     |            |                    | d           |
|                                       | s, black staining, locally infilled (up ght greyish green clay. Fracture set                                 |         | f-<br>f-              |                |              |       |         |       |                 |                  |         |                     |            |                    | 0           |
| 3: vertical, planar and               | d undulating slightly rough, with                                                                            |         | f-<br>f-              |                | 44.00 44.50  |       |         |       |                 |                  |         |                     |            | NI                 | o           |
| frequent black speck                  | s and black staining. (Grade: C4/5)                                                                          |         | r-<br>r-<br>t:<_1.10) |                | 41.36-41.50  | с     | 100     |       |                 |                  |         |                     |            | 60                 | 0           |
| [New Pit Chalk Form                   | ation]                                                                                                       |         | <_1.10)<br>f-         |                |              |       |         |       |                 |                  |         | -                   | 110        | o l                | 00          |
|                                       | -41.75m : Assumed zone of core loss.                                                                         |         | f-<br>f-              |                |              |       |         |       |                 |                  |         |                     |            |                    | 00          |
|                                       |                                                                                                              |         | f-                    |                | 41.50-42.00  | RC    | 102     |       |                 |                  |         |                     | 50<br>4    |                    | 000         |
| 41 82-41 89m · [                      | Drilling disturbed, recovered non-intact.                                                                    |         | f-<br>f-              |                | 41.50-42.00  | RC    | 102     |       |                 |                  |         |                     | 0          |                    | 00          |
|                                       | : light greyish green clay. Possible marl                                                                    |         | f-                    |                |              |       |         |       |                 |                  |         |                     |            |                    | 0           |
|                                       | seam?<br><u>4</u> 1-89,_42-oofh-:'-Drimna_,,,,•sturbed.J <sup>*</sup> 1-                                     | rr cr-1 | i-4-2.00              | 43.82          |              |       |         |       |                 |                  |         |                     |            |                    | d.          |
|                                       | covered non-intact. CHALK                                                                                    | ,_, -   |                       |                |              |       |         |       |                 |                  |         |                     |            |                    | 6           |
|                                       | / sandy silty angular to subangular<br>EL. Gravel is extremely weak and                                      |         | f-                    |                |              |       |         |       |                 |                  |         |                     |            |                    | d           |
| very weak, low and r                  | nedium density, greyish white with                                                                           |         | po.75)                |                |              |       |         |       |                 |                  |         |                     |            |                    | de la       |
| black specks. Matrix<br>undetermined) | is light greyish white. (Grade                                                                               |         |                       |                | 42.00-43.00  | RC    | 102     |       |                 |                  |         |                     | 100<br>0   | NIDO               | 000         |
| [New Pit Chalk Form                   |                                                                                                              |         |                       |                | 12100 10100  |       |         |       |                 |                  |         |                     | Ő          |                    | 0           |
|                                       | rilling disturbed, recovered non-intact.<br>white medium to coarse SAND.                                     |         | t                     |                |              |       |         |       |                 |                  |         |                     |            |                    | 000         |
|                                       | Possible fall in.<br>bedded greyish green si'lly"- 1-rr                                                      | ,cf+42  | 2 75<br>a2            | 43.07<br>43.00 |              |       |         |       |                 |                  |         |                     |            |                    | 000         |
| MARL. Lower Glynde                    |                                                                                                              | _,      |                       |                |              |       |         |       |                 |                  |         |                     |            |                    | 000         |
| New Pit Chalk Form                    | ationI<br>ry weak, medium locally low density,                                                               | /       |                       |                |              |       |         |       |                 |                  |         |                     |            |                    | 00          |
| greyish white CHALI                   | K. Fractures are randomly                                                                                    |         | b0.68)                |                |              |       |         |       |                 |                  |         |                     |            | KU .               | 0           |
|                                       | tinct fractures. Fracture set 1:10 to ely to closely spaced                                                  |         |                       |                | 43.22-43.28  | D     | 100     |       |                 |                  |         |                     | 80<br>8    | NI<br>60           | 000         |
| (40/60/100mm), plan                   | nar and undulating slightly rough,                                                                           |         |                       |                | 43.00-43.50  | RC    | 102     |       |                 |                  |         |                     | 0          | 100                | 00          |
| with frequent black s (Grade: A4/5)   | pecks, locally with orange staining.                                                                         |         | 3.50                  | 42.32          |              |       |         |       |                 |                  |         |                     |            |                    | o           |
| New Pit Chalk Form                    |                                                                                                              |         | 0.00                  | 12.02          |              |       |         |       |                 |                  |         |                     |            | _                  | 6           |
| Assumed zone of co                    | re loss.                                                                                                     |         | po.35)                |                |              |       |         |       |                 |                  |         |                     |            | NR                 | d.          |
|                                       | ,-;;-;;,:,::;                                                                                                | t-      | 43 55                 | 41.97          |              |       |         |       |                 |                  |         |                     |            |                    | d           |
|                                       | ry weak, medium locally low density,<br>K. Fractures are randomly                                            |         |                       | 41.9/          |              |       |         |       |                 |                  |         |                     |            |                    | 000         |
| orientated. Some dis                  | tinct fractures. Fracture set 1: 10 to                                                                       |         | r-                    |                |              |       |         |       |                 |                  |         |                     |            |                    | 000         |
|                                       | elytocloselyspaced<br>nar and undulating slightly rough,                                                     |         | f-<br>f-              |                |              |       |         |       |                 |                  |         |                     | 77         | NI                 | 000         |
|                                       | pecks, locally with orange staining.                                                                         |         |                       |                | 43.50-45.00  | RC    | 102     |       |                 |                  |         |                     | 77<br>33   | 60                 | 0           |
| (Grade: A4/5)                         |                                                                                                              |         | po.75)                |                |              |       |         |       |                 |                  |         |                     | 27         | 100                | 000         |
|                                       | rilling disturbed, recovered non-intact.                                                                     |         |                       |                |              |       |         |       |                 |                  |         |                     |            |                    | 00          |
| Recovered as: bro                     | ownish white medium to coarse SAND.<br>Possible fall in.                                                     |         | f                     | 41.22          |              |       |         |       |                 |                  |         |                     |            | f                  | 202         |
|                                       | , medium density, greyish white                                                                              | — L     | r-<br>A∙4.60          |                |              |       |         |       |                 |                  |         |                     |            |                    | 00          |
|                                       | with rare marl burrows and<br>p to 20mm). Fracture set 1: (2 no.)                                            |         |                       |                |              |       |         |       |                 |                  |         |                     |            |                    | 000         |
|                                       | ced (1200mm), undulating slightly                                                                            |         | +                     |                |              |       |         |       |                 |                  |         |                     |            |                    | 00          |
|                                       |                                                                                                              |         |                       |                |              |       |         |       |                 |                  |         |                     |            |                    |             |
|                                       |                                                                                                              |         |                       |                |              |       |         |       |                 |                  |         |                     |            |                    |             |

 $\label{eq:Further} Further \, details \, given \, on \, appended \, 'Borehole \, Information \, Sheer.$ 

| Constrainting:         Constra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •barn                                                                                                                                                                             | E                                                                                                                                                                                                                             | BORI       | EHO                   | LE L          | 00   | G   |   |                |                    |              | 1                           | ML03                          | hole N<br>5-RC<br>t 10 o    | 013     |                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|---------------|------|-----|---|----------------|--------------------|--------------|-----------------------------|-------------------------------|-----------------------------|---------|-----------------------------------------|
| Dates Earlied:     10/10/2016     Orientation:    diag.     Promotopic     21/11/2017       Statum Description     Lange of the data species in the | Project No:                                                                                                                                                                       | 1G063-AAZ.                                                                                                                                                                                                                    |            |                       | Co-ordinat    | es:  | em: |   | 49860<br>19408 | 02.06 n<br>33.53 n | nN           | Checke<br>Approve<br>Scale: | d By:<br>ed By:               |                             | PMc     | PMcG<br>1:25                            |
| Stituun Description       Large (n)       Deph<br>(n)       Type       Deph (n)       Type (n)       Deph (n)       Type (n)       Deph (n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date Started:                                                                                                                                                                     | 10/10/2016                                                                                                                                                                                                                    |            |                       |               |      |     |   |                |                    | •            | Print Da                    | ate:                          |                             | 21/11   | FINAL<br>/2017<br>1.50m                 |
| with Draw Pit Chaik Formation]       45.00-45.35       c       100         Very Werk Chaik Formation]       45.00-45.35       c       100         Very weak, medium density, greyish whate CHALK with rare black specks and rare black specks                                       |                                                                                                                                                                                   | Stratum Description                                                                                                                                                                                                           | Legend (Th | ick- Level<br>ss) (m) |               | · ·  | 1   | • |                | tu Testi<br>Test   | ng<br>Test R | Result Ur                   | TCR<br>SCF<br>iits R <b>Ø</b> | lfmin<br>Ifave<br>Df(mnna)x | Weter I | Well<br>Backfi                          |
| Very weak, medium daradiy greyish white CHALK with<br>rartures. Fractures are randomly orientated. Some dianer<br>and undulating slightly rough, with requent black specks,<br>orange staining. (Grade: A45)<br>[New Pit Chaik Formation]<br>46.50-46.50 RC       102       73         Very binky bedded greyish white CHALK with<br>rartures. Fractures are randomly orientated.<br>Some dianer       45.00-46.50 RC       102         Very binky bedded greyish white CHALK with<br>rare black specks and rare bixely fossil fragments (up to<br>Domit). Fractures are randomly orientated.<br>Some dianer       46.50-48.00 RC       102         Very binky bedded greyish white CHALK with<br>rare black specks and rare bixely fossil fragments (up to<br>Domit). Fractures are randomly orientated.<br>Goeging       0.69       33.51         Very weak, medium density, greyish white CHALK with<br>rare black specks and rare bixely fossil fragments (up to<br>Domit). Fractures are randomly orientated.<br>Goeging       0.69       37.82         Weak, medium and high density, greyish white CHALK with<br>rature are randomly orientated.<br>Goeging       37.82       48.00-49.50 RC       102         Weak, medium and high density, greyish white CHALK with<br>rature are randomly orientated.<br>Goeging with frequent black specks, orange and<br>horwith frequent black sp                                                                                                              | with brownish grey s                                                                                                                                                              | taining. (Grade: A1)                                                                                                                                                                                                          |            | 50)                   | 45.00-45.35   | с    | 100 |   |                |                    |              |                             | 400                           | 1200                        |         | Řº 80 80 80 80 80 80                    |
| Inactures. Fracture set 3: 80 dégrees to vertical, planar<br>and unduaing sighty rough, with frequent black specks,<br>corage staining, (Grade: A4:5)<br>[New Pri Chalk Formation]<br>// ery view, frequent black specks,<br>orage staining, (Grade: A4:5)<br>[New Pri Chalk Formation]<br>// ery view, frequent black specks,<br>corage staining, (Grade: A4:5)<br>[New Pri Chalk Formation]<br>// ery view, frequent black specks,<br>corage staining, (Grade: A4:5)<br>[New Pri Chalk Formation]<br>// ery view, frequent black specks,<br>corage staining, (Grade: A4:5)<br>[New Pri Chalk Formation]<br>// ery view, frequent black specks,<br>corage staining, (Grade: A4)<br>[New Pri Chalk Formation]<br>// ery view, frequent black specks,<br>corage staining, (Grade: A4)<br>[New Pri Chalk Formation]<br>// ery view, frequent black specks,<br>corage staining, (Grade: A4)<br>[New Pri Chalk Formation]<br>// ery view, frequent black specks,<br>corage staining, (Grade: A4)<br>[New Pri Chalk Formation]<br>// ery view, frequent black specks,<br>corage staining, (Grade: A4)<br>[New Pri Chalk Formation]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rare black specks an                                                                                                                                                              | nd rare bivalve fossil fragments (up to                                                                                                                                                                                       |            | <b>10</b> 39.72       | 45.00 - 46.50 | RC   | 102 |   |                |                    |              |                             | 73                            |                             |         | 9 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 |
| Very thinly bedded greyish green MARL. Possibly New Pri Man 27       38.51       0       0       0         Very weak, medium density, greyish white CHALK with rare black specks and rare bivalve fossil fragments (up to 20mm), Fractures are randomly orientated. Some distinct fractures. Fractures are stable (Some distinct fractures. Fractures are randomly and high density, greyish white CHALK to an and high density, greyish white CHALK to an an and high density, greyish white CHALK to an and high density, greyish white CHALK to an an an and high density, greyish white CHALK to an an an and high density, greyish white CHALK to an an an and high density, greyish white CHALK to an an an and high density, greyish white CHALK to an an an and high density, greyish white CHALK to an an an and high density, greyish white CHALK to an and high density, greyish white CHALK to an an an and high density, greyish white CHALK to an an an and high density, greyish white CHALK to an an an and high density, greyish white CHALK to an an an and high density, greyish white CHALK to an an an and high density, greyish white CHALK to an an an and high density, greyish white CHALK to an an an and high density, greyish white CHALK to an an an and high density, greyish white CHALK to an an an and high density, greyish white CHALK to an an an and high density, greyish white CHALK to an an an and an an an an an an an an an and high density, greyish white CHALK to an an an an an an an and high density, greyish white CHALK to an                                                                                                                                                                                                                                                                                                                                                                          | fractures. Fracture se<br>and undulating slight<br>orange staining. (Gra<br>[New Pit Chalk Form<br>46.50                                                                          | et 3: 80 degrees to vertical, planar<br>ly rough, with frequent black specks,<br>ade: A4/5)<br>(ation]<br>- 46.BOm : Assumed zone of core loss.                                                                               |            |                       |               |      |     | 2 |                |                    |              |                             |                               | 40                          |         | a Seo Seo Seo Seo Seo Seo Seo Seo<br>   |
| Weak, medium and high density, greyish white CHALK<br>locally with frequent thin grey laminations (marl wisps)<br>and rare Zoophycos streaks. Fractures are randomly<br>orientated. Some distinct fractures. Fracture set 3: 70 to<br>80 degrees, undulating slightly rough, rarely<br>slickensided, with frequent black specks, orange and<br>brownish grey staining. (Grade: A4)<br>[New Pit Chalk Formation]       48.00 - 49.50 RC<br>48.95 - 49.0B C       102       11<br>7         49.50 - 49.75m : Assumed zone of core loss.       Image: Additional state of core loss.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pit Marl 2?<br>New Pit Chalk Form<br>Very weak, medium<br>rare black specks an<br>20mm). Fractures ar<br>fractures. Fracture su<br>and undulating slight<br>orange staining. (Gra | ation<br>density, greyish white CHALK with<br>id rare bivalve fossil fragments (up to<br>e randomly orientated. Some distinct<br>et 3: 80 degrees to vertical, planar<br>ily rough, with frequent black specks,<br>ade: A4/5) |            | 38.51                 |               |      |     |   |                |                    |              |                             | 0                             |                             |         | ନିତ ନିତ ନିତ ନିତ ନିତ ନିତ ନିତ ନି          |
| Weak, medium and high density, greyish white CHALK       60         locally with frequent thin grey laminations (marl wisps)       48.00 - 49.50       RC         and rare Zoophycos streaks. Fractures are randomly       7       7         orientated. Some distinct fractures. Fracture set 3: 70 to 80 degrees, undulating slightly rough, rarely       102       11         slickensided, with frequent black specks, orange and brownish grey staining. (Grade: A4)       100       100         [New Pit Chalk Formation]       100       100       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                                                                                                                               | (0.1       | 50)                   |               |      |     |   |                |                    |              |                             |                               | NR                          |         | 900 000 000 000                         |
| 49.50 - 49.75m : Assumed zone of core loss.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | locally with frequent t<br>and rare Zoophycos<br>orientated. Some dis<br>80 degrees, undulati<br>slickensided, with fre<br>brownish grey staining                                 | thin grey laminations (marl wisps)<br>streaks. Fractures are randomly<br>stinct fractures. Fracture set 3: 70 to<br>ng slightly rough, rarely<br>equent black specks, orange and<br>ng. (Grade: A4)                           |            |                       |               |      |     | 2 |                |                    |              |                             | 11                            | 120                         |         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49.50                                                                                                                                                                             | - 49.75m:Assumed zone of core loss.                                                                                                                                                                                           |            | I                     | 49.50 - 50.50 | ) RC | 102 |   |                |                    |              |                             |                               | 200                         |         |                                         |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn                                                                                          | B                                                                                                                                                                                                          | SOF    | RE                                                                              | HO           | LE L                                   | 00             | 3          |     |                             |                                       |          | N                                         |                        | hole N<br>5-RC       |                 | 5                                                |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------|--------------|----------------------------------------|----------------|------------|-----|-----------------------------|---------------------------------------|----------|-------------------------------------------|------------------------|----------------------|-----------------|--------------------------------------------------|
| ritchies<br>Project Name:<br>Project No:<br>Client:                                            | Amersham Tunnel to Calvert<br>1G063-AAZ.                                                                                                                                                                   |        |                                                                                 |              | Survey Gri<br>Co-ordinate<br>Ground Le | d Syste<br>es: |            |     | 49860<br>19408              | 9SGB<br>92.06 r<br>33.53 n<br>35.82 r | nE<br>nN | Hole Typ<br>Checked<br>Approve            | be:<br>By:             | et 11 of             | RC<br>PMcG<br>F | D+R<br>G, C<br>PMc<br>1:25                       |
| ingineer:<br>Date Started:<br>Date Completed:                                                  | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>10/10/2016<br>19/10/2016                                                                                                                               |        |                                                                                 |              | Orientation                            | :              |            |     | c                           | d<br>90 c                             | eg.      | Scale:<br>Log Sta<br>Print Da<br>Final De | te:                    |                      | F<br>21/11/     | FINA                                             |
|                                                                                                | Stratum Description                                                                                                                                                                                        | Legend | (Thick-<br>ness)<br>(m)                                                         | Level<br>(m) | Depth<br>(m)                           | Sampl<br>Type  |            | Rec | and h Si<br>Blows<br>(mins) | tu Test<br>Test                       | Ť        | sult Units                                | TCR<br>SCR<br>RQD<br>% |                      | Weter           | W<br>Ba                                          |
| 50.39- 50.50m                                                                                  | : Frequent 60 degree crosscutting thick<br>grey marl laminations (up lo 10mm).                                                                                                                             |        | لمهرب المراجع المراجع المراجع الم                                               |              |                                        |                |            |     |                             |                                       |          |                                           | 25<br>26               | NI<br>12 <b>2</b> 00 |                 | 1d'(<br>1d'<br>1d'(<br>1d'                       |
| Assumed zone of co                                                                             | <del>ore</del> toss.                                                                                                                                                                                       |        | f-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f-<br>f | 34.82        | 50.50 - 51.00                          | RC             | 102        |     |                             |                                       |          |                                           | 100<br>20              |                      | -               | 1d<br>1d<br>1d<br>1d                             |
| <del>Weak</del> m <del>edium and</del>                                                         | high density, greyish white CHALK                                                                                                                                                                          | 1.5    | f-<br>Q0.55)<br>[-<br>[-<br>5 34.2<br>f-                                        | 7            |                                        |                |            |     |                             |                                       |          |                                           |                        | NR<br>-              | -               | 1 d'<br>1 d'<br>1 d'<br>1 d'                     |
| vith locally frequent<br>Fractures are rando<br>o closely spaced (3                            | t thin grey laminations (marl wisps).<br>mly orientated, very closely spaced<br>30/60/70mm), planar and undulating<br>frequent black specks, locally with<br>rade: A4)                                     |        | F-<br>F-<br>F-<br>F-<br>F-<br>F-<br>F-<br>F-<br>F-<br>F-<br>F-<br>F-<br>F-      |              | 51.00 - 52.50                          | ) RC           | 102        | 2   |                             |                                       |          |                                           | 63<br>11<br>0          | NI<br>60<br>70       |                 | 1d'(<br>1d'<br>1d'<br>1d'<br>1d'<br>1d'(<br>1d'( |
| Assumed zone of co                                                                             |                                                                                                                                                                                                            | 2.50   | ) 33.3<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>2.94                     | 2<br>32.88   |                                        |                |            |     |                             |                                       |          |                                           | 36                     | NĪR<br>-             |                 | 1d<br>1d'<br>1d'<br>1d                           |
| greyish white CHAL<br>(marl wisps). Fractu<br>slightly rough, with f<br>(2 no.) 50 to 60 deg   | '                                                                                                                                                                                                          |        | f-<br>f-(0.56)<br>f-3.50                                                        | 32.32        | 52.50 - 53.50<br>53.05 - 53.39         | RC<br>C        | 102<br>100 |     |                             |                                       |          |                                           | 34<br>30               | NI<br>40<br>300      |                 | 1 c<br>1 cf<br>1 cf<br>1 cf                      |
| Drilling disturbed, re<br>and high density, gr<br>50 to 80 degrees ve<br>planar slightly rough | ecovered non-intact. Weak, medium<br>reyish white CHALK. Fracture set 2:<br>ery closely spaced (NI/50/60mm?),<br>h, with frequent black specks, brown<br>locally infilled (up to 10mm) with<br>(Grade: C4) |        | f-<br>f-<br>80.50)<br>g00                                                       | 31.82        | 53.50 - 54.00                          | RC             | 102        |     |                             |                                       |          |                                           | 70<br>6<br>0           |                      |                 | lef<br>lef<br>lef                                |
| 53.65 - 53.70m : V<br>Assumed zone of co<br>Weak locally very w                                | veak, medium density greyish white                                                                                                                                                                         |        | r-<br>-<br>tJ0.55)<br>f-<br>f-<br>f-<br>f-<br>f-                                | 31.27        |                                        |                |            |     |                             |                                       |          |                                           | 63<br>11<br>11         | NR<br>-<br>16        | _               | lcf<br>1<br>I&Fi<br>KM                           |
| slightly rough, with f                                                                         | et2:(1no.)45 degrees, planar<br>frequent black specks. Fracture set 3:<br>tremely closely spaced and very<br>45/60mm), planar slightly rough, with<br>ks. (Grade: A4/5)                                    |        | f-                                                                              |              | 54.00 - 55.50                          | RC             | 102        |     |                             |                                       |          |                                           |                        |                      |                 | I <f<br>1d'</f<br>                               |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| Engineer: High Speed 2 (HS2) Ltd Logar Status:<br>Date Started: 10/10/2016 Understation: Understatio: Understatio: Understation: Understation: Understation: U | PMcG<br>F   |              | I By:      | lole Typ<br>Checked<br>pprovec<br>cale: | nE Cł<br>nN Ap | 9SGB<br>02.06 m<br>33.53 n<br>35.82 n | 49860<br>19408 |      | em: | tes: | Survey Gr<br>Co-ordina<br>Ground Le |                   |                          |          | Project Name: Amersham Tunnel to Calvert<br>Project No: 1G063 -AAZ.<br>Client: High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------|-----------------------------------------|----------------|---------------------------------------|----------------|------|-----|------|-------------------------------------|-------------------|--------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stratum Description       Legend (Thick Level ness) (m)       Sampling, Coring and h Stu Testing       TCR ison         [NewPitChalk Formation]       0       0       0       0       0       0         55.35 - 55.50m : Drilling disturt.led.       0       0       0       0       0       0         -A ssame "B" zone of COPE-LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F<br>21/11/ |              | e:         | rint Dat                                | eg. Pr         |                                       |                |      |     |      |                                     |                   |                          |          | Date Started: 10/10/2016                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (m)       (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e           | Ifave        | TCR<br>SCR |                                         | ng             |                                       |                | 0    |     |      |                                     | Level             | (Thick                   | Legend   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 55.35 - 55.50m : Drilling disturi.Jed.       )       55.31 - 55.41       C       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | J (rmax      |            |                                         |                | Test                                  | (mins)         | )"%" | (mm | Туре | (m)"                                | (11)              |                          | <u> </u> | [NewPitChalk Formation]                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -DAI ling detributed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 45           |            |                                         |                |                                       |                |      | 100 | с    | 55.31 - 55.41                       | 30.32             | ,                        | ₽55.     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| recovered as: greyish white angular to subrounded fine<br>to coarse GRAVEL. Gravel is very weak, low density,<br>light greyish white. (Grade undetenmined)<br>[New Pit Chalk Formation]<br>57.00-57.28m : Assumed zone of core loss.<br>01.15)<br>57.28-57.32m : Drilling disturi: Jed, recovered non-intact.<br>Recovered as: brownish white medium to coarse SAND.<br>Possible fall in.<br>57.00-58.00 RC 102<br>CMeti"K beal ly very ve ats.meti : lumand"""ft""fgh-dens.ity;f=l ==iFI-57.70<br>greyish white CHALK with rare black specks. Fracture<br>set 1: (3 no.) horizontal to 15 degrees medium spaced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | -<br>NR<br>- | 1          |                                         |                |                                       |                |      | 102 | RC   | 55.50 -57.00                        | 20.07             | f-<br>f-<br>f-           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 57.28 - 57.32 m : Drilling disturl: Jed, recovered non-intact.<br>Recovered as: brownish white medium to coarse SAND.<br>Possible fall in.<br>c/4eti""K beal ly very ve ak;##7.lumand"""H""fghelens.ity;f=l ==iFl-57.70<br>greyish white CHALK with rare black specks. Fracture<br>set 1: (3 no.) horizontal to 15 degrees medium spaced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | _            | _          |                                         |                |                                       |                |      |     |      |                                     | 29.27             | f-<br>f-<br>f-<br>f-     | <br>e    | recovered as: greyish white angular to subrounded fine<br>to coarse GRAVEL. Gravel is very weak, low density,<br>light greyish white. (Grade undetenmined)<br>[New PitChalk Formation]                                                                                                                                                                                                                                                               |
| dWeil""K' bocal ly very we ak met I'umand"""h""T'gh-dens.ity,f=l==iFl-\$7.70 28.12 greyish white CHALK with rare black specks. Fracture set 1: (3 no.) horizontal to 15 degrees medium spaced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C           | NIDO<br>-    | 29         |                                         |                |                                       |                |      | 102 | RC   | 57.00 -58.00                        |                   | 01.15)<br>f-<br>f-<br>f- |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (200/200mm), phara logical subplex signed rough, with frequent black specks. (Jocally vellowish orange staining, no infill. Fracture set 2: (1 no.) 60 degrees, undulating HD.B0) slighUy rough Fracture set 3: 80 degrees to vertical, fractional undulating slighUy rough, with frequent black fractional statement black fracting fractional statement black fractional statement   |             | 90           | 100        | -                                       |                |                                       |                |      | 102 | RC   | 58.00-58.50                         | 28.12             |                          | /==iFI-5 | greyish white CHALK with rare black specks. Fracture<br>set 1: (3 no.) horizontal to 15 degrees medium spaced<br>(200/250mm), planar locally stepped slighUy rough, with<br>frequent black specks, locally yellowish orange staining,<br>no infill. Fracture set 2: (1 no.) 60 degrees, undulating<br>slighUy rough Fracture set 3: 80 degrees to vertical,<br>planar and undulating slighUy rough, with frequent black<br>specks (Grade: A4)        |
| -A ssame"T" zone of core-lossB.50 27.32<br>50.40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | NR<br>-      |            |                                         |                |                                       |                |      |     |      |                                     |                   | 50.40)                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| W"'ed""K-=bca=f1-yveryweak,med I'um adc-=h_ig-hedersity, -rrt ftesa 90 26.92<br>greyish white CHALK with rare orange staining (sponge<br>beds) and rare thin grey laminations (marl wisps).<br>Fracture set 1: horizontal to 20 degrees widely spaced<br>(120/850/920mm), undulating smooth, with frequent<br>black specks, yellowish orange staining, no infill.<br>Fracture set 2: (2 no.) 50 to 60 degrees medium spaced<br>(280mm), planar slighUy rough, with frequent black<br>specks. (Grade: A4)<br>[New PitChalk Formation]<br>59.00-59.01m: Mytiloide fossil fragment (20mm).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 90           | 50         |                                         |                |                                       |                |      |     |      |                                     | φ, <del>3</del> ∠ | r-<br>r-<br>r-<br>r-     | +rt-#≫a. | greyish white CHALK with rare orange staining (sponge<br>beds) and rare thin grey laminations (marl wisps).<br>Fracture set 1: horizontal to 20 degrees widely spaced<br>(120/850/920mm), undulating smooth, with frequent<br>black specks, yellowish orange staining, no infill.<br>Fracture set 2: (2 no.) 50 to 60 degrees medium spaced<br>(280mm), planar slighUy rough, with frequent black<br>specks. (Grade: A4)<br>[New PitChalk Formation] |

| Project No:<br>Client: I<br>Engineer: I<br>Date Started: | Amersham Tunnel to Calvert<br>1G063 -AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd                                                                        |         |                                  |              |                                      |              |         |         |                   |                                    |                 |                                                     | 0.100             | t 13 of                           | 10        |                                            |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------|--------------|--------------------------------------|--------------|---------|---------|-------------------|------------------------------------|-----------------|-----------------------------------------------------|-------------------|-----------------------------------|-----------|--------------------------------------------|
| Date Started:                                            |                                                                                                                                                                      |         |                                  |              | Survey Gr<br>Co-ordinat<br>Ground Le | tes:         | em:     |         | 49860<br>19408    | SGB<br>2.06 n<br>3.53 n<br>35.82 n | nE<br>nN<br>nOD | Hole Typ<br>Checked<br>Approve<br>Scale:<br>Log Sta | l By:<br>d By:    |                                   | PMcC<br>F | D+RC<br>G, CB<br>PMcG<br>1:25              |
| Jale Completed.                                          | 10/10/2016<br>19/10/2016                                                                                                                                             |         |                                  |              | Orientation<br>Inclination           | :            |         |         |                   | d<br>90 d                          | eg.<br>leg.     | Print Da<br>Final De                                | te:               |                                   | 21/11     |                                            |
| Sti                                                      | ratum Description                                                                                                                                                    | Legend  | Depth<br>(Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)                         | Samp<br>Type | 1       |         | andh Sit<br>Blows | tu Test<br>Test                    | •               | sult Unit                                           | TCR<br>SCR<br>RQD | lfmin<br>lfave<br>l(mma)x         | Weter     | Wel<br>Backi                               |
| Recovered as: w                                          | ling disturbed, recovered non-intact.<br>thite silty very sandy GRAVEL of f/int.<br>Possible fall in?<br>rare orange staining (sponge beds).<br>Terminated at 61.50m |         | (m)                              | 24.32        | (m)<br>60.00-61.50<br>60.75-60.89    | RC<br>C      | 102 100 | 70      |                   |                                    |                 |                                                     | 97 37 26          | 50<br>90<br>330<br>NI<br>40<br>60 |           | තේ කොති කොති කොති කොති කොති කොති කොති කොති |
|                                                          |                                                                                                                                                                      |         |                                  |              |                                      |              |         |         |                   |                                    |                 |                                                     |                   |                                   |           |                                            |
|                                                          | ured along borehole axis.                                                                                                                                            |         | r-<br>f                          |              |                                      |              |         |         |                   |                                    |                 |                                                     |                   |                                   |           | L                                          |
| Explanation of symbol                                    | ay be subject to seasonal, tidal and o<br>Is and abbreviations given in 'Key to<br>on appended 'Borehole Information S                                               | Explora |                                  |              | nould not be                         | taken a      | as con  | istant. |                   |                                    |                 |                                                     |                   |                                   |           |                                            |

| ProjectName           | Central Package A                                                                          |            |          |                    |                |         |                 |       |           |       |           |     | Hole ID                 |                   |
|-----------------------|--------------------------------------------------------------------------------------------|------------|----------|--------------------|----------------|---------|-----------------|-------|-----------|-------|-----------|-----|-------------------------|-------------------|
| Project No.           | TE7967                                                                                     |            |          |                    |                |         | Explo           | ratoi | ry Ho     | le Lo | g         |     | ML036-RC                | 004               |
| Engineer<br>Employer  | High Speed Two (HS2) Limited<br>High Speed Two (HS2) Limited                               |            |          |                    |                |         |                 |       |           |       |           |     | Sheet 1 of 1            |                   |
| Ground Level          | +108.68mOD                                                                                 | Coordina   | ates     | 498267.9           | 92E, 194250    | ).28N   | I               | Gri   | d         | Na    | ational G | rid | Officer for             | ·                 |
| Hole Type             | IP+RO+RC                                                                                   | Inclinatio |          |                    | horizontal     | .§!     |                 |       |           |       |           |     |                         |                   |
|                       | Description of Strata                                                                      | ,g         | Legeno   | Depth<br>d (Thick- | Datum<br>Level | 111     | Sampling        |       | 8         | 0     | (a)<br>   |     | In Situ Test<br>Details | Install-<br>ation |
|                       | _<br>II(Driller's description)                                                             |            | J        | ness)              |                |         | Details         | Dia.  | u"<br>f-" | bl    |           |     |                         |                   |
| (MGR) [Made Ground    | d]<br>ling. Brown CLAY (Driller's description)                                             |            |          | 0.20               | 108.48         |         |                 |       |           |       |           |     |                         | • •               |
| riolary opennoic and  |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         | _                 |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          | _                  |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          | (4.30)             |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          | -                  |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          | -                  |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
| Rotary openhole drill | ling. Brown sandy gravelly CLAY (Driller's                                                 |            | >        | 4.50               | 104.18         |         |                 |       |           |       |           |     |                         |                   |
| description)          |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
|                       |                                                                                            |            |          |                    |                |         |                 |       |           |       |           |     |                         |                   |
| ļ                     |                                                                                            |            |          |                    |                |         |                 |       |           |       |           | 1   | T 212                   |                   |
|                       | All depth in metres, all diameters in millin<br>See header sheet for details of boring, pr |            | nd wate' |                    |                |         |                 |       |           |       |           |     | Lili                    |                   |
|                       | For details of abbreviations, see key.                                                     |            |          |                    | 1.00           | checkod | by Chris Norton |       |           |       |           | SC  | DIL en On <sub>ee</sub> | RmG               |
| Form No. SIEXPHOLELC  |                                                                                            |            | 5 50.13  | Issue Da           | te 12/10/2016  |         | Ly onno monton  |       |           |       |           |     | of the Bachy Soletanch  |                   |

| Project Name            | Central Package A                          |             |       |                           |                |                     |              |                                      | Hole ID                 |                   |
|-------------------------|--------------------------------------------|-------------|-------|---------------------------|----------------|---------------------|--------------|--------------------------------------|-------------------------|-------------------|
| Project No.<br>Engineer | TE7967<br>High Speed Two (HS2) Limited     |             |       |                           |                | Explo               | oratory Hole | e Log                                | ML036-RC                | 004               |
| Employer                | High Speed Two (HS2) Limited               |             |       |                           |                |                     |              |                                      | Sheet 2 of              | 14                |
| Ground Level            | +108.68mOD                                 | Coordinates |       | 498267.9                  | 2E, 194250.28N |                     | Grid         | National Grid                        |                         |                   |
| Hole Type               | IP+RO+RC                                   | Inclination |       | 90° from                  | horizontal     |                     |              |                                      |                         |                   |
|                         | Description of Strata                      | L           | egend | Depth<br>(Thick-<br>ness) | Datum<br>Level | Sampling<br>Details | Dia. u       | ° <sup>°</sup> a <sub>"'</sub><br>bl | In Situ Test<br>Details | Install-<br>ation |
| Rotary openhole dril    | lling Brown sandy gravelly CLAY (Driller's |             |       |                           |                |                     | f- "'        |                                      |                         |                   |

Rotary openhole drilling. Brown sandy gravelly CLAY (Driller's description)

(2.90)

-

| Rotary openhole drilling. CHALK (Driller's description)<br>Very soft lightbrown slightly sandy slightly gravelly CLAY. Gravel is<br>subrounded to subangular fine to coarse of flint. Sand is fine to<br>coarse.<br>(ALV) [Alluvium]<br>/ Assumed zone of core loss. CHALK (Driller's description)<br>(LECH) [Lewes Nodular Chalk Formation] |        |             |        | c717.55-7.65<br>7.50-8.00     | 102 | 40 | N  | Ą |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|--------|-------------------------------|-----|----|----|---|
|                                                                                                                                                                                                                                                                                                                                              |        | -<br>(0.85) |        |                               |     |    | NF | R |
| Structureless CHALK composed of slightly sandy gravelly SILT.Clasts<br>are extremely weak to very weak low density subrounded light                                                                                                                                                                                                          |        | 8.55        | 100.13 | 8.00 - 9.00                   | 102 | 45 | _  |   |
| brownish white chalk with rare nodular flint. Matrix is light brown.<br>Matrix is 80%.<br>(LECH) [Lewes Nodular Chalk Formation]                                                                                                                                                                                                             | E<br>O | (0.65)      |        | C72 8.70-8.80                 |     |    | N  | A |
| No Recovery. CHALK (Driller's description)                                                                                                                                                                                                                                                                                                   |        | 9.20        | 99.48  | C 73 9.10-9.20<br>9.00 - 9.50 | 102 | 40 |    |   |



Notes: All depth in metres, all diameters in millimetres. н. See header sheet for details of boring, progress and wate' For details of abbreviations, see key.

| Form No. SIEXPHOLERCLOG | Issue.Revision No. 2.04 |      | Issue Dat | e 19/09/20 | 17 |  |  |      | Parto | f the Bachy Soletanch | ne Gro | up |
|-------------------------|-------------------------|------|-----------|------------|----|--|--|------|-------|-----------------------|--------|----|
|                         |                         |      |           |            |    |  |  |      |       |                       |        |    |
|                         |                         |      |           |            |    |  |  |      |       |                       |        |    |
|                         |                         |      |           |            |    |  |  |      |       |                       |        |    |
|                         |                         |      |           |            |    |  |  |      |       |                       |        |    |
|                         |                         |      |           |            |    |  |  |      |       |                       |        |    |
|                         |                         | <br> |           |            |    |  |  | <br> |       |                       |        |    |

| ProjectName                          | Central Package A                                                                               |             |                                  |                |            |                     |         |          |         |         |      | Hole ID                 | )    |                        |
|--------------------------------------|-------------------------------------------------------------------------------------------------|-------------|----------------------------------|----------------|------------|---------------------|---------|----------|---------|---------|------|-------------------------|------|------------------------|
| Project No.                          | TE7967                                                                                          |             |                                  |                |            | Explo               | oratory | / Hol    | e Lc    | og      |      | ML036-R0                | C004 | 4                      |
| Engineer<br>Employer<br>Ground Level | High Speed Two (HS2) Limited<br>High Speed Two (HS2) Limited<br>+108.68mOD                      | Coordinates | 408267                           | .92E, 194250   | 28N        |                     | Gri     | ч        | N       | ational | Grid | Sheet 3 of              | f 14 |                        |
| Hole Type                            | IP+RO+RC                                                                                        | Inclination |                                  | horizontal     | .2014      |                     | GI      | u        | 1.4     | ational | Ond  |                         |      |                        |
|                                      | Description of Strata                                                                           | ₽<br>J      | Depth<br>Legend (Thick-<br>ness) | Datum<br>Level | .§!<br>I!I | Sampling<br>Details | Dia.    | 8<br>u " | o<br>bl | a<br>#  |      | In Situ Test<br>Details |      | stall-<br>t <b>ion</b> |
| No Recovery. CHAL                    | K (Driller's description)                                                                       | •           |                                  |                |            |                     |         | t- "'    |         |         |      |                         |      |                        |
|                                      |                                                                                                 |             |                                  |                |            |                     | 102     | 0        | 0       | 0       |      |                         |      |                        |
|                                      |                                                                                                 |             |                                  |                |            |                     | 102     | 0        | 0       | 0       |      |                         |      |                        |
|                                      |                                                                                                 |             |                                  |                |            |                     |         |          |         |         |      | SPT(S) N=4              |      |                        |
|                                      |                                                                                                 |             |                                  |                |            |                     |         |          |         |         |      | (1,0,1,0,12)<br>10.50   |      |                        |
|                                      |                                                                                                 |             |                                  |                |            | 10.50 - 11.00       | 102     | 0        | 0       | 0       |      |                         |      |                        |
|                                      |                                                                                                 |             |                                  |                |            |                     |         |          |         |         |      |                         |      |                        |
|                                      |                                                                                                 |             |                                  | -              |            |                     |         |          |         |         |      |                         |      |                        |
|                                      |                                                                                                 |             |                                  |                |            |                     |         |          |         |         | NR   |                         |      |                        |
|                                      |                                                                                                 |             | (3.20}                           |                |            |                     |         |          |         |         |      |                         |      |                        |
|                                      |                                                                                                 |             |                                  |                |            |                     |         |          |         |         |      |                         | ===  |                        |
|                                      |                                                                                                 |             |                                  |                |            | 11.00 - 12.00       | 102     | 0        | 0       | 0       |      |                         |      |                        |
|                                      |                                                                                                 |             |                                  |                |            |                     |         |          |         |         |      |                         |      |                        |
|                                      |                                                                                                 |             |                                  |                |            |                     |         |          |         |         |      |                         |      |                        |
|                                      |                                                                                                 |             |                                  |                |            |                     |         |          |         |         |      |                         |      |                        |
|                                      |                                                                                                 |             |                                  | -              |            |                     |         |          |         |         |      |                         |      |                        |
|                                      |                                                                                                 |             |                                  |                |            |                     |         |          |         |         |      |                         |      |                        |
|                                      |                                                                                                 |             |                                  |                |            | 12.00 - 12.50       | 102     | 20       | 0       | 0       |      |                         |      |                        |
|                                      | K composed of slightly sandy gravelly SILT.Cla                                                  |             | 12.40                            | 96.28          |            |                     |         |          |         |         |      |                         |      |                        |
|                                      | to very weak low density light creamish white<br>g. Matrix is light brownish white, dark brown  |             |                                  |                |            |                     |         |          |         |         |      |                         |      |                        |
| patches. Matrix is 7<br>(<80mm).     | 0%. Submunded flint found throughout interv                                                     | al          |                                  |                |            |                     |         |          |         |         |      |                         |      |                        |
|                                      | ular Chalk Formation]<br>0m assumed zone of core loss                                           |             |                                  |                |            | 12.50 - 13.00       | 102     | 50       | 0       | 0       |      |                         |      |                        |
|                                      |                                                                                                 |             |                                  |                |            |                     |         |          |         |         |      |                         |      |                        |
|                                      |                                                                                                 |             | (1.35)                           | -              |            |                     |         |          |         |         |      |                         |      |                        |
|                                      |                                                                                                 |             |                                  |                |            | C74 13.20-13.30     | 102     | 50       | 0       | 0       |      |                         |      |                        |
| from 13.25m to 13.S                  | Om assumed zone of core loss                                                                    |             |                                  |                |            | 13.00-13.50         | 102     | 50       | 0       | 0       |      |                         |      |                        |
|                                      |                                                                                                 | E<br>Cl     |                                  |                |            |                     |         |          |         |         | NA   |                         |      |                        |
|                                      |                                                                                                 | u           |                                  |                |            |                     |         |          |         |         |      |                         |      |                        |
|                                      |                                                                                                 |             | 13.75                            | 94.93          |            |                     |         |          |         |         |      |                         |      |                        |
|                                      | ore loss. CHALK (Driller's description)<br>ular Chalk Formation]                                |             | 0.10                             | 04.00          |            | 13.50 - 14.25       | 102     | 33       | 0       | 0       |      |                         |      |                        |
|                                      |                                                                                                 |             | (0.50)                           | -              |            |                     |         |          |         |         |      |                         |      |                        |
|                                      |                                                                                                 |             | (                                |                |            |                     |         |          |         |         |      |                         |      |                        |
|                                      |                                                                                                 |             | 14.25                            | 94.43          |            |                     |         |          |         |         |      |                         |      |                        |
| are extremely weak                   | K composed of slightly sandy gravelly SILT.Cla<br>to very weak low density light creamish white | 2           | (0.30}                           |                |            | C75 14.35-14.45     |         |          |         |         |      |                         |      |                        |
|                                      | g. Matrix is light brownish white, dark brown i<br>0%. Submunded flint found throughout interva |             | (0.30)                           | 94.13          |            |                     |         |          |         |         |      |                         |      |                        |
| . ,                                  | ular Chalk Formation]                                                                           |             | 1455                             | 94.13          |            | 14.25 - 15.00       | 102     | 40       | 0       | 0       |      |                         |      |                        |
| Assumed zone of co                   | pre loss. CHALK (Driller's description)                                                         |             |                                  |                |            |                     |         |          |         |         |      |                         |      |                        |
|                                      |                                                                                                 |             |                                  |                |            |                     |         |          |         |         |      |                         |      |                        |



== .... == ....

Notes: All depth in metres, all diameters in millimetres. See header sheet for details of boring, progress and wate' For details of abbreviations, see key.

Final, monitoring in progress

| Form No. SIEXPHOLERCLOG | Issue.Revision No. 2.04 |        | Issue Date | e 19/09/2017 |   |  |      |   | Partof | the Bachy Soletanch | e Group |
|-------------------------|-------------------------|--------|------------|--------------|---|--|------|---|--------|---------------------|---------|
|                         |                         |        |            |              |   |  |      |   |        |                     |         |
|                         |                         |        |            |              |   |  | <br> |   |        |                     |         |
|                         |                         |        |            |              | - |  | <br> |   |        |                     |         |
|                         |                         |        |            |              |   |  |      |   |        |                     |         |
|                         |                         |        |            |              |   |  |      |   |        |                     |         |
|                         |                         |        |            |              |   |  |      |   |        |                     |         |
|                         |                         |        |            |              |   |  |      |   |        |                     |         |
|                         |                         |        |            |              |   |  |      |   |        |                     |         |
|                         |                         |        |            |              | - |  |      |   |        |                     |         |
|                         |                         | (<br>( |            |              |   |  |      |   |        |                     |         |
|                         |                         |        |            |              |   |  |      |   |        |                     |         |
|                         |                         |        |            |              |   |  | <br> |   |        |                     |         |
|                         |                         | t<br>t |            |              |   |  |      |   |        |                     |         |
|                         |                         | 1      |            |              |   |  | <br> |   |        |                     |         |
|                         |                         | <br>   |            |              |   |  |      |   |        |                     |         |
|                         |                         |        |            |              |   |  |      |   |        |                     |         |
|                         |                         |        |            |              |   |  |      |   |        |                     |         |
|                         |                         |        |            |              |   |  |      | I |        |                     |         |
|                         |                         |        |            |              |   |  |      |   |        |                     |         |

| ProjectName                                  | Central Package A                                                                                                                              |                   |        |                  |                       |     |             |                |       |             |              |                  |           | Hole ID                 |       |              |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|------------------|-----------------------|-----|-------------|----------------|-------|-------------|--------------|------------------|-----------|-------------------------|-------|--------------|
| ,                                            | TE7967                                                                                                                                         |                   |        |                  |                       |     |             | Explor         | atory | / Ho        | le <b>Lo</b> | g                | N         | 1L036-RC                | 004   | 4            |
| Engineer<br>Employer                         | High Speed Two (HS2) Limited<br>High Speed Two (HS2) Limited                                                                                   |                   |        |                  |                       |     |             |                |       |             |              |                  |           | Sheet 4 of              | 14    |              |
| Ground Level<br>Hole Type                    |                                                                                                                                                | dinates<br>nation |        |                  | 2E, 1942<br>horizonta |     | l           |                | Grio  | d           | Na           | tional G         | irid      |                         |       |              |
|                                              | Description of Strate                                                                                                                          | e<br>∎            | Logond | Depth            | Datum                 | .§! | Sai         | mpling         |       | Q           | o            | сі<br><b>4</b> . |           | In Situ Test<br>Details |       | tall-<br>ion |
| Assumed zone of core                         | Description of Strata<br>eloss. CHALK. (Driller's description)                                                                                 | J                 | Legend | (Thick-<br>ness) | Level                 | 111 | Deta        | ails           | Dia.  | u "<br>f- " | bl           |                  |           | Details                 |       |              |
| 7135411642016 010016                         |                                                                                                                                                |                   |        |                  |                       |     |             |                |       |             |              |                  |           |                         | ===== |              |
|                                              |                                                                                                                                                |                   |        |                  |                       |     | 15.00 -     | 15.50          | 102   | 0           | 0            | 0                |           |                         | ====  |              |
|                                              |                                                                                                                                                |                   |        |                  |                       |     |             |                |       |             |              |                  |           |                         |       |              |
|                                              |                                                                                                                                                |                   |        | (1.05)           |                       |     | 15 50       | <b>1</b> 2 0.0 | 100   |             |              |                  | NR        |                         | ====  |              |
|                                              |                                                                                                                                                |                   |        | (1.95)           |                       |     | 15.50 -     | 16.00          | 102   | 0           | 0            | 0                |           |                         |       |              |
| at 1&0Dm 1No coarse                          | cobble sized fragment of partially rinded flint                                                                                                |                   |        | -                |                       |     |             |                |       |             |              |                  |           |                         | ====  |              |
|                                              |                                                                                                                                                |                   |        |                  |                       |     | 16.00 -     | 16 50          | 102   | 50          | 0            | 0                |           |                         |       |              |
|                                              |                                                                                                                                                |                   |        |                  |                       |     | 18.00 -     | 0.50           | 102   | 50          | 0            |                  | _         | _                       |       |              |
| Extremely weak to ve<br>with widely spaced b | ery weak low density light brownish white CHALK                                                                                                |                   |        | 16.50            | 92.18                 |     |             |                |       |             |              |                  | NI        |                         |       |              |
| (LECH) [Lewes Nodul                          | ar Chalk Formation]                                                                                                                            |                   |        | (0.30)<br>16.80  | 91.88                 |     |             |                |       |             |              |                  | 110       |                         |       |              |
| with widely spaced b                         |                                                                                                                                                |                   |        | 10.00            | 31.00                 |     | 16.50 -     | 17.25          | 102   | 47          | 20           | 20               | -         |                         |       |              |
| (LECH) [Lewes Nodul                          | ar Chalk Formation]                                                                                                                            |                   |        | -                |                       |     |             |                |       |             |              |                  | NR        |                         |       |              |
|                                              |                                                                                                                                                |                   |        | (0.85)           |                       |     | 0.70.47     | 00.47.05       |       |             |              |                  |           |                         |       |              |
|                                              |                                                                                                                                                |                   |        |                  |                       |     | C 76 17.:   | 28-17.35       |       |             |              |                  | NI<br>30  |                         |       |              |
|                                              |                                                                                                                                                |                   |        |                  |                       |     |             |                |       |             |              |                  | 110       |                         |       |              |
| Assumed zone of core<br>(LECH) [Lewes Nodula | e loss. CHALK. (Driller's description)<br>ar Chalk Formation]                                                                                  |                   |        | 17.65            | 91.03                 |     | 17.25 -     | 18.00          | 102   | 53          | 20           | 20               | NR        |                         | ====  |              |
|                                              |                                                                                                                                                |                   |        | (0.35)           |                       |     |             |                |       |             |              |                  |           |                         | ===== |              |
| with widely spaced b                         |                                                                                                                                                |                   |        | 18.00 -          | 90.68                 |     |             |                |       |             |              |                  | NI        |                         |       |              |
| (LECH) [Lewes Nodul                          |                                                                                                                                                |                   |        | (0.30)<br>18.30  | 90.38                 |     |             |                |       |             |              |                  | _         |                         |       |              |
| Assumed zone of core<br>(LECH) [Lewes Nodul  | e loss. CHALK. (Driller's description)<br>ar Chalk Formation]                                                                                  |                   |        |                  |                       |     | 18.00 -     | 18.75          | 102   | 40          | 0            | 0                | NR        |                         | ====  |              |
|                                              |                                                                                                                                                |                   |        | (0.45)           |                       |     |             |                |       |             |              |                  |           |                         |       |              |
| Extremely weak to ve                         | ery weak low density light brownish white CHALK                                                                                                |                   |        | 18.75            | 89.93                 |     | C 77 18.8   | 80-18.87       |       |             |              |                  |           |                         |       |              |
| with widely spaced b<br>(LECH) [Lewes Nodul  |                                                                                                                                                |                   |        |                  |                       |     |             |                |       |             |              |                  | NI        |                         |       |              |
| at 19.00m coarse grav                        | vel sized fragment of black partially rinded flint                                                                                             |                   |        | -                |                       |     | 18.75 -     | 19.50          | 102   | 67          | 53           | 45               | 70<br>130 |                         | ===== |              |
| from 19.25m to 19.SOr                        | m assumed zone of core loss                                                                                                                    |                   |        | į                |                       |     |             |                |       |             |              |                  | NR        |                         |       |              |
|                                              |                                                                                                                                                |                   |        | <br>             |                       |     |             |                |       |             |              |                  |           |                         | ====  |              |
|                                              |                                                                                                                                                |                   |        | 1                |                       |     |             |                |       |             |              |                  | NI        |                         | ====  |              |
|                                              |                                                                                                                                                |                   |        |                  |                       |     |             |                | 102   | 77          | 0            | 0                |           |                         |       |              |
|                                              |                                                                                                                                                |                   |        |                  |                       |     | 19.50-:<br> | 20.25<br>      |       |             |              |                  |           |                         | ====  |              |
|                                              |                                                                                                                                                |                   |        |                  |                       |     |             |                |       |             |              |                  |           |                         |       |              |
|                                              |                                                                                                                                                |                   |        |                  |                       |     |             |                |       |             |              |                  |           |                         |       |              |
|                                              | Il denth in metree all diameters is million-to                                                                                                 |                   |        |                  |                       |     |             |                |       |             |              |                  |           | T :1:                   |       |              |
|                                              | II depth in metres, all diameters in millimetres.<br>See header sheet for details of boring, progres<br>For details of abbreviations, see key. |                   | vate'  |                  |                       |     |             |                | _     |             |              |                  |           |                         |       |              |
| Final, monitoring in p                       | progress Print date and time 08/05                                                                                                             | /2018             | 09:19  | SSUE Do          | Lo<br>te 19/09/20     | -   | ked by Chr  | is Norton      |       |             |              |                  |           | the Bachy Soletand      |       |              |
| - UNIT NO. SIEAPHULERU                       | 15508.Revision NO. 2.04                                                                                                                        |                   |        | issue Da         | w/u9/20               |     |             |                |       |             |              |                  | r all O   | are bacity soletand     | e Gi( | oup          |

| ProjectName                                                       | Central Package A                                                                                                                      |                    |         |                    |                       |     |                   |          |      |      |        |                  |            | Hole ID               |         |       |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|--------------------|-----------------------|-----|-------------------|----------|------|------|--------|------------------|------------|-----------------------|---------|-------|
| Project No.                                                       | TE7967                                                                                                                                 |                    |         |                    |                       |     |                   | Explora  | ator | у Нс | ole Lo | g                |            | ML036-RC              | :004    | 4     |
| Engineer<br>Employer                                              | High Speed Two (HS2) Limited<br>High Speed Two (HS2) Limited                                                                           |                    |         |                    |                       |     |                   |          |      |      |        |                  |            | Sheet 5 of            | 14      |       |
| Ground Level<br>Hole Type                                         | +108.68mOD                                                                                                                             | Coordinat          |         |                    | 2E, 1942<br>horizonta |     | 1                 |          | Grid | d    | Na     | itional          | Grid       |                       |         |       |
|                                                                   |                                                                                                                                        |                    |         | Depth              | Datum                 | .§! | San               | npling   |      |      | 0      | сі<br><b>4</b> , |            | In Situ Test          | Ins     | tall- |
|                                                                   | Description of Strata                                                                                                                  | J                  | Legen   | d (Thick-<br>ness) | Level                 | 1!! | Detai             | ils I    | Dia. | u "  | bl     | <i>q</i> ,       |            | Details               | at      | ion   |
| Extremely weak to v<br>with widely spaced b<br>(LECH) [Lewes Nodu |                                                                                                                                        | K                  |         |                    |                       |     |                   |          |      |      |        |                  | NR         |                       |         |       |
|                                                                   | 5m assumed zone of core loss                                                                                                           |                    |         | 1                  |                       |     |                   |          | _    |      |        |                  |            | -                     |         |       |
|                                                                   |                                                                                                                                        |                    |         | ç                  |                       |     |                   |          |      |      |        |                  |            |                       | ====    |       |
|                                                                   |                                                                                                                                        |                    |         | Į.                 |                       |     | 20.25 - 2         | 21.00    | 102  | 86   | 0      | 0                | NI         |                       |         |       |
|                                                                   |                                                                                                                                        |                    |         | ç                  |                       |     |                   |          |      |      |        |                  |            |                       |         | <br>  |
| from 20.90m ID 21.0                                               | 00m assumed zone of core loss                                                                                                          |                    |         |                    |                       |     | C 79 <u>2</u> 0.9 | 5-21.00  |      |      |        |                  | NR         |                       |         |       |
|                                                                   |                                                                                                                                        |                    |         | (3.45)             |                       |     |                   |          |      |      |        |                  |            |                       |         |       |
| at 21.20m 1No coars                                               | e gravel sized fragment of black partially rinded flint                                                                                |                    |         |                    |                       |     | 2100 -            | 21.40    | 102  | 92   | 0      | 0                |            |                       | ===     | <br>  |
|                                                                   |                                                                                                                                        |                    |         | Ś                  |                       |     |                   |          |      |      |        |                  |            |                       |         |       |
|                                                                   |                                                                                                                                        |                    |         | [                  |                       |     |                   |          |      |      |        |                  | NI         |                       |         | ===   |
|                                                                   |                                                                                                                                        |                    |         |                    |                       |     |                   |          |      |      |        |                  | 60         |                       | ====    |       |
|                                                                   |                                                                                                                                        |                    |         | ſ                  |                       |     | 21.40-2           | 22 50    | 102  | 72   | 13     | 0                |            |                       | ====    |       |
|                                                                   |                                                                                                                                        |                    |         | -                  |                       |     | C 80 22.          |          |      | 12   |        | Ū                |            |                       |         |       |
| Assumed zone of cor                                               | re loss. CHALK. (Drill <del>er's description)</del><br>ilar Chalk Formation]                                                           |                    |         | 22.20              | 86.48                 |     | 0.00 22.          |          |      |      |        |                  | <br>NR     |                       |         |       |
| (LECH) [Lewes Nodu                                                |                                                                                                                                        |                    |         | (0.30)             |                       |     |                   |          |      |      |        |                  |            |                       |         |       |
|                                                                   | ery weak low density light brownish white CHA                                                                                          | <u>_K</u>          |         | 22.50              | 86.18                 |     |                   |          | _    |      |        |                  | NI         | _                     |         |       |
|                                                                   | ılar Chalk Formation]<br>massumed zone of core loss                                                                                    | _/                 |         | 22.60              | 86.08                 |     |                   |          |      |      |        |                  |            |                       |         | =     |
| Assumed zone of cor<br>(LECH) [Lewes Nodu                         | re loss. CHALK. (Driller's description)<br>ılar Chalk Formation]                                                                       |                    |         | (0.05)             |                       |     | 22.50 - 2         | 23.25    | 102  | 13   | 0      | 0                | NR         |                       | ====    |       |
|                                                                   |                                                                                                                                        |                    |         | (0.65)             |                       |     |                   |          |      |      |        |                  |            |                       |         |       |
|                                                                   |                                                                                                                                        |                    |         | 23.25              | 85.43                 |     |                   |          |      |      |        |                  |            |                       |         |       |
| with widely spaced b                                              |                                                                                                                                        | ĸ                  |         | 23.25              | 85.33                 |     |                   |          |      |      |        |                  | <u></u> NI |                       |         | <br>  |
| I <u>(LECH)[LewesNodu</u> Assumed zone o                          | f core loss. CHALK. (Driller's description)                                                                                            | _                  |         |                    |                       |     |                   |          |      |      |        |                  |            |                       |         |       |
|                                                                   |                                                                                                                                        |                    |         |                    |                       |     | 23.25 - 2         | 24.00    | 102  | 13   | 0      | 0                |            |                       |         |       |
|                                                                   |                                                                                                                                        |                    |         |                    |                       |     |                   |          |      |      |        |                  |            |                       |         |       |
|                                                                   |                                                                                                                                        |                    |         | (1.40)             |                       |     |                   |          | _    |      |        |                  | NR         |                       |         |       |
|                                                                   |                                                                                                                                        |                    |         | (1.40)             |                       |     |                   |          |      |      |        |                  |            |                       |         |       |
|                                                                   |                                                                                                                                        |                    |         |                    |                       |     | 24.00 - 2         | 24.75    | 102  | 0    | 0      | 0                |            |                       |         |       |
|                                                                   |                                                                                                                                        |                    |         |                    |                       |     | 24.00-2           | 24.75    | 102  | 0    |        |                  |            |                       |         |       |
|                                                                   |                                                                                                                                        |                    |         |                    |                       |     |                   |          |      |      |        |                  |            |                       |         |       |
|                                                                   | sturbed. Very weak low density light creamish<br>range stained surfaces throughout.                                                    | _                  |         | 24.75              | 83.93                 |     | C81 24.85         | 5-24.95  | _    |      |        |                  | NI         | -                     |         |       |
| (LECH) [Lewes Nodu                                                |                                                                                                                                        |                    |         | (0.30)             |                       |     |                   |          |      |      |        |                  |            |                       | ===     |       |
|                                                                   |                                                                                                                                        |                    |         |                    |                       |     |                   |          |      |      |        |                  |            |                       |         |       |
|                                                                   |                                                                                                                                        |                    |         |                    |                       |     |                   |          |      |      |        |                  |            |                       |         |       |
|                                                                   |                                                                                                                                        |                    |         |                    |                       |     |                   |          |      |      |        |                  | 1          |                       |         |       |
|                                                                   | All depth in metres, all diameters in millime<br>See header sheet for details of boring, pro<br>For details of abbreviations, see key. | tres.<br>gress and | wate'   |                    |                       |     |                   |          |      |      |        |                  |            | Lili.                 |         |       |
| Final, monitoring in                                              | progress Print date and time 0                                                                                                         |                    | 3 09:19 |                    |                       | -   | ked by Chris      | s Norton | _    |      |        |                  |            | IL enGme              |         |       |
| Form No. SIEXPHOLER                                               | CLOG Issue.Revision No.                                                                                                                | 2.04               |         | Issue Da           | te 19/09/20           | )17 |                   |          |      |      |        |                  | Part       | of the Bachy Soletand | che Gro | oup   |

| ProjectName                                                           | Central Package A                                                                                                                                     |         |        |                      |            |     |                     |       |      |       |           |           | Hole ID                 |        |          |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----------------------|------------|-----|---------------------|-------|------|-------|-----------|-----------|-------------------------|--------|----------|
| Project No.                                                           | TE7967                                                                                                                                                |         |        |                      |            |     | Exploi              | rator | у На | le Lo | g         | N         | /L036-RC                | 004    |          |
| Engineer<br>Employer                                                  | High Speed Two (HS2) Limited<br>High Speed Two (HS2) Limited                                                                                          |         |        |                      |            |     |                     |       |      |       |           |           | Sheet 6 of <sup>2</sup> | 14     |          |
| Ground Level<br>Hole Type                                             | +108.68mOD Coord                                                                                                                                      | linates |        | 498267.9<br>90° from |            |     | <b>!</b>            | Gri   | d    | Na    | itional ( | Grid      |                         |        |          |
|                                                                       |                                                                                                                                                       |         |        | Depth                | Datum      | .§! | Sampling            |       |      | 0     | a,        |           | In Situ Test            | Inst   | tall-    |
|                                                                       | Description of Strata                                                                                                                                 | J       | Legend | (Thick-<br>ness)     | Level      | 1!1 | Details             | Dia.  | u "  | bl    | 4,        |           | Details                 | ati    | on       |
| Non intact drilling dia<br>white CHALK with or<br>1/LECH) [Lewes Nodu | sturbed. Very weak low density light creamish<br>range stained surfaces throughout.<br>Iar Chalk Formation]<br>refoss. CHALK. (Driffer's description) |         |        | 25.05                | 83.63      |     | 24.75-25.50         |       |      |       |           |           |                         |        |          |
| (LECH) [Lewes Nodu                                                    |                                                                                                                                                       |         |        | (0.45)               |            |     |                     | 102   | 40   | 0     | 0         | NR        |                         |        |          |
| Non intact drilling di                                                | sturbed. Very weak low density light creamish                                                                                                         |         |        | 25.50                | 83.18      |     |                     |       |      |       |           |           |                         |        |          |
| -                                                                     | range stained surfaces throughout.                                                                                                                    |         |        | 25.65                | 83.03      |     |                     |       |      |       |           | NI        |                         |        |          |
|                                                                       | re loss. CHALK. (Driller's description)<br>Jlar Chalk Formation]                                                                                      |         |        | (0.35)               |            |     | 25.50-26.00         | 102   | 30   | 0     | 0         | NR        |                         |        |          |
| Non intact drilling                                                   | disturbed. Very weak low density light creamish                                                                                                       |         |        | 26.00 -              | 82.68      |     |                     |       |      |       |           |           |                         |        |          |
| white CHALK with or                                                   | range stained surfaces throughout.<br>Jlar Chalk Formation]                                                                                           |         |        |                      |            |     |                     |       |      |       |           | NI        |                         | ====   |          |
| from 26.30m to 26.5                                                   | Om assumed zone of core loss                                                                                                                          |         |        |                      |            |     | 26.00-26.50         | 102   | 60   | 0     | 0         | NR        | F                       |        |          |
|                                                                       |                                                                                                                                                       |         |        | 1                    |            |     |                     |       |      |       |           |           |                         |        |          |
|                                                                       |                                                                                                                                                       |         |        |                      |            |     |                     |       |      |       |           | NI        |                         |        |          |
| from 26.SOm to 27.0                                                   | 00m assumed zone of core loss                                                                                                                         |         |        | (1.50)               |            |     | 26.50-27.00         | 102   | 60   | 0     | 0         | NR        |                         |        |          |
| at 27.00m angular b                                                   | lackflintfragments                                                                                                                                    |         |        | <br>  -              |            |     |                     |       |      |       |           |           |                         |        | ==_      |
|                                                                       |                                                                                                                                                       |         |        | 1                    |            |     |                     |       |      |       |           |           |                         | ====   |          |
|                                                                       |                                                                                                                                                       |         |        |                      |            |     |                     |       |      |       |           | NI        |                         |        |          |
|                                                                       | re loss. CHALK. (Driller's description)                                                                                                               |         |        | 27.50                | 81.18      |     |                     |       |      |       |           |           |                         |        |          |
| (LECH) [Lewes Nodu                                                    | Jiar Chaik Formation]                                                                                                                                 |         |        |                      |            |     | 27.00-28.50         | 102   | 43   | 0     | 0         |           | -                       | ====   |          |
|                                                                       |                                                                                                                                                       |         |        | (0.05)               |            |     | 27.00-20.00         | 102   | 43   | 0     | 0         |           |                         | ====   |          |
|                                                                       |                                                                                                                                                       |         |        | (0.85) -             |            |     |                     |       |      |       |           | NR        |                         |        |          |
|                                                                       |                                                                                                                                                       |         |        |                      |            |     |                     |       |      |       |           |           |                         | ====   |          |
|                                                                       | sturbed. Very weak low density light creamish                                                                                                         |         |        | 28.35                | 80.33      |     | C83 28.35-28.42     |       |      |       |           |           |                         |        |          |
|                                                                       | range stained surfaces throughout.<br>Jlar Chalk Formation]<br>Jackflint fragments                                                                    |         |        |                      |            |     |                     |       |      |       |           | NI        |                         |        |          |
|                                                                       |                                                                                                                                                       |         |        | (0.65)               |            |     | 28.50-29.00         | 102   | 60   | 0     | 0         |           |                         |        |          |
| from 28.SOm to 29.0                                                   | 00m assumed zone of core loss                                                                                                                         |         |        |                      |            |     |                     |       |      |       |           |           |                         |        |          |
| blackflint, nodulara                                                  | ity creamish white CHALK with medium spaced<br>nd sheeV Discontinuities: 1)60-90 degrees                                                              |         |        | 29.00 -              | 79.68      |     |                     |       |      |       |           | NI        |                         |        |          |
| 2) 44 degrees undul                                                   | ar slightly rough clean but heavily speckled black.<br>lating slightly rough clean with black speckling.<br>Jlar Chalk Formation]                     |         |        | <br>                 |            |     | 29.00-29.50         | 102   | 60   | 20    | 10        | 90<br>100 |                         | =====  |          |
| at 29.0Dm nodular fl                                                  |                                                                                                                                                       |         |        |                      |            |     |                     |       |      |       |           |           |                         |        |          |
| at 29.SOm nodular f                                                   | lints                                                                                                                                                 |         |        |                      |            |     |                     |       |      |       |           | NI        |                         |        |          |
|                                                                       |                                                                                                                                                       |         |        |                      |            |     | 29.50-30.00         | 102   | 70   | 0     | 0         |           |                         |        | ==-      |
| from 29.85m to 30.0                                                   | 0m assumed zone of core loss                                                                                                                          |         |        |                      |            |     |                     |       |      |       |           | NR        |                         |        |          |
|                                                                       |                                                                                                                                                       |         |        |                      |            |     |                     |       |      |       |           |           |                         |        | <u> </u> |
|                                                                       |                                                                                                                                                       |         |        |                      |            |     |                     |       |      |       |           |           |                         |        |          |
|                                                                       |                                                                                                                                                       |         |        |                      |            |     |                     |       |      |       |           | 1         |                         |        |          |
| Notes: /                                                              | All depth in metres, all diameters in millimetres.<br>See header sheet for details of boring, progress<br>For details of abbreviations, see key.      | s and   | wate'  |                      |            |     |                     |       |      |       |           |           | Lili.                   |        |          |
| Final, monitoring in                                                  | progress Print date and time 08/05/                                                                                                                   | 2018    | 09:19  | logue D. (           |            | -   | ked by Chris Norton |       |      |       |           | SOIL      |                         |        |          |
| Form No. SIEXPHOLER                                                   | CLOG Issue.Revision No. 2.04                                                                                                                          |         |        | issue Dat            | e 19/09/20 | 17  |                     |       |      |       |           | Parto     | fthe Bachy Soletanc     | ne Gro | up       |

| ProjectName          | Central Package A                                                                                    |                         |        |                   |                |       |                                 |       |          |        |         |      | Hole ID                 |                                              |     |
|----------------------|------------------------------------------------------------------------------------------------------|-------------------------|--------|-------------------|----------------|-------|---------------------------------|-------|----------|--------|---------|------|-------------------------|----------------------------------------------|-----|
| Project No.          | TE7967                                                                                               |                         |        |                   |                |       | Explo                           | orato | ry Ho    | ole Lo | og      |      | ML036-RC                | 004                                          | 4   |
| Engineer<br>Employer | High Speed Two (HS2) Limited<br>High Speed Two (HS2) Limited                                         |                         |        |                   |                |       |                                 |       |          |        |         |      | Sheet 7 of              | 14                                           |     |
| Ground Level         | +108.68mOD C                                                                                         | oordinate               | S      |                   | 92E, 19425     | 0.281 | 1                               | Gri   | d        | Na     | ational | Grid |                         |                                              |     |
| HoleType             | IP+RO+RC In                                                                                          | clination<br>g><br>"iii |        | 90° from<br>Depth | horizontal     | .§!   |                                 |       |          |        |         |      |                         |                                              |     |
|                      | Description of Strata                                                                                |                         | Legend |                   | Datum<br>Level | 1!1   | Sampling                        |       | u        | 0      | а<br>а  |      | In Situ Test<br>Details |                                              | ion |
|                      | ity creamish white CHALK with medium spaced                                                          | J                       |        | 11633)            |                |       | Details                         | Dia.  | 0        | bl     |         |      |                         | <br>                                         |     |
| widely spaced plana  | nd sheeV Discontinuities: 1) 60-90 degrees<br>ar slightly rough clean but heavily speckled black.    |                         |        |                   |                |       |                                 |       |          |        |         | NI   |                         |                                              |     |
| (LECH) [Lewes Nodu   |                                                                                                      |                         |        |                   |                |       | 30.00-30.50<br>C 84 30.30-30.36 | 102   | 60       | 0      | 0       |      |                         |                                              |     |
| at 30.10m oodular f  | Om sheet flints (<30mm)<br>lints<br>Om assumed zone of core loss                                     |                         |        |                   |                |       |                                 |       |          |        |         |      |                         |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       |                                 |       |          |        |         |      | -                       |                                              |     |
|                      |                                                                                                      | !;;!                    |        | (2.50)            |                |       | 30.50-31.00                     | 102   | 100      | 42     | 0       | NI   |                         |                                              |     |
|                      |                                                                                                      | .,,:                    |        | (2.00)            |                |       | 00.00 01.00                     | 102   |          | 72     | Ŭ       | 60   |                         |                                              |     |
|                      |                                                                                                      |                         |        | -                 |                |       |                                 |       |          |        |         |      |                         |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       | CBS 31.10-31.41                 |       |          |        |         |      |                         |                                              |     |
| at 31.15 zoophycos   | traces                                                                                               |                         |        |                   |                |       | 31.00-31.50                     | 102   | 100      | 0      | 0       |      |                         |                                              |     |
| (10.15               |                                                                                                      |                         |        |                   |                |       |                                 |       |          |        |         |      |                         |                                              |     |
| at 30.1Dm inoceram   | sturbed. Extremely weak to very weak low                                                             |                         |        | - 31.50           | 77.18          |       |                                 |       | <u> </u> |        |         | NI   |                         |                                              |     |
| density creamish wh  | nite CHALK with widely spaced nodular black flint<br>uities: 1)60-90 degrees medium to widely spaced |                         |        |                   |                |       |                                 |       |          |        |         |      |                         |                                              |     |
|                      | slightly rough heavily speckled black and                                                            |                         |        |                   |                |       |                                 |       |          |        |         |      |                         |                                              |     |
| (LECH) [Lewes Nodu   | Ilar Chalk Formation]                                                                                |                         |        |                   |                |       | 31.50-32.25                     | 102   | 80       | 0      | 0       |      |                         |                                              |     |
|                      |                                                                                                      |                         |        | -                 |                |       |                                 |       |          |        |         |      |                         |                                              |     |
| from 32.10m to 32.2  | 5m assumed zone of core loss                                                                         |                         |        |                   |                |       |                                 |       |          |        |         | NR   |                         |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       |                                 |       |          |        |         |      | -                       |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       |                                 |       |          |        |         |      |                         |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       | 00.05.00.00                     | 100   |          |        |         | NI   |                         |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       | 32.25 - 33.00                   | 102   | 80       | 32     | 32      | 120  |                         |                                              |     |
| from 32 85m to 33 0  | 0m assumed zone of core loss                                                                         |                         |        |                   |                |       |                                 |       |          |        |         |      |                         |                                              |     |
|                      |                                                                                                      |                         |        | -                 |                |       |                                 |       |          |        |         |      |                         |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       |                                 |       |          |        |         | NI   |                         |                                              |     |
|                      |                                                                                                      |                         |        | (4.60)            |                |       |                                 |       |          |        |         |      |                         |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       | 33.00-33.75                     | 102   | 71       | 0      | 0       | NR   |                         |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       |                                 |       |          |        |         |      |                         |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       | C 87 33.68-33.79                |       |          |        |         | NI   |                         |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       |                                 |       |          |        |         |      | -                       |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       |                                 |       |          |        |         |      |                         |                                              |     |
|                      |                                                                                                      |                         |        | -                 |                |       |                                 |       |          |        |         | NI   |                         |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       | 33.75-34.50                     | 102   | 66       | 0      | 0       |      |                         |                                              |     |
| from 34.25m to 34.S  | Om assumed zone of core loss                                                                         |                         |        |                   |                |       |                                 |       |          |        |         |      |                         |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       |                                 |       |          |        |         |      |                         | ===                                          |     |
|                      |                                                                                                      |                         |        |                   |                |       | C 88 34.64-34.72                |       |          |        |         |      |                         | ==                                           |     |
|                      |                                                                                                      |                         |        |                   |                |       | 0.00 04.04-04.72                | 102   | 72       | 27     | 0       | NI   |                         |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       | 34.50 - 35.25                   |       |          |        |         | 60   |                         | $\left  \right $                             |     |
|                      |                                                                                                      | _                       |        | r                 |                |       |                                 | -     |          |        |         |      |                         |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       |                                 |       |          |        |         |      |                         |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       |                                 |       |          |        |         |      |                         |                                              |     |
|                      |                                                                                                      |                         |        |                   |                |       |                                 |       |          |        |         |      |                         |                                              |     |
| Notes:               | All depth in metres, all diameters in millimet<br>See header sheet for details of boring, progr      |                         | wate'  | 1                 | 1              | 1     | 1                               | 1     | 1        | 1      |         |      | Lili.                   | <u>ı                                    </u> |     |
| Final, monitoring in | For details of abbreviations, see key.<br>progress Print date and time 08/                           | 05/2012                 | 09.10  |                   | Log            | cher  | ked by Chris Nortor             | h     |          |        |         | sc   | lL en <b>Gn</b> eel     | Rm                                           | G   |
| Form No. SIEXPHOLER  |                                                                                                      |                         | 20.10  | Issue Da          | te 19/09/2017  |       |                                 | -     |          |        |         | Part | of the Bachy Soletanc   | he Gro                                       | oup |

| ProjectName                                  | Central Package A                                                                                                                                 |                  |        |                  |                          |       |          |                         |       |             |        |                  |                 | Hole ID                |      |      |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|------------------|--------------------------|-------|----------|-------------------------|-------|-------------|--------|------------------|-----------------|------------------------|------|------|
| Project No.                                  | TE7967                                                                                                                                            |                  |        |                  |                          |       |          | Exploi                  | ratoi | 'y Ho       | ole Lo | g                | N               | //L036-RC              | 004  | 1    |
| Engineer<br>Employer                         | High Speed Two (HS2) Limited<br>High Speed Two (HS2) Limited                                                                                      |                  |        |                  |                          |       |          |                         |       |             |        |                  |                 | Sheet 8 of             | 14   |      |
| Ground Level<br>Hole Type                    |                                                                                                                                                   | dinates<br>ation | ;      |                  | 2E, 194250<br>horizontal | ).28N | N        |                         | Gri   | d           | Na     | itional          | Grid            |                        |      |      |
|                                              |                                                                                                                                                   | ¢}<br>¶≣         |        | Depth            | Datum                    | .§!   |          | Sampling                |       |             | ο      | сі<br><b>4</b> , |                 | In Situ Test           | Inst |      |
|                                              | Description of Strata                                                                                                                             | J                | Legend | (Thick-<br>ness) | Level                    | 1!1   | [        | Details                 | Dia.  | u "<br>f- " | bl     | ۳i               |                 | Details                | ati  | ion  |
| density creamish w                           | isturbed. Extremely weak to very weak low<br>hite CHALK with widely spaced nodular black flint<br>nuities: 160-90 degrees medium to widely spaced |                  |        |                  |                          |       |          |                         |       |             |        |                  |                 |                        |      |      |
| planar to undulating<br>occasionally stained | gslightly rough heavily speckled black and                                                                                                        |                  |        |                  |                          |       |          |                         |       |             |        |                  |                 |                        |      | <br> |
|                                              | 25m assumed zone of core loss                                                                                                                     |                  |        |                  |                          |       |          |                         |       |             |        |                  | NI<br>180       |                        |      |      |
|                                              |                                                                                                                                                   |                  |        |                  |                          |       |          | 35.55-35.65<br>25-36.00 | 102   | 73          | 32     | 16               |                 |                        |      |      |
| from 35.BOm to 36.0                          | 00m assumed zone of core loss                                                                                                                     |                  |        |                  |                          |       |          |                         |       |             |        |                  |                 |                        | ==== |      |
| ( 00.00 ··· ID co.                           |                                                                                                                                                   |                  |        |                  |                          |       |          |                         |       |             |        |                  | NR              |                        | ==== |      |
|                                              | DSm coarse black partially rinded flint<br>sity light greyish white CHALK with widely spaced                                                      |                  |        | 36.10            | 72.58                    |       |          |                         |       |             |        |                  |                 |                        |      |      |
| to widely spaced pla                         | 60mm). Discontinuities: 1)60-90 degrees medium<br>anar to undulating slightly rough heavily speckled<br>2) 0-30 degrees medium to widely spaced   |                  |        |                  |                          |       | C 90     | 36.20-36.46             |       |             |        |                  | NI<br>70<br>210 |                        |      |      |
| undulating rough to marl seams). 3) 30-6     | slightly rough clean (broken along zoophycos and 60 degrees widely spaced planar slightly rough                                                   |                  |        |                  |                          |       | 36.      | 00 - 36.75              | 102   | 66          | 46     | 35               |                 |                        |      |      |
|                                              | ular Chalk Formation]<br>75massumed zone of core loss                                                                                             |                  |        |                  |                          |       |          |                         |       |             |        |                  | NR              |                        |      | ===  |
|                                              |                                                                                                                                                   |                  |        |                  |                          |       |          |                         |       |             |        |                  |                 |                        | ==== |      |
|                                              |                                                                                                                                                   |                  |        |                  |                          |       |          |                         |       |             |        |                  |                 |                        |      |      |
|                                              |                                                                                                                                                   |                  |        |                  |                          |       |          | 75-37.50                | 102   | 100         | 93     | 44               |                 |                        |      |      |
|                                              |                                                                                                                                                   |                  |        | (2.40}           |                          |       | C 91     | 37.15-37.25             |       |             |        |                  |                 |                        |      |      |
|                                              |                                                                                                                                                   |                  |        |                  |                          |       |          |                         |       |             |        |                  |                 |                        |      |      |
|                                              |                                                                                                                                                   |                  |        |                  |                          |       |          |                         |       |             |        |                  | NI<br>30        |                        | ==== |      |
|                                              |                                                                                                                                                   |                  |        |                  |                          |       |          |                         |       |             |        |                  | 100             |                        |      |      |
|                                              |                                                                                                                                                   |                  |        |                  |                          |       |          |                         |       |             |        |                  |                 |                        | ==== |      |
| at 38.1Dm flint                              |                                                                                                                                                   |                  |        | -                |                          |       |          |                         |       |             |        |                  |                 |                        | ==== |      |
|                                              |                                                                                                                                                   |                  |        |                  |                          |       | 37       | .50-39.00               | 102   | 66          | 27     | 18               |                 |                        |      |      |
|                                              |                                                                                                                                                   |                  |        |                  |                          |       |          |                         |       |             |        |                  |                 |                        |      |      |
|                                              | ore loss. CHALK (Driller's description)<br>ular Chalk Formation]                                                                                  |                  |        | 38.50            | 70.18                    |       |          |                         |       |             |        |                  |                 |                        | ==== |      |
|                                              |                                                                                                                                                   |                  |        | (0.50)           |                          |       |          |                         |       |             |        |                  | NR              |                        |      |      |
|                                              |                                                                                                                                                   |                  |        | 00.00            | 60.00                    |       | _        |                         |       |             |        |                  |                 |                        | ==== |      |
| rindedblackflint(<6                          | sity light greyish white CHALK with widely spaced 50mm). Discontinuities: 160-90 degrees medium                                                   |                  |        | 39.00 -          | 69.68                    |       |          |                         |       |             |        |                  |                 |                        |      |      |
| black with no infill. 2                      | anar to undulating slightly rough heavily speckled<br>2) 0-30 degrees medium to widely spaced<br>slightly rough clean (broken along zoophycos and |                  |        |                  |                          |       |          |                         |       |             |        |                  | NI<br>210       |                        |      |      |
|                                              | 60 degrees widely spaced planar slightly rough                                                                                                    |                  |        |                  |                          |       | 39.      | 00-39.75                | 102   | 66          | 44     | 37               | 21<br>0         |                        | ==== |      |
| at 39.30m coarse fli                         | lodular Chalk Formation]<br>ints<br>75m assumed zone of core loss                                                                                 |                  |        | (1.50            | )                        |       |          |                         |       |             |        |                  | NR              |                        |      |      |
|                                              |                                                                                                                                                   |                  |        |                  |                          |       |          |                         |       |             |        |                  |                 |                        |      |      |
|                                              |                                                                                                                                                   |                  |        |                  |                          |       |          |                         |       |             |        |                  | 110<br>130      |                        |      |      |
|                                              |                                                                                                                                                   |                  |        |                  |                          | -     | -        |                         |       |             |        |                  |                 |                        | 11   |      |
|                                              |                                                                                                                                                   |                  |        |                  |                          |       |          |                         |       |             |        |                  |                 |                        |      |      |
|                                              |                                                                                                                                                   |                  |        |                  |                          |       |          |                         |       |             |        |                  |                 |                        |      |      |
|                                              | All depth in metres, all diameters in millimetres.<br>See header sheet for details of boring, progress<br>For details of abbreviations, see key.  | s and v          | vate'  |                  |                          | 1     | <u>.</u> |                         |       | 1           | 1      | ·]               |                 | Lili.                  | 1    |      |
| Final, monitoring in                         |                                                                                                                                                   | /2018            | 09:19  | 66110 120        | Log                      |       | cked by  | Chris Norton            |       |             |        |                  |                 | L enGme                |      | -    |
|                                              | 133UE.NEVISION NO. 2.04                                                                                                                           |                  |        | 19906 Dg         |                          |       |          |                         |       |             |        |                  |                 | . are baciny obleiding |      | -up  |

| ProjectName                                                                                                                                                          | Central Package A                                                                                                                                                                                                                                                                                 |                  |        |                            |                          |       |                                   |       |             |       |          |                        | Hole ID              |        |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|----------------------------|--------------------------|-------|-----------------------------------|-------|-------------|-------|----------|------------------------|----------------------|--------|------------------|
| Project No.                                                                                                                                                          | TE7967                                                                                                                                                                                                                                                                                            |                  |        |                            |                          |       | Explo                             | rator | у Но        | le Lo | g        | N                      | /L036-RC             | 004    | 4                |
| Engineer<br>Employer                                                                                                                                                 | High Speed Two (HS2) Limited<br>High Speed Two (HS2) Limited                                                                                                                                                                                                                                      |                  |        |                            |                          |       |                                   |       |             |       |          |                        | Sheet 9 of           | 14     |                  |
| Ground Level<br>Hole Type                                                                                                                                            | +108.68mOD Coord                                                                                                                                                                                                                                                                                  | dinates<br>ation | ;      |                            | 2E, 194250<br>horizontal | ).28N | I                                 | Gri   | d           | Na    | tional ( | Grid                   |                      |        |                  |
|                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   | ∂<br>¶≣          |        | Depth                      | Datum                    | .§!   | Sampling                          |       |             | o     |          |                        | In Situ Test         | 1      | tall-            |
|                                                                                                                                                                      | Description of Strata                                                                                                                                                                                                                                                                             | J                | Legend | (Thick-<br>ness)           | Level                    | 1!1   | Details                           | Dia.  | u "<br>f- " | bl    | 411      |                        | Details              | at     | ion              |
| rinded black flint (<60<br>to widely spaced plan<br>black with no infill. 2)<br>undulating rough to s<br>marl seams). 3) 30-60<br>clean.                             | ty light greyish white CHALK with widely spaced<br>0mm). Discontinuities: 1)€0-90 degrees medium<br>narto undulating slightly rough heavily speckled<br>0-30 degrees medium to widely spaced<br>slightly rough clean (broken along zoophycos and<br>0 degrees widely spaced planar slightly rough |                  |        |                            |                          |       | 39.75-40.50                       | 102   | 66          | 61    | 43       | NR                     |                      | <br>   | <br><br>         |
| Very weak to weak lo<br>with rare thin grey ma<br>Medium spaced bla<br>degrees widely spac<br>degrees widely spac<br>(LECH) [Lewes Nodul<br>at 4D.95m coarse bla     | measumed sense of correctees                                                                                                                                                                                                                                                                      |                  |        | 40.50                      | 68.18                    |       | 40.50 - 41.25                     | 102   | 70          | 65    | 57       | NI<br>310<br>310<br>   |                      | <br>   | <br><br><br><br> |
| at41.60m 1No cobbi                                                                                                                                                   | e sized fragment of black flint                                                                                                                                                                                                                                                                   | :1               |        | (2.50)                     |                          |       | 4125 - 42.00                      | 102   | 90          | 84    | 52       | 40<br>100<br>130       |                      |        |                  |
| at 42.00m cobble of t                                                                                                                                                | flint                                                                                                                                                                                                                                                                                             |                  |        | -                          |                          |       | C 95 42.05-42.28                  |       |             |       |          | 1111                   |                      |        |                  |
| at 42.2Sm black fli                                                                                                                                                  | nt cobble                                                                                                                                                                                                                                                                                         |                  |        |                            |                          |       | 42.00-42.75                       | 102   | 73          | 58    | 50       | NI<br>130<br>170<br>NR |                      |        | <br><br><br>     |
| brownish white CHA<br>(LECH) [Lewes Nodul                                                                                                                            | sturbed. Weak medium to high density light<br>LK with shell fragments and burrows.<br>lar Chalk Formation<br>e loss. CHALK (Driller's description)<br>lar Chalk Formation]                                                                                                                        |                  |        | 43.00 -<br>43.20<br>(0.30) | 65.68                    |       | 42.75 - 43.50                     | 102   | 60          | 38    | 27       | NI<br>80<br>100<br>NR  |                      |        | <br><br>- •      |
| spaced rinded black<br>zoophycos trace foss<br>medium to widely sp<br>rough clean. Broken a<br>widely spaced undula<br>undulating slightly rc<br>(LECH) [Lewes Nodul |                                                                                                                                                                                                                                                                                                   |                  |        | - 43.50                    | 65.18                    |       | C 96 43.77-44.00<br>43.50-44.25   | 102   | 87          | 80    | 68       | NI<br>140<br>210       |                      |        | <br><br><br>     |
| from 44.ISm to 44.2:                                                                                                                                                 | 5m assumed zone of core loss                                                                                                                                                                                                                                                                      |                  |        |                            |                          |       |                                   |       |             |       |          | NR                     |                      |        |                  |
|                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |                  |        |                            |                          |       | 44.25 - 45.00<br>C 97 44.80-45.00 | 102   | 100         | 93    | 93       |                        |                      |        | <br><br>         |
|                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |                  |        |                            |                          |       |                                   |       |             |       |          |                        |                      |        | ·                |
|                                                                                                                                                                      | Il depth in metres, all diameters in millimetres.<br>See header sheet for details of boring, progress<br>For details of abbreviations, see key.<br>progress Print date and time 08/05.                                                                                                            |                  |        |                            | Loa                      | chec  | ked by Chris Norton               |       |             |       |          | SOII                   | Lili.<br>enGmee      | eRn    | nG               |
| Form No. SIEXPHOLERC                                                                                                                                                 |                                                                                                                                                                                                                                                                                                   |                  |        | issue Da                   | te 19/09/2017            |       |                                   |       |             |       |          | Parto                  | f the Bachy Soletand | he Gro | oup              |

| ProjectName                                    | Central Package A                                                                                                                                                                                                                                              |                       |            |                           |                          |            |                                       |       |          |         |                  |                  | Hole ID                 |                   |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|---------------------------|--------------------------|------------|---------------------------------------|-------|----------|---------|------------------|------------------|-------------------------|-------------------|
| Project No.                                    | TE7967                                                                                                                                                                                                                                                         |                       |            |                           |                          |            | Explo                                 | rator | у Нс     | ole Lo  | og               | N                | ML036-RC                | 004               |
| Engineer<br>Employer                           | High Speed Two (HS2) Limited<br>High Speed Two (HS2) Limited                                                                                                                                                                                                   |                       |            |                           |                          |            |                                       |       |          |         |                  |                  | Sheet 10 of             | 14                |
| Ground Level<br>Hole Type                      |                                                                                                                                                                                                                                                                | ordinates<br>lination | 5          |                           | 2E, 194250<br>horizontal | ).28N      | 1                                     | Gri   | d        | Na      | ational Gr       | id               |                         |                   |
|                                                | Description of Strata                                                                                                                                                                                                                                          | ₽<br>I                | Legend     | Depth<br>(Thick-<br>ness) | Datum<br>Level           | .§!<br>I!I | Sampling<br>Details                   | Dia.  | 0<br>u " | o<br>bl | сі<br><b>4</b> , |                  | In Situ Test<br>Details | Install-<br>ation |
|                                                | edium density greyish white CHALK with widely                                                                                                                                                                                                                  |                       |            | <br>                      |                          |            |                                       |       | f- "'    |         |                  |                  |                         |                   |
| medium to widely sp<br>rough clean. Broken     | Slist&(s7@mm), 31d/wimp/gtleg:11/96090 degrees<br>vaced undulating to planar rough to Slightly<br>along marl seams/zoophycos. 2) 30-60 degrees<br>ating rough clean. 3) 0-30 degrees widely spaced<br>bugh clean with black speckling.<br>lar Chalk Formation] |                       |            |                           |                          |            |                                       |       |          |         |                  |                  |                         | <br>              |
| at 45.62m interwov                             | en mari seam                                                                                                                                                                                                                                                   |                       |            |                           |                          |            | 45.00-46.50                           | 102   | 97       | 75      | 49               | NI<br>110<br>200 |                         | ···<br>···        |
| at 46.0Sm cobble of                            | f black flint                                                                                                                                                                                                                                                  |                       |            |                           |                          |            | C 98 46.20-46.37                      |       |          |         |                  |                  |                         |                   |
|                                                |                                                                                                                                                                                                                                                                |                       |            | (4.50)                    |                          |            |                                       |       |          |         |                  |                  | -                       |                   |
| at 46.9Dm cobble of                            | blackmint                                                                                                                                                                                                                                                      |                       |            |                           | -                        |            | 46.50-48.00                           | 102   | 93       | 80      | 62               | NI<br>110<br>330 |                         | ····              |
| from 47.90m to 48.00                           | Im assumed zone of core loss                                                                                                                                                                                                                                   |                       |            |                           |                          |            | C 99 47.61-48.00                      |       |          |         |                  | NR               |                         |                   |
| frequent interwover<br>degrees medium spa      | ow to medium density greyish white CHALK with<br>n rarely flaser marls. Discontinuities: 160-90<br>aced undulating rough black speckled.<br>ular Chalk Formation]                                                                                              |                       |            | 48.00 -                   | 60.68                    |            |                                       |       |          |         |                  |                  |                         | ····              |
|                                                |                                                                                                                                                                                                                                                                |                       |            | (1.15)                    |                          |            | C OO 48.47-48.94<br>48.00-49.50       | 102   | 90       | 81      | 45               | NI<br>110<br>330 |                         |                   |
| phosphatic CHALK st<br>(LECH) [Lewes Nodul     |                                                                                                                                                                                                                                                                |                       | -          | -<br>49.15<br>(0.35)      | 59.53                    |            |                                       |       |          |         | _                |                  |                         | ···<br>···<br>··· |
| 0-30 degrees mediu                             | density greyish white CHALK Discontinuities: 1)<br>m spaced undulating rough clean. 2) 60-90<br>ed undulating rough clean.<br>lar Chalk Formation]                                                                                                             |                       |            | 49.50                     | 59.18                    |            | C 94 49.54-49.88<br>C IOI 49.80-50.00 |       |          |         |                  | NR               | -                       |                   |
|                                                |                                                                                                                                                                                                                                                                |                       |            |                           |                          |            |                                       |       |          |         |                  |                  |                         |                   |
|                                                | All depth in metres, all diameters in millimetre<br>See header sheet for details of boring, progre<br>For details of abbreviations, see key.                                                                                                                   |                       | ı<br>wate' | 1                         | I                        | L          | I                                     | I     | I        | I       |                  |                  | Lili.                   | 1                 |
| Final, monitoring in p<br>Form No. SIEXPHOLERC |                                                                                                                                                                                                                                                                |                       | 09:19      | Issue Dat                 | Log<br>te 19/09/2017     |            | ked by Chris Norton                   |       |          |         |                  |                  | L enGmee                |                   |

| ProjectName                                   | Central Package A                                                                                                                   |                        |      |        |                           |                          |            |                                |       |          |         |                  |                  | Hole ID                 |                                       |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|--------|---------------------------|--------------------------|------------|--------------------------------|-------|----------|---------|------------------|------------------|-------------------------|---------------------------------------|
| Project No.                                   | TE7967                                                                                                                              |                        |      |        |                           |                          |            | Explo                          | rator | у Нс     | ole Lo  | g                | N                | ML036-RC                | 004                                   |
| Engineer<br>Employer                          | High Speed Two (HS2) Limited<br>High Speed Two (HS2) Limited                                                                        |                        |      |        |                           |                          |            |                                |       |          |         |                  |                  | Sheet 11 of             | 14                                    |
| Ground Level<br>Hole Type                     | +108.68mOD<br>IP+RO+RC                                                                                                              | Coordina<br>Inclinatio |      |        |                           | 2E, 194250<br>horizontal | ).28N      | 1                              | Gri   | d        | Na      | itional G        | rid              |                         |                                       |
|                                               | Description of Strata                                                                                                               |                        | Ĵ    | Legend | Depth<br>(Thick-<br>ness) | Datum<br>Level           | .§!<br>I!I | Sampling                       | Dia.  | 0<br>u " | o<br>bl | сі<br><b>4</b> , |                  | In Situ Test<br>Details | Install-<br>ation                     |
|                                               | density greyish white CHALK. Discontinuities:<br>រួមក្នុងក្រសួមដែរស្វាអូងម៉្នាណ្ឌូស្វាស្វា clean. 2) 60-90<br>ilar Chalk Formation] | 1)                     |      |        |                           |                          |            | 49.SO-SI.00                    | 102   | 100      | 91      | 7S               | NI<br>100<br>140 |                         | · · ·                                 |
| at 50.GSm orange st                           | aining                                                                                                                              |                        |      | I      | (2.50)                    | -                        |            |                                |       |          |         |                  |                  |                         | · · · · · · · · · · · · · · · · · · · |
|                                               |                                                                                                                                     |                        |      |        |                           |                          |            | C102 SI.43-SI.61<br>SID0-S2.SO | 102   | 90       | 76      | 69               | NI<br>120<br>210 |                         | · · · · · · · · · · · · · · · · · · · |
| stained orange greer<br>(LECH) [Lewes Nodu    |                                                                                                                                     |                        |      | <br>   | S2.00 -                   | S6.68                    |            | C103 S2.21-S2.39               |       |          |         | -                | NR               | _                       |                                       |
| at 53.60m interwove                           | n marls                                                                                                                             |                        |      |        | (3.00)                    |                          |            | 52.SO - 54.00                  | 102   | 100      | 48      | 37               | NI<br>90<br>130  |                         | ·<br>·<br>·<br>·<br>·<br>·<br>·       |
| at 54.60m interwov                            | ren maris                                                                                                                           |                        |      | I      | -                         |                          |            | C104 <sup>4.</sup> 64.95.9294  | 102   | 100      | 45      | 21               |                  |                         | ·<br>·<br>·                           |
|                                               |                                                                                                                                     |                        |      |        |                           |                          |            |                                |       |          |         |                  |                  |                         |                                       |
|                                               | All depth in metres, all diameters in milli<br>See header sheet for details of boring, pr<br>For details of abbreviations, see key. |                        | nd w | vate'  |                           |                          |            |                                |       |          |         |                  | 800              | Lili.                   | Dres                                  |
| Final, monitoring in p<br>Form No. SIEXPHOLER |                                                                                                                                     |                        | 18 ( | 09:19  | Issue Dat                 | Log<br>e 19/09/2017      |            | ked by Chris Norton            |       |          |         |                  |                  | L enGmee                |                                       |

| ProjectName                                                                                                   | Central Package A                                                                                                                                                                                                                                                                                                                |                  |        |                            |                           |            |                                 |      |                 |              |           |                       | Hole ID                 |               | -        |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|----------------------------|---------------------------|------------|---------------------------------|------|-----------------|--------------|-----------|-----------------------|-------------------------|---------------|----------|
| ,                                                                                                             | TE7967                                                                                                                                                                                                                                                                                                                           |                  |        |                            |                           |            | Explor                          | ator | у Но            | le <b>Lo</b> | g         | N                     | //L036-RC               | 004           | ŀ        |
| Engineer<br>Employer                                                                                          | High Speed Two (HS2) Limited<br>High Speed Two (HS2) Limited                                                                                                                                                                                                                                                                     |                  |        |                            |                           |            |                                 |      |                 |              |           |                       | Sheet 12 of             | 14            |          |
| Ground Level<br>Hole Type                                                                                     | +108.68mOD Coo                                                                                                                                                                                                                                                                                                                   | ordinates        |        |                            | 92E, 194250<br>horizontal | .28N       | I                               | Gri  | d               | Na           | ational ( | Grid                  |                         |               |          |
|                                                                                                               | Description of Strata                                                                                                                                                                                                                                                                                                            | ê                | Legend | Depth                      | Datum<br>Level            | .§!<br>I!I | Sampling                        | Dia. | . 8             | o<br>bl      | а,        |                       | In Situ Test<br>Details | Insta<br>atic |          |
| n <b>seaced iotoroops</b> p                                                                                   | ity greyish white CHALK with medium to widely<br><b>ຢູ່ຂອດ ເກດເປີຣ ທີ່ເຮັດດາງ</b> ໂອ <del>ນເປັດຈ</del> ີ່ເຊິ່ງ ເຊິ່ງ<br>n by marl seams). 2)60-90 degrees undulating<br>c clean.<br>lalk Formation]                                                                                                                              |                  |        | (3.1S)                     |                           |            | C OS SS.96-S6.15<br>SS.SO-S7.00 | 102  | 97 <sup>-</sup> | 61           | 31        |                       |                         |               |          |
| <del>Assumed zone of con</del><br>(NPCH) [New Pit Cha                                                         | <del>e loss. CHALK. (Oniller's description)</del><br>Ilk Formation]                                                                                                                                                                                                                                                              |                  |        | S8.1S<br>(0.35)            | 50.53                     |            | C106 S7.72-S7.88<br>S7.00-S8.SO | 102  | 77              | 62           | S7        | NI<br>80<br>130<br>NR |                         |               |          |
| spaced well develop;<br>medium to widely sp<br>rough clean (broken a<br>(R바란)위원과과 관순유<br>at 59.IOm 1Nothin la | ity greyish white CHALK with medium to widely<br>ed marl seams. Discontinuities: 1)0-30 degrees<br>vaced undulating to planar rough to slightly<br>along marl seam). 2) 60-90 degrees undulating<br>ald egrees and a slightly rough clean.<br>amination of grey mart<br>e loss. CHALK. (Driller's description)<br>alk Formation] |                  |        | (1.20)<br>(1.20)<br>(1.20) | 48.98                     |            | C107 59.04-59.18<br>58.50-60.00 | 102  | 80              | 60           | 60        | NI<br>90<br>130<br>NR |                         |               |          |
|                                                                                                               | All depth in metres, all diameters in millimetre<br>See header sheet for details of boring, progre<br>For details of abbreviations, see key.                                                                                                                                                                                     | es.<br>ess and v | vate'  |                            |                           |            |                                 |      |                 |              |           |                       | Lili.                   |               | <u> </u> |
| -                                                                                                             |                                                                                                                                                                                                                                                                                                                                  |                  |        |                            |                           |            |                                 |      |                 |              |           |                       | L enGmee                | D             | ~        |

| ProjectName                                                                                                                            | Central Package A                                                                                                                                                                                                                                                                                                        |                     |        |                           |                          |            |                                   |       |                  |         |                  |                        | Hole ID                 |             |                                 |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|---------------------------|--------------------------|------------|-----------------------------------|-------|------------------|---------|------------------|------------------------|-------------------------|-------------|---------------------------------|
| Project No.                                                                                                                            | TE7967                                                                                                                                                                                                                                                                                                                   |                     |        |                           |                          |            | Exploi                            | rator | у Но             | le Lo   | g                | N                      | ML036-RC                | 200         | 1                               |
| Engineer<br>Employer                                                                                                                   | High Speed Two (HS2) Limited<br>High Speed Two (HS2) Limited                                                                                                                                                                                                                                                             |                     |        |                           |                          |            |                                   |       |                  |         |                  |                        | Sheet 13 of             | 14          |                                 |
| Ground Level<br>Hole Type                                                                                                              |                                                                                                                                                                                                                                                                                                                          | rdinates<br>ination | •      |                           | 2E, 194250<br>horizontal | ).28N      | I                                 | Gri   | d                | Na      | itional G        | rid                    |                         |             |                                 |
|                                                                                                                                        | Description of Strata                                                                                                                                                                                                                                                                                                    | ¢<br>∎              | Legend | Depth<br>(Thick-<br>ness) | Datum<br>Level           | .§!<br>I!I | Sampling<br>Details               | Dia.  | 0<br>u "<br>f- " | o<br>bl | сі<br><b>4</b> , |                        | In Situ Test<br>Details | Inst<br>ati | tall-<br>ion                    |
| Assumed zone of cor<br>(NPCH) [New Pit Ch                                                                                              | re loss. CHALK. (Driller's description)<br>halk Formation]                                                                                                                                                                                                                                                               |                     |        |                           |                          |            |                                   |       | 1-               |         |                  |                        |                         |             |                                 |
| spaced well develop<br>medium to widely sp<br>fough clean. (b) step<br>(NPCH) [New Pit Cha<br>at 6D.4Dm 1No thin                       | ity greyish white CHALK with medium to widely<br>bed marl seams. Discontinuities: 10-30 degrees<br>baced undulating to planar rough to slightly<br>along marl seam), 2,60-90 degrees undulating<br>of degrees planar singhtly foughtrean.<br>alk Formation]<br>lamination of grey marl.<br>I lamination of grey mart     | _                   |        | (0.65)                    | 48.33                    |            | C108 60.66-60.83<br>60.00 - 61.50 | 102   | 100              | 91      | 85               | NI<br>120<br>210       |                         |             |                                 |
| at61.4Dm 1Nothin                                                                                                                       | lamination of grey marl.                                                                                                                                                                                                                                                                                                 |                     |        | (1.90)                    |                          |            |                                   |       |                  |         |                  | NI<br>28               | -                       |             | <br><br><br><br>                |
| A <del>ssumed zone of cor</del><br>(NPCH) [New Pit Cf                                                                                  | refoss. CHALK. (Driller's description)                                                                                                                                                                                                                                                                                   |                     |        | 62.25                     | 46.43                    |            | C109 62.07-62.25<br>6150 - 63.00  | 102   | 26               | 26      | 26               | NR                     |                         |             | ···<br>···<br>···<br>···<br>··· |
| spaced well develop<br>medium to widely sp<br>rough clean (broken<br>rough clean. 3) 30-6(<br>(NPCH) [New Pit Cha<br>at 63.14m 1Nothin | sity greyish white CHALK with medium to widely<br>ed marl seams. Discontinuities: 10-30 degrees<br>baced undulating to planar roughto slightly<br>along marl seam). 2) 60-90 degrees undulating<br>0 degrees planar slightly rough clean.<br>alk Formation]<br>I amination of grey marl.<br>5m assumed zone of core loss | _                   |        | 63.00 -                   | 45.68                    |            | C112 63.20-63.45<br>63.00 - 63.75 | 102   | 66               | 53      | 53               | NI<br>90<br>120<br>NR  | -                       |             | <br>                            |
| from64.35mtx64.S0                                                                                                                      | Om assumed zone of core loss                                                                                                                                                                                                                                                                                             |                     |        |                           |                          |            | 63.75-64.50                       | 102   | 80               | 57      | 57               | NI<br>240<br>240<br>NR |                         |             |                                 |
| spaced well develop<br>medium to widely sp<br>rough clean (broken                                                                      | ity greyish white CHALK with medium to widely<br>yed marl seams. Discontinuities: 10-30 degrees<br>paced undulating to planar rough to slightly<br>mostly along marl seams). 2) 60-90 degrees very<br>ulating rough speckled black clean.<br>halk Formation]                                                             |                     |        | 64.50                     | 44.18                    |            | 64.50-65.25                       | 102   | 76               | 61      | 48               | NI<br>80<br>120        |                         |             | <br><br>                        |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                          |                     |        |                           |                          |            |                                   |       |                  |         |                  |                        |                         |             |                                 |
|                                                                                                                                        | All depth in metres, all diameters in millimetre<br>See header sheet for details of boring, progre<br>For details of abbreviations, see key.                                                                                                                                                                             |                     | wate'  |                           |                          |            |                                   |       |                  |         |                  | 800                    |                         | Det         |                                 |
| Final, monitoring in p<br>Form No. SIEXPHOLERC                                                                                         |                                                                                                                                                                                                                                                                                                                          |                     | 09:19  | Issue Dat                 | Log<br>e 19/09/2017      |            | ked by Chris Norton               |       |                  |         |                  |                        | L enGmee                |             |                                 |

| ProjectName                                 | Central Package A                                                                                                                                 |            |          |        |                       |                  |        |                     |       |                    |        | Hole ID                  |                   |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|--------|-----------------------|------------------|--------|---------------------|-------|--------------------|--------|--------------------------|-------------------|
| Project No.                                 | TE7967                                                                                                                                            |            |          |        |                       |                  |        | Explo               | ratoi | ry Hole <b>Log</b> | N      | ML036-RC                 | 004               |
| Engineer<br>Employer                        | High Speed Two (HS2) Limited<br>High Speed Two (HS2) Limited                                                                                      |            |          |        |                       |                  |        |                     |       |                    |        | Sheet 14 of              | 14                |
| Ground Level                                | +108.68mOD                                                                                                                                        | Coordina   | tes      | 498    | 3267.9                | 2E, 19425        | 50.28N | I                   | Gri   | d National Gri     | d      |                          |                   |
| Hole Type                                   | IP+RO+RC                                                                                                                                          | Inclinatio | on       |        |                       | horizonta        |        |                     |       |                    |        |                          | 1                 |
|                                             | Description of Strata                                                                                                                             |            | Leg      | end (T | epth<br>hick-<br>ess) | Datum<br>Level   |        | Sampling<br>Details | Dia.  | u bl "             |        | In Situ Test<br>Details  | Install-<br>ation |
|                                             | sity greyish white CHALK with medium to widel                                                                                                     |            | -        |        |                       |                  |        | Details             | Dia.  | f- "'              |        | Dotano                   |                   |
| medium to widely s                          | ped marl seams. Discontinuities: 1) 0-30 degree<br>paced undulating to planar rough to slightly<br>n mostly along marl seams). 2) 60-90 degrees v |            |          |        |                       |                  |        |                     |       |                    | NR     |                          |                   |
| widely spaced undu<br>(NPCH) [New Pit Ch    | ulating rough speckled black clean.<br>nalk Formation]                                                                                            |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
| from 65.07m ID 65.2                         | 25m assumed zone of core loss                                                                                                                     |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        | 65.25-66.00         | 102   | 96                 |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        | 66.00 - 67.50       | 102   | 100                |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        | -                     |                  |        | C 111 67.00-67.24   |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          | (5     | 5.50)                 |                  |        |                     |       |                    | NI     |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        | -                     |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        | 67.SO-69.00         | 102   | 81                 |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
| from 68.71m to 69.0                         | 00m assumed zone of core loss                                                                                                                     |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        | -                     |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        | C 113 69.35-69.72   |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        | 69.00 - 70.00       | 102   | 98                 |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
| End of borehole at 70.0                     | 00m. Termination Reason: Achieved Scheduled I                                                                                                     | Depth      |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
|                                             |                                                                                                                                                   |            |          |        |                       |                  |        |                     |       |                    |        |                          |                   |
| Notes:                                      | : All depth in metres, all diameters in millin                                                                                                    |            |          |        |                       |                  | L      |                     | I     | <u> </u>           |        | Lili                     | I                 |
|                                             | See header sheet for details of boring, pro<br>For details of abbreviations, see key.                                                             | ogress ar  | id wate' |        |                       |                  |        |                     |       |                    | SC     | DIL en Cen <sub>ee</sub> | RmG               |
| Final, monitoring in<br>Form No. SIEXPHOLER |                                                                                                                                                   |            | 8 09:19  | 22     | ueDat                 | Lo<br>e 19/09/20 |        | ked by Chris Norton |       |                    |        | fthe Bachy Soletanch     |                   |
| . om to oie AFTIOLER                        |                                                                                                                                                   | . =7       |          | 100    | JUDd                  |                  | • /    |                     |       |                    | i aitu | Baony Coletaritti        | oroup             |

| ngineer                 | Central Packag<br>TE7967 | <u>م ۸</u>    |               |     |           |      |                 |                       |                                    |
|-------------------------|--------------------------|---------------|---------------|-----|-----------|------|-----------------|-----------------------|------------------------------------|
| ngineer                 | 111/00/                  | CA .          |               |     |           |      | racture Log -   | HoleID                |                                    |
| liont                   | High Speed Tw            | o (HS2) Limit | ed            |     |           | Disc | continuity Data |                       | SOIL ENGINEERING                   |
| lient                   | High Speed Tw            | o (HS2) Limit | ed            |     |           |      |                 | ML036-RC004           | Part of the Bachy Soletanche Group |
| Discontinuity<br>Number | Depth From               | Depth To      | Fracture Type | Dip | Roughness | JRC  | Infilling       | Weathering (Staining) | Remarks                            |
| 1                       | m                        | m             | e.g. Joint    | 0   |           | 0    | a               |                       |                                    |
| 1                       | 29.30                    | 29.42         | Rock Joint    | 30  | Rough     | 8    | Clean           | Slightly weathered    |                                    |
| 2                       | 29.54                    | 29.60         | Rock Joint    | 40  | Rough     | 8    | Clean           | Slightly weathered    |                                    |
| 3                       | 30.50                    | 30.78         | Rock Joint    | 86  | Rough     | 8    | Clean           | Slightly weathered    |                                    |
| 4                       | 31.06                    | 31.18         | Rock Joint    | 78  | Rough     | 8    | Clean           | Slightly weathered    |                                    |
| 5                       | 31.68                    | 31.92         | Rock Joint    | 80  | Rough     | 10   | Clean           | Slightly weathered    |                                    |
| 6                       | 32.37                    | 32.48         | Rock Joint    | 82  | Rough     | 12   | Clean           | Slightly weathered    |                                    |
| 7                       | 33.15                    | 33.40         | Rock Joint    | 72  | Rough     | 12   | Clean           | Slightlyweathered     |                                    |
| 8                       | 33.42                    | 33.45         | Rock Joint    | 48  | Rough     | 8    | Clean           | Slightly weathered    |                                    |
| 9                       | 33.85                    | 34.20         | Rock Joint    | 85  | Rough     | 10   | Clean           | Slightly weathered    |                                    |
| 10                      | 34.63                    | 34.90         | Rock Joint    | 85  | Rough     | 8    | Clean           | Slightly weathered    |                                    |
| 11                      | 35.47                    | 35.57         | Rock Joint    | 64  | Rough     | 8    | Clean           | Slightly weathered    |                                    |
| 12                      | 36.82                    | 36.98         | Rock Joint    | 40  | Rough     | 8    | Clean           | Slightlyweathered     |                                    |
| 14                      | 37.38                    | 39.00         | Rock Joint    | 89  | Rough     | 8    | Clean           | Slightly weathered    |                                    |
| 13                      | 37.71                    | 37.71         | Rock Joint    | 74  | Rough     | 8    | Clean           | Slightly weathered    |                                    |
| 15                      | 39.75                    | 39.84         | Rock Joint    | 69  | Rough     | 10   | Clean           | Slightly weathered    |                                    |
| 16                      | 40.40                    | 40.48         | Rock Joint    | 60  | Rough     | 12   | Clean           | Slightly weathered    |                                    |
| 17                      | 40.56                    | 40.57         | Bedding       | 4   | Rough     | 8    | Clean           | Slightly weathered    |                                    |
| 18                      | 41.33                    | 42.38         | Rock Joint    | 77  | Rough     | 10   | Clean           | Slightly weathered    |                                    |
| 19                      | 43.69                    | 43.69         | Bedding       | 4   | Rough     | 8    | Clean           | No staining           |                                    |
| 20                      | 43.78                    | 43.78         | Bedding       | 2   | Rough     | 8    | Clean           | No staining           |                                    |
| 21                      | 44.78                    | 44.79         | Bedding       | 10  | Rough     | 8    | Clean           | Slightly weathered    |                                    |
| 22                      | 44.94                    | 45.00         | Rock Joint    | 44  | Rough     | 12   | Clean           | No staining           |                                    |
| 23                      | 45.15                    | 45.27         | Rock Joint    | 60  | Rough     | 12   | Clean           | No staining           |                                    |
| 24                      | 45.56                    | 45.80         | Rock Joint    | 76  | Rough     | 10   | Clean           | Slightly weathered    |                                    |
| 25                      | 45.98                    | 46.04         | Rock Joint    | 42  | Rough     | 12   | Clean           | No staining           |                                    |
| 26                      | 46.10                    | 46.11         | Bedding       | 8   | Rough     | 8    | Clean           | No staining           |                                    |
| 27                      | 46.88                    | 46.90         | Rock Joint    | 43  | Rough     | 12   | Clean           | Slightly weathered    |                                    |
| 28                      | 47.50                    | 47.50         | Bedding       | 13  | Rough     | 12   | Clean           | Slightly weathered    |                                    |
| 29                      | 47.64                    | 47.74         | Rock Joint    | 28  | Rough     | 12   | Clean           | Slightly weathered    |                                    |
| 30                      | 48.16                    | 48.43         | Rock Joint    | 79  | Rough     | 12   | Clean           | Slightly weathered    |                                    |
| 31                      | 48.77                    | 48.98         | Rock Joint    | 79  | Rough     | 12   | Clean           | Slightly weathered    |                                    |
| 32                      | 49.72                    | 49.73         | Bedding       | 8   | Rough     | 12   | Clean           | No staining           |                                    |

| -barn                                                                          | E                                                                                   | BORE                                         | HO      | LE L                       | .00   | 3   |                                       |                    |      | N                            | 1L03                   | hole N<br>8-RC<br>et 1 of          | 004         |                 |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------|---------|----------------------------|-------|-----|---------------------------------------|--------------------|------|------------------------------|------------------------|------------------------------------|-------------|-----------------|
| roject Name:                                                                   | Amersham Tunnel to Calvert                                                          |                                              |         | Survey Gi<br>Co-ordina     | -     | em: | 4965                                  | DSGB<br>59.95 r    | nΕ   | Hole Typ<br>Checked          | be:<br>I By:           |                                    | RC<br>JMe   |                 |
| roject No:<br>ient:<br>ngineer:                                                | 1G063 -AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd                     |                                              |         | Ground L                   | evel: |     |                                       | 05.46 r<br>20.86 r | nOD  | Approve<br>Scale:<br>Log Sta | -                      |                                    |             | PN<br>1:<br>FIN |
| ate Started:<br>ate Completed:                                                 | 04/10/2016<br>10/10/2016                                                            | 1 1                                          |         | Orientation<br>Inclination | :     |     |                                       | c<br>90 c          | leg. | Print Da<br>Final De         | pth:                   | _                                  | 21/11<br>75 |                 |
|                                                                                | Stratum Description                                                                 | Legend (Thick<br>ness)<br>(m)                | - Level | Depth<br>(m)               | 1     | Dia | ring and h S<br>Rec Blows<br>% (mins) |                    |      | ult Units                    | TCR<br>SCR<br>RQD<br>% | lf min<br>If ave<br>If max<br>(mm) | water       | V<br>E          |
| Firm brown slightly :<br>subangular to round<br>chalk. Sand is fine t<br>Head] | sandy gravelly CLAY. Gravel is<br>ded fine to coarse of flint and rare<br>o coarse. |                                              |         | 0.20-0.40                  | В     |     |                                       |                    |      |                              |                        |                                    |             |                 |
|                                                                                |                                                                                     | (1.20)                                       |         | 0.60-0.80                  | В     |     |                                       |                    |      |                              |                        |                                    |             |                 |
| Drillers description:<br>nole)                                                 | Brown GRAVEL of flint. (Rotary open                                                 | 1.20                                         | 119.66  | 1.00 -1.20                 | В     |     |                                       |                    |      |                              |                        |                                    |             |                 |
|                                                                                |                                                                                     | F-<br>F-<br>F-<br>F-<br>F-<br>F-<br>F-<br>F- |         |                            |       |     |                                       |                    |      |                              |                        |                                    |             |                 |
|                                                                                |                                                                                     | r-<br>r-<br>f-<br>f-<br>f-                   |         |                            |       |     |                                       |                    |      |                              |                        |                                    |             |                 |
|                                                                                |                                                                                     | r-<br>r-<br>r-<br>r-<br>r-                   |         |                            |       |     |                                       |                    |      |                              |                        |                                    |             |                 |
|                                                                                |                                                                                     | F-<br>F-<br>F-<br>F-                         |         |                            |       |     |                                       |                    |      |                              |                        |                                    |             |                 |
|                                                                                |                                                                                     | 5-<br>5-<br>5-<br>5-                         |         |                            |       |     |                                       |                    |      |                              |                        |                                    |             |                 |
|                                                                                |                                                                                     | f-<br>f-<br>f-<br>f-<br>f-                   |         |                            |       |     |                                       |                    |      |                              |                        |                                    |             |                 |
|                                                                                |                                                                                     | 5-<br>5-<br>7-<br>7-                         |         |                            |       |     |                                       |                    |      |                              |                        |                                    |             |                 |
|                                                                                |                                                                                     | f<br>f<br>f<br>f<br>f<br>f<br>f              |         |                            |       |     |                                       |                    |      |                              |                        |                                    |             |                 |
|                                                                                |                                                                                     | f                                            |         |                            |       |     |                                       |                    |      |                              |                        |                                    |             |                 |
|                                                                                | easured along borehole axis.<br>s may be subject to seasonal, tidal and             | other fluctuatio                             |         |                            |       |     |                                       |                    |      |                              |                        |                                    |             |                 |

| -barn<br>ritchies                         | E                                                                                                                         | BOREHOL                       | E LOG                         |                              | ML038-                      | ole No:<br>-RC004<br>2 of 15 |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|------------------------------|
| Project Name:                             | Amersham Tunnel to Calvert                                                                                                |                               | Survey Grid System:           | OSGB                         | Hole Type:                  | RO+RO                        |
| Project No:                               | 1G063 -AAZ.                                                                                                               |                               | Co-ordinates:                 | 496559.95 mE<br>195405.46 mN | Checked By:<br>Approved By: | JMe, CE<br>PMcC              |
| Client:                                   | High Speed 2 (HS2) Ltd                                                                                                    |                               | Ground Level:                 | 120.86 mOD                   | Scale:                      | 1:25                         |
| Engineer:<br>Date Started:                | High Speed 2 (HS2) Ltd<br>04/10/2016                                                                                      |                               | Orientation:                  | deg.                         | Log Status:<br>Print Date:  | FINAL<br>21/11/2017          |
| Date Completed:                           | 10/10/2016                                                                                                                |                               | Inclination:                  | 90 deg.                      | Final Depth:                | 75.00m                       |
|                                           |                                                                                                                           | Depth<br>Legend (Thick- Level | 1 1                           | andhSituTesting              | SCR I                       | fmin<br>fave                 |
|                                           | Stratum Description                                                                                                       | Legend (miner 2000)<br>(m)    | (m) Type Dia Rec              | Blows<br>(mins) Test         | esult Units R&D (           | fave<br>rmma)x water ck      |
| Drillers description: E                   | Brown GRAVEL of flint. (Rotary open                                                                                       |                               |                               |                              |                             |                              |
| Stratum denths mea                        | asured along borehole axis.                                                                                               |                               |                               |                              |                             |                              |
| Groundwater levels<br>Explanation of symb | may be subject to seasonal, tidal and<br>ools and abbreviations given in 'Key to<br>n on appended 'Borehole Information : | Exploratory Holes'            | ould not be taken as constant |                              |                             |                              |

| -barn<br>ritchies                 | В                                                                      | BOF     | RE                                                        | HOI            | LE L                       | 00    | G    |          |                 |                 |     | I                   | ML03    | ehole N<br>8-RC<br>et 3 of | 004                            |
|-----------------------------------|------------------------------------------------------------------------|---------|-----------------------------------------------------------|----------------|----------------------------|-------|------|----------|-----------------|-----------------|-----|---------------------|---------|----------------------------|--------------------------------|
| Project Name:                     | Amersham Tunnel to Calvert                                             |         |                                                           |                | Survey G<br>Co-ordina      |       | em:  |          |                 | )SGB<br>59.95 n | ~ F | Hole Ty             |         |                            | RO+R                           |
| Project No:                       | 1G063 -AAZ.                                                            |         |                                                           |                |                            |       |      |          | 19540           | )5.46 r         | nN  | Checke<br>Approv    | -       |                            | JMe, C<br>PMc                  |
| Client:<br>Engineer:              | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd                       |         |                                                           |                | Ground L                   | evel: |      |          | 1:              | 20.86 n         | nOD | Scale:<br>Log St    | atus:   |                            | 1:25<br>FINA                   |
| Date Started:<br>Date Completed:  | 04/10/2016<br>10/10/2016                                               |         |                                                           |                | Orientation<br>Inclination |       |      |          |                 | d<br>90 d       | -   | Print Da<br>Final D |         |                            | 21/11/20 <sup>7</sup><br>75.00 |
|                                   | Stratum Description                                                    | Legen   | Depth<br>d (Thick<br>ness)                                | - Level<br>(m) |                            | Sampl | 1    | -        | andh Si         | tu Testi        | ng  | esult Un            | TCR     | lf min<br>If ave           | V<br>water E                   |
| Drillere descriptions (           |                                                                        |         | (m)                                                       | (m)            | Depth<br>(m)               | Туре  | (mm) | Rec<br>% | Blows<br>(mins) | Test            |     | esult Un            | ts Real | ) (rnma)k '                | water I >                      |
| hole)                             | Brown GRAVEL of flint. (Rotary open                                    | *       | ** ** ** ** ** ** ** ** ** ** ** ** **                    |                |                            |       |      |          |                 |                 |     |                     |         |                            |                                |
| Drillers description: \$<br>hole) | SAND and GRAVEL. (Rotary open                                          |         | r-<br>f-<br>f-<br>r-<br>r-<br>r-<br>r-                    | 109.86         |                            |       |      |          |                 |                 |     |                     |         |                            |                                |
|                                   |                                                                        |         | r-<br>f-<br>f-<br>f-<br>f-<br>Lf1.00)<br>r-<br>r-<br>r-   |                |                            |       |      |          |                 |                 |     |                     |         |                            |                                |
| Drilloro docoriotion: (           | Creamish white CHALK with flints.                                      |         | r-<br>f-<br>f-<br>f-<br>r-<br>2.00                        | 108.86         |                            |       |      |          |                 |                 |     |                     |         |                            |                                |
| (Rotary open hole)                |                                                                        | -       | r                                                         |                |                            |       |      |          |                 |                 |     |                     |         |                            |                                |
|                                   |                                                                        | -       | r                                                         |                |                            |       |      |          |                 |                 |     |                     |         |                            |                                |
|                                   |                                                                        | _       | r-<br>r-<br>r-<br>r-<br>f-<br>f-                          |                |                            |       |      |          |                 |                 |     |                     |         |                            |                                |
|                                   |                                                                        |         | f<br>f<br>f<br>f                                          |                |                            |       |      |          |                 |                 |     |                     |         |                            |                                |
|                                   |                                                                        |         | f -<br>t -<br>t -<br>t -<br>t -<br>t -<br>t -<br>t -<br>t |                |                            |       |      |          |                 |                 |     |                     |         |                            |                                |
|                                   | asured along borehole axis.<br>may be subject to seasonal, tidal and d | ather ( | f-                                                        |                |                            |       |      |          |                 |                 |     |                     |         |                            |                                |

| -barn<br>ritchies                             | BOF                                   | REI   | HOI                             | LEL            | .00          | 3             |     |                             |                    | ľ            |                   | 8-RC<br>et 4 of      |                         |                 |
|-----------------------------------------------|---------------------------------------|-------|---------------------------------|----------------|--------------|---------------|-----|-----------------------------|--------------------|--------------|-------------------|----------------------|-------------------------|-----------------|
| Project Name:                                 | Amersham Tunnel to Calvert            |       |                                 |                | Survey G     | rid Syste     | em: | С                           | SGB                |              | Hole Ty           | pe:                  |                         | RO+R            |
|                                               |                                       |       |                                 |                | Co-ordina    | ites:         |     |                             | 59.95 n            |              | Checke            |                      |                         | JMe, C          |
| Project No:<br>Client:                        | 1G063 -AAZ.<br>High Speed 2 (HS2) Ltd |       |                                 |                | Ground L     | evel:         |     |                             | )5.46 n<br>20.86 n |              | Approve<br>Scale: | ed By:               |                         | PMc<br>1:2      |
| Engineer:                                     | High Speed 2 (HS2) Ltd                |       |                                 |                |              |               |     |                             | 20.00 11           |              | Log Sta           | atus:                |                         | FINA            |
| Date Started:                                 | 04/10/2016                            |       |                                 |                | Orientatio   | in:           |     |                             | d                  | leg.         | Print Da          | ite:                 |                         | 21/11/20        |
| Date Completed:                               | 10/10/2016                            |       |                                 |                | Inclination  |               |     |                             | 90 d               | •            | Final De          |                      |                         | 75.00           |
|                                               | Stratum Description                   | Legen | Depth<br>(Thick<br>ness)<br>(m) | - Level<br>(m) | Depth<br>(m) | Sampl<br>Type | 1   | and h Si<br>Blows<br>(mins) | tu Testi<br>Test   | ng<br>Test R | esult Uni         | TCR<br>SCF<br>ts RØE | lfmin<br>Ifave<br>(mma) | V<br>water E sl |
| Drillers description: (<br>(Rotary open hole) | Creamish white CHALK with flints.     |       | f-<br>f-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r<br>r                          |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r-<br>r-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r-<br>f-<br>e                   |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | 1-<br>f-<br>r-                  |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r<br>r                          |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r-<br>r-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r-<br>f-<br>f                   |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r                               |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r-<br>r-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | f-<br>f-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       | _     | r-<br>f-<br>r-                  |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r-<br>r-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       | _     | r<br>r                          |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | f-<br>f-<br>f-                  |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       | -     | r-<br>r                         |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r-<br>r-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | f-<br>f-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | f-<br>r-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       | _     | r-<br>r-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r-<br>r-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       | _     | f-<br>f-<br>f-                  |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r-<br>r-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r                               |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | f-<br>f-<br>f-                  |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       | -     | f-<br>r-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r                               |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r<br>r                          |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       | _     | f-<br>f-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       | _     | r-                              |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r-                              |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r                               |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r                               |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       | —     | f-<br>f-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r-<br>r-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       | _     | r-<br>r-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r-<br>f-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       | -     | f-<br>r-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r-<br>r-                        |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       | r-<br>r-<br>f-                  |                |              |               |     |                             |                    |              |                   |                      |                         |                 |
|                                               |                                       |       |                                 |                |              |               |     |                             |                    |              |                   |                      |                         |                 |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| -barn                                                                                    |                                                                                                                           | BOF           | RE                              | HOI            | E L                                                | .00                 | 3      |         |                  |                                                    |                   | N                                                                          | /L03                             | hole N<br>8-RC<br>et 5 of | 004                                                               |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------|----------------|----------------------------------------------------|---------------------|--------|---------|------------------|----------------------------------------------------|-------------------|----------------------------------------------------------------------------|----------------------------------|---------------------------|-------------------------------------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started:<br>Date Completed: | Amersham Tunnel to Calvert<br>1G063 -AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>04/10/2016<br>10/10/2016 |               |                                 |                | Survey Gi<br>Co-ordina<br>Ground Li<br>Orientation | tes:<br>evel:<br>n: | em:    |         | 49655<br>19540   | 9SGB<br>59.95 n<br>95.46 n<br>20.86 n<br>d<br>90 d | nN<br>nOD<br>leg. | Hole Ty<br>Checked<br>Approve<br>Scale:<br>Log Sta<br>Print Da<br>Final De | d By:<br>d By:<br>atus:<br>atus: |                           | RO+RC<br>JMe, CE<br>PMcC<br>1:25<br>FINAI<br>21/11/2017<br>75.00m |
|                                                                                          | Stratum Description                                                                                                       | Legen         | Depth<br>(Thick<br>ness)<br>(m) | - Level<br>(m) | Depth<br>(m)                                       | Sampli              |        | -       | andh Si<br>Blows | tu Test                                            | -                 | esult Unit                                                                 | SCR                              | lfmin<br>Ifave<br>I(mma)x | Ve<br>water ck                                                    |
| Drillers description: (Rotary open hole)                                                 | Creamish white CHALK with flints.                                                                                         |               |                                 |                |                                                    |                     |        |         |                  |                                                    |                   |                                                                            |                                  |                           |                                                                   |
|                                                                                          |                                                                                                                           |               | f-<br>f-<br>f-<br>f-<br>f-      |                |                                                    | -                   | -      | -       |                  |                                                    | -                 |                                                                            |                                  |                           |                                                                   |
|                                                                                          | asured along borehole axis.<br>may be subject to seasonal, tidal a                                                        | and other flu | ctuation                        | is and sh      | ould not be                                        | taken a             | is con | istant. |                  |                                                    |                   |                                                                            |                                  |                           |                                                                   |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

Further details given on appended 'Borehole Infonmation Sheer.

Office: BAM Ritchies, Glasgow Road, Kilsyth, Glasgow G65 9BL

BAM R Borehole Log 06/0412017

| -barn<br>ritchies                   |                                                  | BOF   | REI                             | HOI            | E L                        | .00           | 3   |                             |                            |              | Ν                             | /L03               | hole N<br>8-RC<br>et 6 of | 004                   |
|-------------------------------------|--------------------------------------------------|-------|---------------------------------|----------------|----------------------------|---------------|-----|-----------------------------|----------------------------|--------------|-------------------------------|--------------------|---------------------------|-----------------------|
| Project Name:                       | Amersham Tunnel to Calvert                       |       |                                 |                | Survey G<br>Co-ordina      |               | em: | 49655                       | )SGB<br>59.95 n<br>)5.46 r |              | Hole Ty<br>Checker<br>Approve | d By:              |                           | RO+R<br>JMe, C<br>PMc |
| Project No:<br>Client:<br>Engineer: | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd |       |                                 |                | Ground L                   | evel:         |     |                             | 20.86 n                    |              | Scale:<br>Log Sta             | -                  |                           | 1:25<br>FINA          |
| Date Started:<br>Date Completed:    | 04/10/2016<br>10/10/2016                         |       |                                 |                | Orientation<br>Inclination |               |     |                             | d<br>90 d                  | leg.         | Print Da<br>Final De          | te:<br>pth:        |                           | 21/11/201<br>75.00r   |
|                                     | Stratum Description                              | Legen | Depth<br>(Thick<br>ness)<br>(m) | - Level<br>(m) | Depth<br>(m)               | Sampl<br>Type | 1   | and h Si<br>Blows<br>(mins) | tu Testi<br>Test           | ng<br>Test R | esult Uni                     | TCR<br>SCR<br>SRQC | lfmin<br>Ifave<br>(mnna)x | Ve<br>water E ck      |
|                                     |                                                  |       |                                 |                |                            |               |     |                             |                            |              |                               |                    |                           |                       |
|                                     |                                                  |       |                                 |                |                            |               |     |                             |                            |              |                               |                    |                           |                       |
|                                     |                                                  |       |                                 |                |                            |               |     |                             |                            |              |                               |                    |                           |                       |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| -barn<br>ritchies                                                                                                | BOREHO                             | LE LOG                               |                                      | ML038-                                    | ole No:<br>-RC004<br>7 of 15 |
|------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|------------------------------|
| Project Name: Amersham Tunnel to Calve<br>Project No: 1G063 -AAZ.                                                | rt                                 | Survey Grid System:<br>Co-ordinates: | OSGB<br>496559.95 mE<br>195405.46 mN | Hole Type:<br>Checked By:<br>Approved By: | RO+R(<br>JMe, Cl<br>PMc(     |
| Client:     High Speed 2 (HS2) Ltd       Engineer:     High Speed 2 (HS2) Ltd       Date Started:     04/10/2016 |                                    | Ground Level:<br>Orientation:        | 120.86 mOD<br>deg.                   | Scale:<br>Log Status:<br>Print Date:      | 1:25<br>FINA<br>21/11/2017   |
| Date Completed: 10/10/2016                                                                                       | Depth                              | Inclination:                         | 90 deg.<br>og and h Situ Testing     | Final Depth:                              | 75.00n                       |
| Stratum Description Drillers description: Creamish white CHALK with                                              | Legend (Thick- Level<br>(m)<br>(m) | Depth<br>(m) Type (mm) %             | C Blows Test R<br>(mins) Test        | SCR ۱<br>Result Units R&D ا(              | fave Ve<br>mma)xwater ck     |
| (Rotary open hole)                                                                                               |                                    |                                      |                                      |                                           |                              |

| •barn                                                                                                                                                                                                                               | E                                                                                                                                                                                                                                                                                                                                                                                                        | BOF    | RE                                                                                          | HO           | LE L                           | 00            | 3                      |     |                            |                            |                  | Μ                            |                        | 8-RC                               | 004          |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------|--------------|--------------------------------|---------------|------------------------|-----|----------------------------|----------------------------|------------------|------------------------------|------------------------|------------------------------------|--------------|-----------------|
| Project Name:<br>Project No:                                                                                                                                                                                                        | Amersham Tunnel to Calvert                                                                                                                                                                                                                                                                                                                                                                               |        |                                                                                             |              | Survey Gr<br>Co-ordinat        | ,             | em:                    |     | 4965                       | )SGB<br>59.95 r<br>05.46 r | mE Ch            | ole Typ<br>necked<br>oprovec | e:<br>By:              |                                    | R(<br>JM     | O+<br>le,<br>PM |
| Client:<br>Engineer:                                                                                                                                                                                                                | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                             |              | Ground Le                      | evel:         |                        |     | 1:                         | 20.86 r                    |                  | cale:<br>og Stat             | tus:                   |                                    |              | 1:2<br>FIN      |
| Date Started:<br>Date Completed:                                                                                                                                                                                                    | 04/10/2016<br>10/10/2016                                                                                                                                                                                                                                                                                                                                                                                 |        |                                                                                             |              | Orientatior<br>Inclination     |               |                        |     |                            | d<br>90 d                  | •                | rint Dat<br>nal Dej          |                        | :                                  | 21/11/<br>75 | /2(<br>5.0      |
|                                                                                                                                                                                                                                     | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                      | Legend | (Thick-<br>ness)<br>(m)                                                                     | Level<br>(m) | Depth<br>(m)                   | Sampl<br>Type | ling, C<br>Dia<br>(mm) | Rec | and h S<br>Blows<br>(mins) |                            | ing<br>Test Resu | It Units                     | TCB<br>SCR<br>RQD<br>% | If min<br>If ave<br>If max<br>(mm) | Weter        | V<br>E          |
| Assumed zone of co<br>dissolution features.                                                                                                                                                                                         | re loss. Televiewer shows possible                                                                                                                                                                                                                                                                                                                                                                       |        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |              |                                |               |                        |     |                            |                            |                  |                              |                        | NR                                 |              |                 |
| Very weak, medium                                                                                                                                                                                                                   | density, light greyish white CHALK                                                                                                                                                                                                                                                                                                                                                                       |        | -<br>-<br>-<br><sup>-</sup> 35.60                                                           | 65.26        | 35.45-35.60                    | с             |                        |     |                            |                            |                  |                              | 60                     | -                                  |              |                 |
| four horizontal to 20<br>(40/400/1500mm), u<br>frequent black speck<br>2:three 50 to 60 deg<br>(500/1000/2000), un<br>black specks and inf<br>Fracture set 3: two 8<br>undulating slightly rc<br>(Grade: B2/3)<br>Lewes Nodular Cha | ining (sponge beds). Fracture set 1:<br>degree fractures, medium spaced<br>indulating slightly rough, with<br>so and orange staining. Fracture set<br>ree fractures, widely spaced<br>dulating slightly rough, with frequent<br>illed (0/0/2mm) with soft brown clay.<br>5 degree to vertical fractures,<br>pugh, with frequent black specks.<br>Ik Formation]<br>: Rinded nodular flint fragments (upto |        |                                                                                             |              | 35.00 - 36.50                  | RC            | 102                    |     |                            |                            |                  | _                            | 31<br>31               |                                    |              |                 |
| 35.86 - 36.00m                                                                                                                                                                                                                      | 40mm), Possible flintband.<br>a: Rinded nodular flint fragments (up to<br>100mm). Possible flintband.<br>Nodular flintfragments (up to BOmm).                                                                                                                                                                                                                                                            |        |                                                                                             |              | 36.50 - 37.50                  | ) RC          | 102                    | 2   |                            |                            |                  |                              | BO<br>44<br>44         |                                    |              |                 |
| 37.50                                                                                                                                                                                                                               | - 37.70m:Assumed zone of core Joss.                                                                                                                                                                                                                                                                                                                                                                      |        | -<br>-<br>[-{3.40)<br>[-<br>[-                                                              |              | 37.20-37.30                    | D             |                        |     |                            |                            |                  | _                            |                        | 0<br>120<br>300                    |              |                 |
|                                                                                                                                                                                                                                     | : Rinded nodular flint fragments (up to<br>100mm). Possible flintband.                                                                                                                                                                                                                                                                                                                                   |        |                                                                                             |              |                                |               |                        |     |                            |                            |                  |                              |                        |                                    |              |                 |
|                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                                                             |              | 37.50 - 39.00<br>36.26 - 36.36 | RC<br>C       | 102                    | 2   |                            |                            |                  |                              | 67<br>33<br>27         |                                    |              |                 |
| Assumed zone of co<br>flint bands.                                                                                                                                                                                                  | ore loss. Televiewer shows possible                                                                                                                                                                                                                                                                                                                                                                      |        | -<br>-<br>-<br>-                                                                            | 61.66        |                                |               |                        |     |                            |                            |                  |                              |                        |                                    |              |                 |
|                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                          |        | -<br>po.65)<br>-<br>-<br>-<br>                                                              |              | 39.00 - 40.00                  | RC            | 102                    |     |                            |                            |                  |                              | 35<br>14<br>14         | NR<br>-                            |              |                 |
| Fracture set 1: 20 de<br>(80/80/400mm), plan                                                                                                                                                                                        | density, light greyish white CHALK.<br>egrees, closely spaced<br>aar and undulating slightly rough,<br>specks and rare orange staining.                                                                                                                                                                                                                                                                  | _      | 39.65<br><sub>f-</sub>                                                                      | 61.21        |                                |               |                        |     |                            |                            |                  |                              |                        | _                                  |              |                 |

Further details given on appended 'Borehole Information Sheer.

Office: BAM Ritchies, Glasgow Road, Kilsyth, Glasgow G65 9BL

| •barn<br>ritchies                          | B                                                                                        | SOF   | RE                       | HO    | LE L                    | 00    | 3           |       |          |                            |           | Μ                           | IL03      | hole N<br>8-RC<br>et 9 of | 004    |                    |
|--------------------------------------------|------------------------------------------------------------------------------------------|-------|--------------------------|-------|-------------------------|-------|-------------|-------|----------|----------------------------|-----------|-----------------------------|-----------|---------------------------|--------|--------------------|
| Project Name:<br>Project No:               | Amersham Tunnel to Calvert                                                               |       |                          |       | Survey Gr<br>Co-ordinat |       | em:         |       | 49655    | 9SGB<br>59.95 n<br>05.46 n | nE Cł     | ole Typ<br>necked<br>provec | By:       |                           | JM     | D+F<br>e, C<br>PMc |
| Client:                                    | High Speed 2 (HS2) Ltd                                                                   |       |                          |       | Ground Le               | evel: |             |       |          | 20.86 n                    |           | ale:                        | ,.        |                           |        | 1:2                |
| Engineer:                                  | High Speed 2 (HS2) Ltd                                                                   |       |                          |       |                         |       |             |       |          |                            |           | g Stat                      | tus:      |                           |        | -IN/               |
| Date Started:                              | 04/10/2016                                                                               |       |                          |       | Orientatior             | n:    |             |       |          | d                          |           | int Dat                     |           |                           | 21/11/ |                    |
| Date Completed:                            | 10/10/2016                                                                               |       |                          |       | Inclination             |       |             |       |          | 90 d                       | 0         | nal Dep                     |           |                           |        | 5.00               |
| Date completed.                            | 10,10,2010                                                                               |       | Depth                    |       |                         |       | ling (      | oring | and h Si |                            |           |                             | TCR       | Ifmin                     |        |                    |
| :                                          | Stratum Description                                                                      | Legen | d (Thick<br>ness)<br>(m) |       | Depth<br>(m)            | Туре  | Dia<br>(mm) | -     |          | Test                       | Test Resu | ılt Units                   | SCR       | lfave                     | Weter  | N<br>L             |
| rough, with frequent<br>[Lewes Nodular Cha |                                                                                          |       |                          |       | 40.00 - 40.50           | RC    | 102         |       |          |                            |           |                             | 100<br>56 | NIDO<br>20                |        |                    |
|                                            | Rinded nodular flint fragments (upto:<br>100mm). Possible flint band.                    |       | )                        |       | 40.30 - 40.40           | D     | 102         |       |          |                            |           |                             | 40        | 80                        |        |                    |
| 40.00-40.10m                               | Rinded nodular flintfragments (upto<br>90mm). Possible flint band.                       |       |                          |       | 40.00 40.40             |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            | Drillino disturl:Jed recovered non-intact.                                               | gf40  | ).50<br>f-               | 80.36 |                         |       |             |       |          |                            |           |                             |           |                           | 1      |                    |
| probably rubbed cha                        | re loss. Flint gravel at 40.85m<br>Ik away.                                              |       | po.35)                   |       |                         |       |             |       |          |                            |           |                             |           | NR                        |        |                    |
| Very weak, medium                          | density, greyish white CHALK.                                                            | -+-4  | 0.85<br>⊳                | 80.01 |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
| Fracture set 1: horizo                     | ontal to 20 degrees medium spaced                                                        |       |                          |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            | undulating slighUy rough, with<br>s. Fracture set 2: one 50 degree                       |       |                          |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
| fracture, undulating s                     | lighUy rough, with frequent black                                                        |       |                          |       | 40.50 40.00             |       | 100         |       |          |                            |           |                             | 77        |                           |        |                    |
|                                            | 3: one vertical fracture, undulating equent black specks. Locally with                   |       | f-                       |       | 40.50 - 42.00           | RC    | 102         |       |          |                            |           |                             | 28<br>21  |                           |        |                    |
| thin grey laminations                      | (marl wisps), rare Zoophycos                                                             |       | f-<br>f-                 |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
| burrows, and rare or<br>(Grade: A3)        | ange staining (sponge beds).                                                             |       |                          |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
| [Lewes Nodular Cha                         |                                                                                          |       |                          |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            | rilling disturl:Jed, recovered non-intact.<br>rilling disturl:Jed, recovered non-intact. |       |                          |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
| - 11.00 - 4 1.00 III.D                     | ากการ ฉางเนก.ขอน, าออบขอาอิน กอการกาได้อีโ.                                              |       | f-<br>f-                 |       |                         |       |             |       |          |                            |           |                             |           | NI                        |        |                    |
| 41.90-42.00m                               | : Rinded nodular flint fragments (up $to$                                                |       | f-                       |       |                         |       |             |       |          |                            |           |                             |           | 120                       |        |                    |
|                                            | BOmm). Possible flint band.                                                              |       |                          |       |                         |       |             |       |          |                            |           |                             |           | 220                       |        |                    |
|                                            |                                                                                          |       | f-<br>f-                 |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
| 12 10 - 12 EEm · F                         | nilling disturt: led recovered per intert                                                |       | f-                       |       |                         |       |             |       |          |                            |           |                             | 100       |                           |        |                    |
| 42.40 - 42.65m : L                         | orilling disturl:Jed, recovered non-intact.                                              |       |                          |       | 42.00 - 43.00           | RC    | 102         |       |          |                            |           |                             | 100       |                           |        |                    |
|                                            |                                                                                          |       |                          |       |                         |       |             |       |          |                            |           |                             | 54        |                           |        |                    |
|                                            |                                                                                          |       | f-                       |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       | f-<br>f-                 |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       | p4.65)                   |       | 42.80 - 43.00           | с     |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       |                          |       |                         |       |             |       |          |                            |           |                             | <u> </u>  |                           | .      |                    |
|                                            |                                                                                          |       |                          |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       | f-<br>f-                 |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       | [                        |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       |                          |       |                         |       |             |       |          |                            |           |                             | 100       |                           |        |                    |
|                                            |                                                                                          |       |                          |       | 43.00 - 44.00           | RC    | 102         |       |          |                            |           |                             | 67<br>67  |                           |        |                    |
|                                            |                                                                                          |       | f-<br>f-                 |       |                         |       |             |       |          |                            |           |                             | 0/        |                           |        |                    |
|                                            |                                                                                          |       | f-                       |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       |                          |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       |                          |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       | f-                       |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       | r-<br>f-                 |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       |                          |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       |                          |       | 44.22 - 44.46           | c     |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       |                          |       |                         |       |             |       |          |                            |           |                             | 93<br>93  |                           |        |                    |
|                                            |                                                                                          |       | f-                       |       |                         |       |             |       |          |                            |           |                             | 93        |                           |        |                    |
|                                            |                                                                                          |       | [                        |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       |                          |       | 44.00 - 45.50           | RC    | 102         |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       |                          |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       |                          | 1     |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |
|                                            |                                                                                          |       |                          |       |                         |       |             |       |          |                            |           |                             |           |                           |        |                    |

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SOR            | REI                                                                                                                  |                                  | LE L                           | 00      | 3   |   |                 |                |                 | N               |                   | hole N<br>8-RC     |                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|---------|-----|---|-----------------|----------------|-----------------|-----------------|-------------------|--------------------|-----------------------------------------|
| ritchies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                      |                                  |                                | _       |     |   | _               |                |                 |                 |                   | t 10 o             |                                         |
| roject Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Amersham Tunnel to Calvert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                                                                      |                                  | Survey Gri<br>Co-ordinat       | ,       | em: |   |                 | 9868<br>9.95 m |                 | le Typ<br>ecked |                   |                    | RO+<br>JMe,                             |
| roject No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1G063-AAZ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                                                                      |                                  |                                |         |     |   | 19540           | )5.46 m        | nN Ap           | prove           | d By:             |                    | PI                                      |
| lient:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                                                                                                      |                                  | Ground Le                      | evel:   |     |   | 12              | 20.86 m        | OD Sca          | ale:            |                   |                    | 1:                                      |
| gineer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                                                                                                      |                                  |                                |         |     |   |                 |                | Lo              | g Sta           | tus:              |                    | FI                                      |
| te Started:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 04/10/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                                                                      |                                  | Orientation                    | n:      |     |   |                 | d              | eg. Pri         | nt Dat          | e:                |                    | 21/11/2                                 |
| ate Completed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/10/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                                                                      |                                  | Inclination:                   |         |     |   |                 | 90 d           | ea. Fir         | nal De          | oth:              |                    | 75.0                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10, 10, 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                                                                                                      |                                  | 1                              |         | -   |   |                 |                | 0               |                 |                   |                    | 1                                       |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Legend         | Depth<br>(Thick-<br>ness)<br>(m)                                                                                     | Level<br>(m)                     | Depth<br>(m)                   | Type    | 1   | Ŭ | Blows<br>(mins) |                | ng<br>Test Resu | lt Units        | TCR<br>SCR<br>RØD |                    | Weter B                                 |
| Fracture set 1: horizo<br>110/500/1100mm), u<br>requent black speck<br>racture, undulating s<br>pecks. Fracture set<br>specks. Fracture set<br>lightly rough, with fri-<br>hin grey laminations<br>purrows, and rare or:<br>Grade: A3)<br>[Lewes Nodular Cha<br>Medium strong, very<br>(Lewes Nodular Cha<br>Very weak, medium<br>Fracture set 1: horizo<br>110/500/1100mm),<br>requent black speck<br>racture set 1: horizo<br>10/500/1100mm),<br>requent black speck<br>racture set 4: horizo<br>10/500/1100mm),<br>requent black speck<br>racture, undulating s<br>purrows, and rare or:<br>Grade: A3)<br>Lewes Nodular Chal<br>46.75 - 46.BOR<br>Medium strong, very<br>ewes Nodular Chal | high density CHALK. Chalk Rock.<br>Ik FonmationI<br>density, greyish white CHALK.<br>ontal to 20 degrees medium spaced<br>undulating slightly rough, with<br>s. Fracture set 2: one 50 degree<br>slightly rough, with frequent black<br>3: one vertical fracture, undulating<br>equent black specks. Locally with<br>(marl wisps), rare Zoophycos<br>ange staining (sponge beds).<br>Ik Fonmation]<br>: Rinded nodular nint fragments {up10<br>g0mm). Possible nint band. I<br>high density CHALK. Chalk Rock. |                | -45.50<br>                                                                                                           | 75.36<br>75.16<br>74.06<br>73.86 | 45.50 - 47.00<br>46.26 - 46.48 | RC<br>C | 102 |   |                 |                |                 | -               | 93<br>67<br>67    | 110<br>500<br>1100 | 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 |
| racture set 1: horizo<br>10/500/1100mm),<br>equent black speck<br>acture, undulating s<br>becks. Fracture set<br>ghtly rough, with fri<br>in grey laminations<br>irrows, and rare or<br>brade: A3)<br>ewes Nodular Chal<br>rilling disturbed. Me                                                                                                                                                                                                                                                                                                                                                                                                                                              | ontal to 20 degrees medium spaced<br>undulating slightly rough, with<br>s. Fracture set 2: one 50 degree<br>slightly rough, with frequent black<br>3: one vertical fracture, undulating<br>equent black specks. Locally with<br>(marl wisps), rare Zoophycos<br>ange staining (sponge beds).                                                                                                                                                                                                                   |                | -<br>-<br>-<br>-<br>f1.00)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 72.86                            | 47.00 - 48.50                  | RC      | 102 |   |                 |                |                 |                 | 100<br>70<br>70   |                    | 50505050505050505050505050505050505050  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | glauconitic pebbles (up to 20mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f.             | -                                                                                                                    |                                  |                                |         |     |   |                 |                |                 |                 |                   |                    | C                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to 30mm). No natural fractures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5              | 50.50)                                                                                                               |                                  | 43.00 - 53.50                  |         |     |   |                 |                | 2.SE006         | m/s             |                   | NOP                |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | k. (Grade undetenmined)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                                                      |                                  | 48.26 - 48.36                  | D       |     |   |                 | Head           |                 |                 |                   |                    |                                         |
| ewes Nodular Chal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | k Fonmation]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                                                                                                      |                                  |                                |         |     |   |                 |                |                 |                 |                   |                    | 0                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | re loss. Acoustic televiewer log<br>nd between 48.5 to 48.9m. Flint<br>lk away.                                                                                                                                                                                                                                                                                                                                                                                                                                | r.<br>F.<br>F. | -•0.50<br>-<br>-<br>-                                                                                                | 72.36                            |                                |         |     |   |                 |                |                 |                 |                   |                    |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                                                                                      | 70.86                            | 48.50 - 50.00                  | RC      | 102 |   |                 |                |                 |                 | 0<br>0<br>0       | NR                 |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                      |                                  |                                |         |     |   |                 |                |                 |                 |                   |                    |                                         |

Office: BAM Ritchies, Glasgow Road, Kilsyth, Glasgow G65 9BL

| •barn                                                                       | E                                                                                                                                                         | BOR       | REI                      | HO             | LE L                           | 00      | 3      |        |                 |                |      |        | Μ              | L038            | hole N<br>8-RC  | 004             |            |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------|----------------|--------------------------------|---------|--------|--------|-----------------|----------------|------|--------|----------------|-----------------|-----------------|-----------------|------------|
| ritchies<br>Project Name:                                                   | Amersham Tunnel to Calvert                                                                                                                                |           |                          |                | Survey Gr<br>Co-ordinat        | id Syst |        |        |                 | SGB<br>59.95 r | nF   |        | e Type<br>cked | e:              | t 11 of         | 15<br>RO<br>JMe |            |
| Project No:                                                                 | 1G063-AAZ.                                                                                                                                                |           |                          |                | CO-orumat                      | 63.     |        |        |                 | )5.46 r        |      |        | roved          | •               |                 |                 | , Ci<br>Mc |
| •                                                                           | High Speed 2 (HS2) Ltd                                                                                                                                    |           |                          |                | Ground Le                      | امري    |        |        |                 | 20.86 n        |      | Scal   |                | Бу.             |                 |                 | :25        |
|                                                                             | High Speed 2 (HS2) Ltd                                                                                                                                    |           |                          |                | GIUUIIU LE                     |         |        |        | 14              | 20.00 11       |      |        | Stat           | 116.            |                 |                 | NA         |
| 0                                                                           | 04/10/2016                                                                                                                                                |           |                          |                | Orientation                    |         |        |        |                 | d              | مما  | -      | t Date         |                 |                 | 21/11/2         |            |
|                                                                             | 10/10/2016                                                                                                                                                |           |                          |                | Inclination:                   |         |        |        |                 | 90 d           | •    |        | al Dep         |                 |                 | 75.             |            |
|                                                                             | 10,10,2010                                                                                                                                                | 1 1       | Depth                    |                |                                |         | ing C  | oring  | andh Si         |                | -    |        |                | TCR             | lf min          |                 |            |
| Si                                                                          | tratum Description                                                                                                                                        | Legend    | (Thick-<br>ness)<br>(m)  | Level<br>(m)   | Depth<br>(m)                   | Туре    | 1      | -      | Blows<br>(mins) | Test           | Test | Result | Units          | SCR<br>RØD      | lfa∨e<br>(mma)x | Weter B         | We<br>ack  |
| Fracture set 1: horizor<br>(770/1600/4500mm), t<br>trenuent blackysne ka    | ensity, light greyish white CHALK.<br>tal to 20 degrees widely spaced<br>undulating slightly rough, with<br>ୋମିଂସନ୍ଥାନ୍ଥରେ,ବ୍ୟାନଧାମଣା ନିକ୍ର କ୍ୟୁମ୍ୟନ୍ତ to | L L       | (0.30)<br>50.30<br>50.34 | 70.56          | 50.18 - 50.50                  | с       |        |        |                 |                |      |        |                |                 |                 | 0000            | 00,00,00   |
| frequent with depth thi                                                     | lack specks. With rare becoming<br>in grey laminations (marl wisps)<br>e staining (sponge beds). (Grade:                                                  |           | -                        |                |                                |         |        |        |                 |                |      |        |                |                 |                 | 0,00,0          | 00,00      |
| New Pit Chalk Forma                                                         | tion<br>sible on televiewer. Possibly Upper                                                                                                               |           |                          |                | 50.00 - 51.50                  | RC      | 102    |        |                 |                |      |        |                | 93<br>85<br>85  |                 | d               | 00,00      |
| New Pit Chalk Forma<br>Very weak, medium d                                  | tion<br>ensity, light greyish white CHALK.<br>ntal to 20 degrees widely spaced                                                                            |           | -<br>-<br>-<br>-         |                |                                |         |        |        |                 |                |      |        |                |                 |                 | 0000            | 202,00     |
| (770/1600/4500mm), u<br>frequent black specks.<br>vertical, closely to wide | undulating slightly rough, with<br>Fracture set 3: ten 70 degrees to<br>ely spaced, undulating slightly                                                   |           |                          |                |                                |         |        |        |                 |                |      |        |                |                 |                 | d               | 20,20      |
| frequent with depth thi<br>and locally with orange                          | lack specks. With rare becoming<br>in grey laminations (marl wisps)<br>e staining (sponge beds). (Grade:                                                  |           | -<br>-<br>-              |                |                                |         |        |        |                 |                |      |        |                |                 |                 | 0000            | 00,00      |
| A1)<br>[New Pit Chalk Forma                                                 | tion]                                                                                                                                                     |           |                          |                |                                |         |        |        |                 |                |      |        |                |                 |                 | 0<br>0<br>0     | 202,002    |
|                                                                             |                                                                                                                                                           |           |                          |                |                                |         |        |        |                 |                |      |        |                |                 |                 | 000             | 3,66,6     |
|                                                                             |                                                                                                                                                           |           | -                        |                |                                |         |        |        |                 |                |      |        |                | 97              |                 | 000             | 2,20,0     |
|                                                                             |                                                                                                                                                           |           |                          |                | 51.50 -53.00                   | RC      | 102    |        |                 |                |      |        |                | 92<br>92        |                 | 000             | 8,56,6     |
|                                                                             |                                                                                                                                                           |           |                          |                |                                |         |        |        |                 |                |      |        |                |                 |                 | 0000            | 0,00,0     |
|                                                                             |                                                                                                                                                           |           |                          |                |                                |         |        |        |                 |                |      |        |                |                 |                 | 000             | 0,00,0     |
|                                                                             |                                                                                                                                                           |           |                          |                |                                |         |        |        |                 |                |      |        |                |                 |                 | 000             |            |
|                                                                             |                                                                                                                                                           |           |                          |                |                                |         |        |        |                 |                |      |        |                |                 |                 | d<br>d          | 2000 C     |
| 53.40-53.42m:                                                               | Thickly laminated greenish grey marl<br>seam.                                                                                                             |           | -                        |                |                                |         |        |        |                 |                |      |        |                |                 |                 | d               | 200<br>200 |
|                                                                             |                                                                                                                                                           |           |                          |                | 53.60 - 53.84<br>53.00 - 54.50 |         | 102    |        |                 |                |      |        |                | 100<br>93<br>93 |                 |                 |            |
|                                                                             |                                                                                                                                                           |           | -<br>-<br>-              |                |                                |         |        |        |                 |                |      |        |                |                 |                 |                 |            |
| 5425-54 10m·U                                                               | eavy orange staining (sponge beds).                                                                                                                       |           | -                        |                |                                |         |        |        |                 |                |      |        |                |                 |                 |                 |            |
| 04.20°04.40m.∏                                                              | aary orango daning (sporige boos).                                                                                                                        |           |                          |                |                                |         |        |        |                 |                |      |        |                |                 |                 |                 |            |
| Very thinly bedded are                                                      | eenish grey marl seam. Possibly                                                                                                                           |           | 54.75<br>54.80           | 66.11<br>66.06 |                                |         |        |        |                 |                |      |        |                |                 |                 |                 |            |
| Lower Glynde Marl?<br>New Pit Chalk Forma                                   |                                                                                                                                                           |           | -<br>-                   | 00.06          |                                |         |        |        |                 |                |      |        |                |                 |                 |                 |            |
|                                                                             | ured along borehole axis.                                                                                                                                 |           |                          |                |                                |         |        |        |                 |                |      |        |                |                 |                 |                 |            |
| Explanation of symbo                                                        | hay be subject to seasonal, tidal and<br>ils and abbreviations given in 'Key to<br>on appended 'Borehole Infonmation \$                                   | Explorate |                          |                | nould not be t                 | aken a  | as con | stant. |                 |                |      |        |                |                 |                 |                 |            |
|                                                                             | , Glasgow Road, Kilsyth, Glasgow G659B                                                                                                                    |           |                          |                |                                |         |        |        |                 |                |      |        | BAM            |                 |                 |                 |            |

| •barn                                                                                                                                         | E                                                                                                                                                                                                                                                   | BORE                          | HO             | LE L                                 | 00           | G   |                                         |                                          |              | M                                         | L03                  | hole N<br>8-RC<br>t 12 of  | 004     |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------|--------------------------------------|--------------|-----|-----------------------------------------|------------------------------------------|--------------|-------------------------------------------|----------------------|----------------------------|---------|---------|
| Project Name:<br>Project No:<br>Client:                                                                                                       | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd                                                                                                                                                                                  |                               |                | Survey Gr<br>Co-ordinat<br>Ground Le | es:          | em: | 4965<br>1954                            | OSGB<br>559.95 m<br>105.46 m<br>120.86 m | E<br>N       | Hole Typ<br>Checked<br>Approvec<br>Scale: | By:                  |                            |         |         |
| Engineer:<br>Date Started:                                                                                                                    | High Speed 2 (HS2) Ltd<br>04/10/2016                                                                                                                                                                                                                |                               |                | Orientatior                          |              |     |                                         | de                                       |              | Log Stat<br>Print Dat                     |                      |                            |         | IN/     |
| Date Completed:                                                                                                                               | 10/10/2016                                                                                                                                                                                                                                          |                               |                | Inclination                          |              |     |                                         | 90 de                                    | •            | Final Dep                                 |                      |                            |         | .00     |
|                                                                                                                                               | Stratum Description                                                                                                                                                                                                                                 | Legend (Thick<br>ness)<br>(m) | - Level<br>(m) | Depth<br>(m)                         | Samp<br>Type |     | Coring and h S<br>Rec Blows<br>% (mins) | Situ Testii<br>5 Test<br>1               | ng<br>Test R | esult Unit                                | TCR<br>SCR<br>sRପ୍ରଧ | lfmin<br>Ifave<br>Df(mma)x | Weter B | W<br>ac |
| Fracture set 1: horizo<br>(770/1600/4500mm),<br>frequent black specks<br>vertical, closely to win<br>rough, with frequent b                   | density, light greyish white CHALK.<br>Intal to 20 degrees widely spaced<br>undulating slightly rough, with<br>s. Fracture set 3: ten 70 degrees to<br>dely spaced, undulating slightly<br>black specks. With rare becoming<br>is grup (begingting) |                               |                | 54.50 - 56.00                        | RC           | 102 |                                         |                                          |              |                                           | 100                  |                            |         |         |
|                                                                                                                                               | nin grey laminations (marl wisps)<br>ge staining (sponge beds). (Grade:<br>ation]                                                                                                                                                                   |                               |                | 55.40 - 55.72                        | с            |     |                                         |                                          |              |                                           | 78<br>78             |                            |         |         |
|                                                                                                                                               |                                                                                                                                                                                                                                                     |                               |                | 56.00 -57.50                         | RC           | 102 |                                         |                                          |              |                                           | 100<br>87<br>87      |                            |         |         |
| 58.28-58.33m :                                                                                                                                | Nodular flint fragments (up to 50mm).                                                                                                                                                                                                               |                               |                | 57.50 - 59.00<br>58.10 - 58.42       | RC<br>C      | 102 |                                         |                                          |              |                                           | 100<br>73<br>73      | 60<br>1000<br>2500         |         |         |
| Pit Marl 2?<br><u>New Pit Chalk Form</u><br>Very weak, medium of<br>Fracture set 1: horizo<br>(770/1600/4500mm),<br>frequent black specks     | sh grey marl seam. Possibly New<br>ation<br>Jensity, light greyish white CHALK.<br>Intal to 20 degrees widely spaced<br>undulating slightly rough, with<br>s. Fracture set 3: ten 70 degrees to<br>dely spaced, undulating slightly                 | 59.36<br>59.42                |                | 59.00 - 60.50                        | RC           | 102 |                                         |                                          |              |                                           | 100<br>76<br>76      |                            |         |         |
| frequent black specks<br>vertical, closely to wid<br>Stratum depths mea<br>Groundwater levels<br>Explanation of symb<br>Further details given | s. Fracture set 3: ten 70 degrees to                                                                                                                                                                                                                | Exploratory H<br>Sheer.       |                |                                      |              |     | Istant.                                 |                                          |              |                                           |                      | ehole Lc                   |         |         |

| I                                                                                                                          | BOREF                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                         | LE L                                                                                                                                                                                                                                                                                         | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1L03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amersham Tunnel to Calvert                                                                                                 |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | em:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hole Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | be:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | et 13 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1G063-AAZ.                                                                                                                 |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                            | Co-ordinate                                                                                                                                                                                                                                                                                  | es:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ie,<br>PN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| High Speed 2 (HS2) Ltd                                                                                                     |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                            | Ground Le                                                                                                                                                                                                                                                                                    | evel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| High Speed 2 (HS2) Ltd                                                                                                     |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Log Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tus:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 04/10/2016                                                                                                                 |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10/10/2016                                                                                                                 |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                            | Inclination:                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Final De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.0<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Stratum Description                                                                                                        | Legend (Thick-<br>ness)                                                                                                                                                                                                                                            | Level<br>(m)                                                                                                                                                                                                                                                               | Depth<br>(m)                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | u Testi<br>Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | esult Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ifave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| t black specks. With rare becoming<br>thin grey laminations (marl wisps)<br>nge staining (sponge beds). (Grade:<br>nation] |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (MH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                | (THYNS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Iest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100<br>73<br>73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                            |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                            | 62.00 - 63.50                                                                                                                                                                                                                                                                                | RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100<br>85<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                            |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                            | 63.08 - 63.36                                                                                                                                                                                                                                                                                | 5 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                            |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                            | 63.50 - 65.00                                                                                                                                                                                                                                                                                | RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100<br>81<br>81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| t                                                                                                                          | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>04/10/2016<br>10/10/2016<br>Stratum Description<br>t black specks. With rare becoming<br>thin grey laminations (marl wisps)<br>nge staining (sponge beds). (Grade: | Amersham Tunnel to Calvert  IG063-AAZ. High Speed 2 (HS2) Ltd High Speed 2 (HS2) Ltd 04/10/2016 10/10/2016  Stratum Description  Legend (Thick-ness) (m) t black specks. With rare becoming thin grey laminations (marl wisps) nge staining (sponge beds). (Grade: nation] | Amersham Tunnel to Calvert  IG063-AAZ. High Speed 2 (HS2) Ltd High Speed 2 (HS2) Ltd O4/10/2016 10/10/2016  Stratum Description  Legend Depth Ress, With rare becoming thin grey laminations (marl wisps) nge staining (sponge beds). (Grade: nation]  (m)  (m)  (m)  (m)  (m)  (m)  (m)  (m | Amersham Tunnel to Calvert  IG063-AAZ.  High Speed 2 (HS2) Ltd  Orientation Orientation  Stratum Description  Eagend TThick  Image 1  Imag | Amersham Tunnel to Calvert Survey Grid Syst<br>Co-ordinates:<br>High Speed 2 (HS2) Ltd<br>04/10/2016 Orientation:<br>10/10/2016 Inclination:<br>Stratum Description Level (m) Orientation:<br>tblack specks. With rare becoming<br>thin grey laminations (mari wisps)<br>nge staining (sponge beds). (Grade:<br>Inclination] Orientation:<br>black specks. With rare becoming<br>thin grey laminations (mari wisps)<br>nge staining (sponge beds). (Grade:<br>Inclination] Orientation:<br>Co-ordinates:<br>Stratum Description Correct Cor | Co-ordinates:<br>1G083-AAZ.<br>High Speed 2 (HS2) Ltd<br>04/10/2016<br>10/10/2016<br>Stratum Description<br>Legen Depth<br>Indination:<br>Stratum Description<br>Legen Depth<br>(m)<br>(m)<br>Type (Rift)<br>10 ack specks. With rare becoming<br>(m)<br>(m)<br>Type (Rift)<br>60.50 - 62.00<br>RC 102<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C) | Amersham Tunnel to Calvert  IG063-AAZ.  High Speed 2 (H52) Ltd  High Speed 2 ( | Amersham Tunnel to Calvert       Survey Grid System:       O         16063-AAZ.       19540         High Speed 2 (HS2) Ltd       Ground Level:       12         04/10/2016       Orientation:       12         10102016       Inclination:       12         Stratum Description       Legend (Thick)       Level       Sampling: Coring andh Sit         1012016       Inclination:       10       10       10         10142016       Inclination:       10       10       10       10         10142016       Inclination:       10       10       10       10       10       10         10142016       Inclination:       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 | Ameraham Tunnel to Calvert Euco-ordinates:  Co-ordinates:  Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: Co-ordinates: C | Amersham Tunnel to Calvert       Survey Grid System:       05GB         10063-AAZ.       195405.40 mN         High Speed 2 (HS2) Ltd       Ground Level:       120.86 mN         10102016       Orientation:      deg.         10102016       Inclination:       0.46 mN         Statum Description       Level       Inclination:       0.46 mN         Italian Description       Level       Deprintion:       Text Reserves         Italian Description       Level       Level       Deprintion:       Text Reserves         Italian Description       Level       Level       Deprintion:       Text Reserves         Italian Description       Level       Level       Level       Level       Level         Italian Description <td>Amersham Turnel to Calvert Co-ordinates: Co-</td> <td>BOREHOLE LOG       Mutor         Americham Tunnel to Calvert       Survey Grid System:       OSGB       Hole Type:         1G633-AAZ       195405.46 mN       Approved By:       Tradeshold mN       Approved By:         High Speed 2 (HS2) Lid       Ground Level:       120.86 mO       Scale:       Log Bittat:         Od/102016       Coreintation:       90.462,       Final Depth:         Stratum Description       Level (min)       Depth       Scale:       Log Bittat:         Chick specks. With rare becoming this graph and this specific in and twispel graph annators (martwispel g</td> <td>Americham Tunnel to Calver:       Survey Grid System:       OSGB       ML0308-RC         100636-Ad2       199306.46 mN       Checked 9g:       199306.46 mN       Checked 9g:         High Speed 2 (HS2) Lid       Ground Level:       120.86 mOD       Scale:       Log         V0102016       Orientation:       90.66 g.       Print/Date:       Log       Print/Date:         Statum Description       Level       Orientation:       90.66 g.       Print/Date:       ScR ////////////////////////////////////</td> <td>BOREHOLE LOG       Multiple Second System:       OSGB       Multiple Second Second Event Multiple Second Second Second Event Multipl</td> | Amersham Turnel to Calvert Co-ordinates: Co- | BOREHOLE LOG       Mutor         Americham Tunnel to Calvert       Survey Grid System:       OSGB       Hole Type:         1G633-AAZ       195405.46 mN       Approved By:       Tradeshold mN       Approved By:         High Speed 2 (HS2) Lid       Ground Level:       120.86 mO       Scale:       Log Bittat:         Od/102016       Coreintation:       90.462,       Final Depth:         Stratum Description       Level (min)       Depth       Scale:       Log Bittat:         Chick specks. With rare becoming this graph and this specific in and twispel graph annators (martwispel g | Americham Tunnel to Calver:       Survey Grid System:       OSGB       ML0308-RC         100636-Ad2       199306.46 mN       Checked 9g:       199306.46 mN       Checked 9g:         High Speed 2 (HS2) Lid       Ground Level:       120.86 mOD       Scale:       Log         V0102016       Orientation:       90.66 g.       Print/Date:       Log       Print/Date:         Statum Description       Level       Orientation:       90.66 g.       Print/Date:       ScR //////////////////////////////////// | BOREHOLE LOG       Multiple Second System:       OSGB       Multiple Second Second Event Multiple Second Second Second Event Multipl |

| ritchies                                                                                                                                     |                                                                                                                                                                                                                                                                                                                        |                                  |              |                                |      | 3   |                         |                  |      |                   | Shee                 | t 14 of            | 15             |              |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|--------------------------------|------|-----|-------------------------|------------------|------|-------------------|----------------------|--------------------|----------------|--------------|
| Project Name:                                                                                                                                | Amersham Tunnel to Calvert                                                                                                                                                                                                                                                                                             |                                  |              | Survey Gr<br>Co-ordinat        |      | em: |                         | OSGB<br>559.95 i | тE   | Hole Ty<br>Checke |                      |                    | RC<br>JMe      | O+R<br>le, C |
| Project No:                                                                                                                                  | 1G063-AAZ.                                                                                                                                                                                                                                                                                                             |                                  |              |                                |      |     |                         | 405.46 ı         |      | Approve           | -                    |                    |                | PM           |
| lient:<br>ngineer:                                                                                                                           | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                       |                                  |              | Ground Le                      | vel: |     |                         | 120.86 ו         | nOD  | Scale:<br>Log Sta | atue.                |                    |                | 1:2<br>FIN   |
| ate Started:                                                                                                                                 | 04/10/2016                                                                                                                                                                                                                                                                                                             |                                  |              | Orientation                    | :    |     |                         | (                | deg. | Print Da          |                      | :                  | '<br>21/11/    |              |
| Date Completed:                                                                                                                              | 10/10/2016                                                                                                                                                                                                                                                                                                             |                                  |              | Inclination:                   |      |     |                         | 90 0             | deg. | Final De          | epth:                |                    | 75             | 5.00         |
|                                                                                                                                              | Stratum Description                                                                                                                                                                                                                                                                                                    | Legend Depth<br>(Thick-<br>ness) | Level<br>(m) | Depth<br>(m)                   |      |     | oring and h<br>Rec Blow |                  | -    | esult Uni         | TCR<br>SCR<br>ts RQD | lfave              | Weter <b>I</b> | V<br>Bac     |
| Fracture set 1: horiz<br>(770/1600/4500mm),<br>frequent black speck<br>vertical, closely to w<br>rough, with frequent<br>frequent with depth | density, light greyish white CHALK.<br>ontal to 20 degrees widely spaced<br>, undulating slightly rough, with<br>s. Fracture set 3: ten 70 degrees to<br>idely spaced, undulating slightly<br>black specks. With rare becoming<br>thin grey laminations (marl wisps)<br>nge staining (sponge beds). (Grade:<br>nation] |                                  |              | 65.00 - 66.50<br>65.60 - 65.96 | RC   | 102 |                         |                  |      |                   | 100<br>96<br>96      | 60<br>1000<br>2500 |                |              |
| requent thin grey la<br>1: horizontal closelv                                                                                                |                                                                                                                                                                                                                                                                                                                        | 66.50                            | 54.36        | 66.77 - 66.92<br>66.50 - 68.00 | C    | 102 |                         |                  |      |                   | 100                  | 50<br>200<br>550   |                |              |
| CHALK. Fracture se<br>spaced (90/1200/15<br>vith frequent black s<br>grey laminations (m<br>sponge beds). (Gra<br>New Pit Chalk Form         |                                                                                                                                                                                                                                                                                                                        |                                  | 53.26        |                                |      |     |                         |                  |      |                   | 80                   |                    |                |              |
|                                                                                                                                              |                                                                                                                                                                                                                                                                                                                        |                                  |              | 68.00 - 69.50<br>68.95 - 69.30 |      | 102 |                         |                  |      |                   | 100<br>95<br>95      |                    |                |              |
| Stratum depths me                                                                                                                            | asured along borehole axis.                                                                                                                                                                                                                                                                                            |                                  |              |                                |      |     |                         |                  |      |                   |                      |                    |                |              |

| •barn<br>ritchies                                                                                                                                                                                                                                                                                                                                                                                         | BOF                     | REI                                                                                         | HO    | LE L                           | 00      | 3                  |          |                 |                            |        |              | ML                   | _038              | nole N<br>3-RC<br>15 of | 004     |                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------|-------|--------------------------------|---------|--------------------|----------|-----------------|----------------------------|--------|--------------|----------------------|-------------------|-------------------------|---------|---------------------------|
| Project Name: Amersham Tunnel to Calvert<br>Project No: 1G063-AAZ.                                                                                                                                                                                                                                                                                                                                        |                         |                                                                                             |       | Survey Gri<br>Co-ordinat       | es:     | em:                |          | 49655<br>19540  | )SGB<br>59.95 r<br>)5.46 r | nN     | Cheo<br>Appr | Type<br>cked<br>oved | By:               |                         | JM<br>I | O+RC<br>e, CB<br>PMcG     |
| Client: High Speed 2 (HS2) Ltd<br>Engineer: High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                        |                         |                                                                                             |       | Ground Le                      | vel:    |                    |          | 1:              | 20.86 n                    | nOD    | Scale<br>Log | e:<br>Statu          | JS:               |                         |         | 1:25<br>FINAL             |
| Date Started:         04/10/2016           Date Completed:         10/10/2016                                                                                                                                                                                                                                                                                                                             |                         |                                                                                             |       | Orientatior<br>Inclination:    |         |                    |          |                 | d<br>90 d                  | •      |              | t Date<br>I Dep      |                   | :                       |         | /2017<br>5.00m            |
|                                                                                                                                                                                                                                                                                                                                                                                                           | Legend                  | Depth<br>(Thick-                                                                            | Level |                                |         | 1                  | -        | andh Si         | tu Testi                   | na     |              |                      | TCR               | lf min<br>If ave        |         | Well/                     |
| Stratum Description                                                                                                                                                                                                                                                                                                                                                                                       | Legend                  | (m)                                                                                         | (m)   | Depth<br>(m)                   | Туре    | ( <sup>Dia</sup> ) | Rec<br>% | Blows<br>(mins) | Test                       | Test R | esult        | Units                | RQD               | (mnna)x                 | Weter   | Backfill                  |
| Very weak to weak, high density, light greyish white<br>CHALK. Fracture set 1: horizontal closely to widely<br>spaced (90/1200/1550mm), undulating slightly rough,<br>with frequent black specks. Locally with frequent thin<br>grey laminations (marl wisps) and orange staining<br>(sponge beds). (Grade: A1)<br>[New Pit Chalk Formation]                                                              |                         |                                                                                             | _     | 69.50 - 71.00                  | RC      | 102                |          |                 |                            |        |              |                      | 100<br>100<br>100 |                         |         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                                                                             |       | 71.00 -72.50                   | RC      | 102                |          |                 |                            |        |              |                      | 100<br>93         | 90<br>1200<br>1550      |         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                           |                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 48.36 | 71.85-72.15                    | с       |                    |          |                 |                            |        |              | _                    | 80                |                         |         |                           |
| Weak, medium density, greyish white CHALK with<br>frequent thin grey laminations (marl wisps) and<br>Zoophycos burrows. Fracture set 2: two 20 to 40 degree<br>fractures, undulating and planar smooth, with greenish<br>grey staining. Fracture set 3: three 70 to 80 degree<br>fractures, undulating slightly rough, with frequent black<br>specks, no infill. (Grade: A2)<br>[New Pit Chalk Formation] |                         | -                                                                                           |       | 72.50 - 74.00                  | RC      | 102                |          |                 |                            |        |              |                      | 100<br>67<br>67   |                         |         |                           |
| 74.10-74.50m: Weak, high density, greenish grey locally<br>darl< grey marly CHALK                                                                                                                                                                                                                                                                                                                         |                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |       | 74.30 - 74.62<br>74.00 - 75.00 | C<br>RC | 102                |          |                 |                            |        |              |                      | 100<br>60<br>60   | 100<br>300<br>600       |         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                           |                         | _                                                                                           |       |                                |         |                    |          |                 |                            |        |              |                      |                   |                         |         |                           |
| Borehole Terminated at 75.00m                                                                                                                                                                                                                                                                                                                                                                             |                         | 75.00                                                                                       | 45.86 |                                |         |                    |          |                 |                            |        |              | F                    |                   |                         |         |                           |
| Stratum depths measured along borehole axis.<br>Groundwater levels may be subject to seasonal, tidal an<br>Explanation of symbols and abbreviations given in 'Key<br>Further details given on appended 'Borehole Information'<br>Office: BAM Ritchies, Glasgow Road, Kilsyth, Glasgow G65 S                                                                                                               | to Explorat<br>n Sheer. |                                                                                             |       | nould not be t                 | aken a  | as con             | istant.  |                 |                            |        |              | вами                 | RBor              | ehole Lo                | 00.061  | <u>141201<sup>.</sup></u> |

| -barn<br>ritchies                                                  |                                                                                                                                                                            | BOREHOLE LOG           |                                 |              |                                      |               |   |     | Borehole No:<br>ML043-RC004<br>Sheet 1 of 14 |              |     |                                           |                       |                             |                    |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------|--------------|--------------------------------------|---------------|---|-----|----------------------------------------------|--------------|-----|-------------------------------------------|-----------------------|-----------------------------|--------------------|
| Project Name: Amersham Tunnel to Calvert<br>Project No: 1G063-AAZ. |                                                                                                                                                                            |                        |                                 |              | Survey Grid System:<br>Co-ordinates: |               |   |     | OSGB<br>493221.20 mE<br>198983.21 mN         |              |     | Hole Type:<br>Checked By:<br>Approved By: |                       | RC                          |                    |
| ient:<br>ngineer:<br>ate Started:                                  | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>16/11/2016                                                                                                             |                        |                                 |              | Ground Le                            |               |   |     |                                              | 31.41 m<br>d | OD  | Scale:<br>Log Star                        | us:                   |                             | 1<br>Fl<br>21/11/2 |
| ate Completed:                                                     | 22/11/2016                                                                                                                                                                 |                        |                                 |              | Inclination                          | :             |   |     |                                              | 90 d         | eg. | Final De                                  | oth:                  |                             | 65.                |
|                                                                    | Stratum Description                                                                                                                                                        | Legend (               | Depth<br>Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)                         | Sampl<br>Type | 1 | Rec | and h Si<br>Blows<br>(mins)                  |              | -   | Result Unit                               | TCR<br>SCR<br>s Rପ୍ଟା | lfmin<br>lfave<br>Ot(mnna)k | water E            |
| Topsoil]                                                           | pish brown slightly sandy gravelly<br>bangular to rounded fine to coarse of<br>coarse.<br>In slightly sandy gravelly CLAY. Grave<br>unded fine to coarse of flint. Sand is | 1 <i>i</i>             | 0.10                            | 131.31       | 0.20-0.40                            | В             |   |     |                                              |              |     |                                           |                       |                             |                    |
|                                                                    |                                                                                                                                                                            | :tI:                   | 1.10>                           |              | 0.60-0.80                            | В             |   |     |                                              |              |     |                                           |                       |                             |                    |
|                                                                    | on: Creamishwhit-CHALKwith flets-+-                                                                                                                                        | -==""='- ^1-           | 1.20                            | 130.21       | 1.00 -1.20                           | В             |   |     |                                              |              |     |                                           |                       |                             |                    |
| otary open hole)                                                   |                                                                                                                                                                            | - 1-                   | -                               |              |                                      |               |   |     |                                              |              |     |                                           |                       |                             |                    |
|                                                                    |                                                                                                                                                                            |                        | -                               |              |                                      |               |   |     |                                              |              |     |                                           |                       |                             |                    |
|                                                                    |                                                                                                                                                                            |                        |                                 |              |                                      |               |   |     |                                              |              |     |                                           |                       |                             |                    |
|                                                                    |                                                                                                                                                                            | -<br> -<br> -<br> -    | -                               |              |                                      |               |   |     |                                              |              |     |                                           |                       |                             |                    |
|                                                                    |                                                                                                                                                                            |                        | -                               |              |                                      |               |   |     |                                              |              |     |                                           |                       |                             |                    |
|                                                                    |                                                                                                                                                                            | - 1-                   | -<br>                           |              |                                      |               |   |     |                                              |              |     |                                           |                       |                             |                    |
|                                                                    |                                                                                                                                                                            | - I-<br>I-<br>I-<br>I- |                                 |              |                                      |               |   |     |                                              |              |     |                                           |                       |                             |                    |
|                                                                    |                                                                                                                                                                            |                        | -                               |              |                                      |               |   |     |                                              |              |     |                                           |                       |                             |                    |
|                                                                    |                                                                                                                                                                            | I -<br>I -<br>I -      |                                 |              |                                      |               |   |     |                                              |              |     |                                           |                       |                             |                    |
|                                                                    |                                                                                                                                                                            |                        |                                 |              |                                      |               |   |     |                                              |              |     |                                           |                       |                             |                    |
|                                                                    |                                                                                                                                                                            |                        | •<br>•<br>•                     |              |                                      |               |   |     |                                              |              |     |                                           |                       |                             |                    |
|                                                                    |                                                                                                                                                                            | -                      | -<br>-<br>-<br>-                |              |                                      |               |   |     |                                              |              |     |                                           |                       |                             |                    |
|                                                                    |                                                                                                                                                                            |                        |                                 |              |                                      |               |   |     |                                              |              |     |                                           |                       |                             |                    |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| -barn<br>ritchies                                                                                                                                                                |                                     | BOREHO                             | LE LOG                                                |                                         |                                           | ML04                                                               | hole No:<br>3-RC004<br>t 2 of 14    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------|-------------------------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------------------------------------|-------------------------------------|
| Project Name:       Amersham Tunnel to Calvert         Project No:       1G063 -AAZ.         Client:       High Speed 2 (HS2) Ltd         Engineer:       High Speed 2 (HS2) Ltd |                                     |                                    | Survey Grid System:<br>Co-ordinates:<br>Ground Level: | 49322<br>1989                           | DSGB<br>21.20 mE<br>83.21 mN<br>31.41 mOD | Hole Type:<br>Checked By:<br>Approved By:<br>Scale:<br>Log Status: | RO+RG<br>DI<br>PMcC<br>1:25<br>FINA |
| Date Started:<br>Date Completed:                                                                                                                                                 | 16/11/2016<br>22/11/2016            |                                    | Orientation:<br>Inclination:                          |                                         | deg.<br>90 deg.                           | Print Date:<br>Final Depth:                                        | 21/11/2013<br>65.60n                |
|                                                                                                                                                                                  | Stratum Description                 | Legend (Thick-<br>ness) (m)<br>(m) | 1 1 1                                                 | oring and h Si<br>Rec Blows<br>% (mins) | itu Testing<br>Test Test                  | Result Units                                                       |                                     |
| (Rotary open hole)                                                                                                                                                               | : Creamish white CHALK with flints. |                                    |                                                       |                                         |                                           |                                                                    |                                     |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| -barn<br>ritchies                                                                                                                                                                                                       | BO   | BOREHOLE LOG                                         |                |                                                 |                        |     |  |                |                                            |                   | Borehole No:<br>ML043-RC004<br>Sheet 3 of 14                    |                                          |                  |                                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------|----------------|-------------------------------------------------|------------------------|-----|--|----------------|--------------------------------------------|-------------------|-----------------------------------------------------------------|------------------------------------------|------------------|----------------------------------------------------|--|
| Project Name:       Amersham Tunnel to Calvert         Project No:       1G063 -AAZ.         Client:       High Speed 2 (HS2) Ltd         Engineer:       High Speed 2 (HS2) Ltd         Date Started:       16/11/2016 |      |                                                      |                | Survey G<br>Co-ordina<br>Ground L<br>Orientatio | ates:<br>.evel:<br>on: | em: |  | 49322<br>19898 | DSGB<br>21.20 n<br>33.21 n<br>31.41 m<br>d | mN<br>nOD<br>deg. | Hole Typ<br>Checked<br>Approve<br>Scale:<br>Log Sta<br>Print Da | pe:<br>d By:<br>ed By:<br>atus:<br>atus: |                  | RO+RC<br>DE<br>PMcG<br>1:25<br>FINAL<br>21/11/2017 |  |
| Date Completed: 22/11/2016 Stratum Description                                                                                                                                                                          | Lege | Depth<br>(Thick<br>ness)                             | - Level<br>(m) | Inclination<br>Depth                            |                        |     |  | andh Sit       |                                            | ing               | Final De                                                        | TCR                                      | If min<br>If ave | 65.60m<br>Ve<br>water ck                           |  |
| Drillers description: Creamish white CHALK with flin<br>(Rotary open hole)                                                                                                                                              |      | (m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m) |                | (m)                                             | Type                   |     |  | (HRXS)         | Test                                       |                   |                                                                 |                                          |                  |                                                    |  |
| Stratum depths measured along borehole axis.                                                                                                                                                                            |      | f-<br>f-<br>t-<br>t-<br>t-<br>t-<br>t-<br>t-<br>f-   |                |                                                 |                        |     |  |                |                                            |                   |                                                                 |                                          |                  |                                                    |  |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

Further details given on appended 'Borehole Infonmation Sheer.

Office: BAM Ritchies, Glasgow Road, Kilsyth, Glasgow G65 9BL

BAM R Borehole Log 06/0412017

| -barn<br>ritchies                           |                                                                 | BOF   | RE                              | HO             | LEL                        | .00   | G   |                            |                    |               | Ν                            | /L04  | ehole N<br>3-RC<br>et 4 of | 004                  |
|---------------------------------------------|-----------------------------------------------------------------|-------|---------------------------------|----------------|----------------------------|-------|-----|----------------------------|--------------------|---------------|------------------------------|-------|----------------------------|----------------------|
| Project Name:                               | Amersham Tunnel to Calvert                                      |       |                                 |                | Survey G<br>Co-ordina      |       | em: | 49322                      | )SGB<br>21.20 n    |               | Hole Ty<br>Checke            | d By: |                            | RO+R<br>D            |
| Project No:<br>Client:<br>Engineer:         | 1G063 -AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd |       |                                 |                | Ground L                   | evel: |     |                            | 33.21 r<br>31.41 n |               | Approve<br>Scale:<br>Log Sta |       |                            | PMc0<br>1:25<br>FINA |
| Date Started:<br>Date Completed:            | 16/11/2016<br>22/11/2016                                        |       |                                 |                | Orientation<br>Inclination |       |     |                            | d<br>90 d          | -             | Print Da<br>Final De         | ite:  |                            | 21/11/201<br>65.60r  |
|                                             | Stratum Description                                             | Legen | Depth<br>(Thick<br>ness)<br>(m) | - Level<br>(m) | Depth<br>(m)               | Sampl | 1   | andh Si<br>Blows<br>(mins) | tu Testi<br>Test   | ing<br>Test F | Result Uni                   |       | lfmin<br>Ifave<br>(mna)    | Ve<br>water I sk     |
| Drillers description:<br>(Rotary open hole) | Creamish white CHALK with flints.                               |       | f-<br>f-<br>r-                  |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
|                                             |                                                                 |       | f-<br>f-<br>f-<br>f-<br>f-      |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
|                                             |                                                                 | -     | f=<br>r=<br>r=<br>r=            |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
|                                             |                                                                 |       | r-<br>f-<br>f-<br>f<br>r-       |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
|                                             |                                                                 |       | r-<br>r-<br>r-<br>f-<br>f-      |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
|                                             |                                                                 | _     | F-<br>F-<br>F-<br>F-            |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
|                                             |                                                                 | _     | f=<br>f=<br>f=<br>r=-           |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
|                                             |                                                                 | -     | t=<br>t=<br>f=<br>f=<br>f=      |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
|                                             |                                                                 | -     | r<br>r<br>r<br>r                |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
|                                             |                                                                 |       | F=<br>F=<br>F=<br>F=<br>F=      |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
|                                             |                                                                 |       | f-<br>f-<br>f-<br>f-<br>f-      |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
|                                             |                                                                 |       | r-<br>r-<br>r-<br>r-            |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
|                                             |                                                                 | -     | f-<br>f-<br>t-                  |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
|                                             |                                                                 |       | r-<br>r-<br>r-<br>r-            |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
|                                             |                                                                 |       | f=<br>f=<br>f=<br>t=            |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
|                                             |                                                                 |       | r-<br>r-<br>f-<br>f-<br>f-      |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
|                                             |                                                                 |       | f<br>f<br>f<br>f                |                |                            |       |     |                            |                    |               |                              |       |                            |                      |
| Stratum depths mea                          | asured along borehole axis.                                     |       | f-                              |                |                            |       |     |                            |                    |               |                              |       |                            |                      |

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| Project Name: Amersh                                                 |                            | BOREHOLE LOG     |       |                                        |          |                       |                                           |                                                    | Borehole No:<br>ML043-RC004<br>Sheet 5 of 14                            |  |  |  |  |
|----------------------------------------------------------------------|----------------------------|------------------|-------|----------------------------------------|----------|-----------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|
| -                                                                    | peed 2 (HS2) Ltd           |                  |       | Survey Gri<br>Co-ordinate<br>Ground Le | es:      | 4932<br>1989          | DSGB<br>21.20 mE<br>83.21 mN<br>31.41 mOD | Hole Type:<br>Checked By:<br>Approved By<br>Scale: | : PMc0<br>1:25                                                          |  |  |  |  |
| Engineer: High S<br>Date Started: 16/11/2<br>Date Completed: 22111/2 |                            | Depth            | I     | Orientation<br>Inclination:            |          | coring and h S        | deg.<br>90 deg.<br>itu Testing            | Log Status:<br>Print Date:<br>Final Depth:         | FINA<br>21/11/201<br>65.60n<br>R Ifmin<br>R Ifave<br>J (mma): water web |  |  |  |  |
| Drillers description: Creamisl<br>(Rotary open hole)                 | h white CHALK with flints. | ness)<br>(m)<br> | (m)   | Depth<br>(m)                           | Type (mm | , Rec Blows<br>(mins) | Test                                      | Result Units R&                                    |                                                                         |  |  |  |  |
|                                                                      |                            |                  |       |                                        |          |                       |                                           |                                                    |                                                                         |  |  |  |  |
| Stratum depths measured al                                           | long borehole axis.        |                  | 06.41 |                                        |          |                       |                                           |                                                    |                                                                         |  |  |  |  |

| •barn                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                       | SOR                                                                                                      | RE                                             | HO             | LE L                           | 00      | 3      |       |                 |                 |      | M                   | 1L04         | hole N<br>3-RC<br>et 6 of | :004     |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------|--------------------------------|---------|--------|-------|-----------------|-----------------|------|---------------------|--------------|---------------------------|----------|
| Project Name:                                                                                                                      | Amersham Tunnel to Calvert                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          |                                                |                | Survey Gri<br>Co-ordinat       |         | em:    |       |                 | )SGB<br>21.20 n |      | Hole Typ<br>Checked | be:          | <u></u>                   | RO+      |
| Project No:                                                                                                                        | 1G063-AAZ.                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          |                                                |                |                                |         |        |       | 19898           | 83.21 n         | nN   | Approved            | d By:        |                           | PM       |
| Client:                                                                                                                            | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |                                                |                | Ground Le                      | vel:    |        |       | 1:              | 31.41 m         | nOD  | Scale:              |              |                           | 1:2      |
| Engineer:                                                                                                                          | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |                                                |                |                                |         |        |       |                 |                 | ,    | Log Stat            | tus:         |                           | FIN      |
| Date Started:                                                                                                                      | 16/11/2016                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          |                                                |                | Orientation                    | 1:      |        |       |                 | d               | leg. | Print Dat           | te:          |                           | 21/11/20 |
| Date Completed:                                                                                                                    | 22111/2016                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          |                                                |                | Inclination:                   |         |        |       |                 | 90 d            | •    | Final Dep           | pth:         |                           | 65.6     |
| •                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          | Depth                                          |                | 1                              | Sampli  | ina, C | oring | andh Si         |                 |      |                     | TCR          | lfmin                     |          |
|                                                                                                                                    | Stratum Description                                                                                                                                                                                                                                                                                                                                                                     | Legend                                                                                                   | (Thick                                         | - Level<br>(m) | Depth<br>(m)                   | Туре    | 1      |       | Blows<br>(mins) |                 |      | esult Units         |              |                           | Weter    |
| with frequent black                                                                                                                | a density, light greyish white CHALK<br>specks and locally orange staining.<br>contal to 30 degrees, closely spaced<br>anar smooth to undulating slighUy                                                                                                                                                                                                                                | f:<br>f:<br>c.                                                                                           | -                                              |                |                                |         |        |       |                 |                 |      |                     | 83           |                           |          |
| clay. Fracture set 3:<br>smooth to undulating                                                                                      | cally infilled (<3mm) with soft brown<br>70 degrees to vertical, planar<br>g slightly rough, clean. (Grade: B3)                                                                                                                                                                                                                                                                         | r.<br>r.<br>f.                                                                                           | -<br>-<br>-                                    |                | 25.00 - 25.60                  | RC      | 102    |       |                 |                 |      |                     | 0            |                           |          |
| Recovered a<br>angular fine to co<br>Gravel is weak,                                                                               | nation]<br>Drilling disturbed, recovered non-intact.<br>ss: light greyish white silty subangular to<br>oarse GRAVEL with occasional cobbles.<br>medium density, light greyish white with<br>frequent black specks.<br>0-25.60m :Assumed zone of core loss.                                                                                                                              |                                                                                                          | -<br>-<br>-<br>-<br>-<br>-                     |                |                                |         |        |       |                 |                 |      |                     |              |                           |          |
| 25.60 - 26.74m :<br>Recovered a<br>angular fine to cc<br>density, light g<br>26.27 - 26.85m :<br>Recovered a<br>angular fine to cc | Drilling disturbed, recovered non-intact.<br>as: light greyish white silty subangular to<br>parse GRAVEL. Gravel is weak, medium<br>reyish white with frequent black specks.<br>Drilling disturbed, recovered non-intact.<br>as: light greyish white silty subangular to<br>carse GRAVEL with occasional cobbles.<br>medium density, light greyish white with<br>frequent black specks. |                                                                                                          |                                                |                | 26.22 - 26.27<br>25.60 - 27.10 | D<br>RC | 102    |       |                 |                 |      |                     | 83<br>8<br>0 |                           |          |
|                                                                                                                                    | 5-27.10m : Assumed zone of core loss.<br>Drilling disturbed, recovered non-intact.                                                                                                                                                                                                                                                                                                      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1              | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                |                                |         |        |       |                 |                 |      |                     |              |                           |          |
| Recovered a<br>angular fine to co                                                                                                  | Drilling disturbed, recovered non-intact.<br>as: light greyish white silty subangular to<br>oarse GRAVEL with occasional cobbles.<br>medium density, light greyish white with<br>frequent black specks.                                                                                                                                                                                 |                                                                                                          | -<br>-<br>-<br>-<br>-<br>-<br>-;:95)<br>-      |                |                                |         |        |       |                 |                 |      |                     |              | NIDO<br>80<br>250         |          |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          | -                                              |                | 27.10 - 28.60                  | RC      | 102    |       |                 |                 |      |                     | 80<br>0<br>0 |                           |          |
| 28.30                                                                                                                              | 0-28.60m : Assumed zone of core loss.                                                                                                                                                                                                                                                                                                                                                   | 4<br>4<br>4<br>4                                                                                         | -<br>-<br>-                                    |                |                                | l       |        |       |                 |                 |      |                     |              |                           |          |
| Recovered a<br>angular fine to co                                                                                                  | Drilling disturbed, recovered non-intact.<br>as: light greyish white silty subangular to<br>oarse GRAVEL with occasional cobbles.<br>medium density, light greyish white with<br>frequent black specks.                                                                                                                                                                                 | 6.<br>6.<br>6.<br>6.<br>6.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7.<br>7. | -<br>-<br>-<br>-<br>-<br>-                     |                |                                |         |        |       |                 |                 |      |                     | 00           |                           |          |
| 29.10 - 29.40m : Nr                                                                                                                | atural gamma log shows slight elevation                                                                                                                                                                                                                                                                                                                                                 | f-                                                                                                       | -                                              |                | 28.60 - 29.60                  | RC      | 102    |       |                 | 1               |      |                     | 80           |                           |          |
|                                                                                                                                    | in readings with peak at 29.2m.<br>n : Rinded nodular ffint fragments (up to<br>2mm).                                                                                                                                                                                                                                                                                                   |                                                                                                          | -                                              |                |                                |         |        |       |                 |                 |      |                     | 0            |                           |          |
| 29.89 - 30.14m :                                                                                                                   | Drilling disturbed, recovered non-intact.                                                                                                                                                                                                                                                                                                                                               | r.<br>r.<br>f.                                                                                           | -<br>-<br>-                                    |                | 29.73 - 29.89<br>29.60 -30.10  | C<br>RC | 102    |       |                 |                 |      |                     | 32<br>32     |                           |          |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          |                                                | l              |                                |         | !      | 1     |                 | i i             |      |                     |              |                           |          |

| •barn                                                                                                                                                                                                                                                                                                                                                                                                               | E                                                                                                                                                                                                      | BORE                          | НО             | LE L                           | .00   | G       |             |                    |          | N                  | 1L04                               | hole N<br>3-RC<br>et 7 of | 004          |                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------|--------------------------------|-------|---------|-------------|--------------------|----------|--------------------|------------------------------------|---------------------------|--------------|------------------------------------------|
| Project Name:                                                                                                                                                                                                                                                                                                                                                                                                       | Amersham Tunnel to Calvert                                                                                                                                                                             |                               |                | Survey G                       |       | em:     |             | OSGB               |          | ole Typ            |                                    |                           | R            | O+RC                                     |
| Project No:                                                                                                                                                                                                                                                                                                                                                                                                         | 1G063-AAZ.                                                                                                                                                                                             |                               |                | Co-ordina                      | tes:  |         |             | 3221.20<br>3983.21 |          | heckec<br>pprove   | •                                  |                           | F            | DD<br>PMcG                               |
| Client:                                                                                                                                                                                                                                                                                                                                                                                                             | High Speed 2 (HS2) Ltd                                                                                                                                                                                 |                               |                | Ground Le                      | evel: |         |             | 131.41 ı           |          | cale:              | <i></i> ,                          |                           |              | 1:25                                     |
| Engineer:                                                                                                                                                                                                                                                                                                                                                                                                           | High Speed 2 (HS2) Ltd                                                                                                                                                                                 |                               |                |                                |       |         |             |                    |          | og Sta             |                                    |                           |              | FINAL                                    |
| Date Started:<br>Date Completed:                                                                                                                                                                                                                                                                                                                                                                                    | 16/11/2016<br>22111/2016                                                                                                                                                                               |                               |                | Orientation<br>Inclination     |       |         |             |                    | U        | rint Da<br>inal De |                                    |                           | 21/11/<br>65 | /2017<br>5.60m                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                        | Dep                           |                |                                |       | ling, C | oring and h |                    |          |                    | TCR                                |                           |              |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                     | Stratum Description                                                                                                                                                                                    | Legend (Thiones) (Thiones) (m | s) (m)         | Depth<br>(m)                   | Туре  | (Ria)   | ) Rec Bloy  | (S) Test           | Test Res | ult Unit           | SCR<br>SRØ4D                       |                           | Weter        | Well<br>Backfi                           |
| Recovered as<br>angular fine to co                                                                                                                                                                                                                                                                                                                                                                                  | Drilling disturlled, recovered non-intact.<br>s: light greyish white silty subangular to<br>arse GRAVEL with occasional cobbles.<br>nedium density, light greyish white with<br>frequent black specks. |                               |                | 30.10 -31.60                   | RC    | 102     |             |                    |          |                    | 57<br>33                           | NIDO<br>BO<br>250         |              | აი ფი ფი ფი ფი ფი ფი ფი<br>              |
| Assumed zone of co                                                                                                                                                                                                                                                                                                                                                                                                  | re loss. Very weak chalk                                                                                                                                                                               |                               |                |                                |       |         |             |                    |          |                    | 20                                 | NR                        |              | \$6°\$°°\$°°\$°°\$°°\$°                  |
| with frequent black s<br>Fracture set 1: horizz<br>(NI/100/150mm), pla<br>rough, dean locally in<br>Fracture set 2: 30 to<br>(50/300/600mm), pla<br>rough, dean. Fractur<br>planar slightly rough,<br>occasional orange st<br>[New Pit Chalk Form<br>31.65 - 32.31m : 1<br>Recovered a:<br>angular fine to co<br>Gravel is weak, r<br>32.39 - 32.50m : 1<br>Recovered a:<br>angular fine to co<br>density, light gr |                                                                                                                                                                                                        |                               | <b>5</b> 99.76 | 31.60 -33.10<br>32.45 - 32.54  |       | 102     |             |                    |          |                    | 87<br>30<br>0                      |                           |              | कुए  |
| 32.90                                                                                                                                                                                                                                                                                                                                                                                                               | - 33. 10m : Assumed zone or Core loss.<br>34.40 - 34.70m : Drilling disturlled.                                                                                                                        |                               | ;)             | 33.10 - 34.10<br>34.10 - 34.60 |       | 102     |             |                    |          |                    | 100<br>34<br>10<br>100<br>60<br>28 | NIDO<br>100<br>150        |              | o Seo Seo Seo Seo Seo Seo Seo Seo Seo Se |
| 34.81 - 35.35m : L                                                                                                                                                                                                                                                                                                                                                                                                  | Drilling disturtied, recovered non-intact.                                                                                                                                                             |                               |                | 34.71 -34.81                   |       |         |             |                    |          |                    |                                    |                           |              | 80.80.80                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                        |                               | Ι              | 30.00 - 40.00                  |       |         |             | Fallino<br>Head    | 1.1E00   | 5 m/s              |                                    |                           |              | ~9                                       |

Stratum depths measured along borehole axis.

Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn                                                                                                                | E                                                                                                                                                                                                                                                                        | BOR       | EHO                                  | LE L                           | 00      | 3     |       |                 |                    |          | N                 | 1L04            | hole I<br>3-RC<br>et 8 of | 004               | ļ                                        |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------|--------------------------------|---------|-------|-------|-----------------|--------------------|----------|-------------------|-----------------|---------------------------|-------------------|------------------------------------------|
| Project Name:                                                                                                        | Amersham Tunnel to Calvert                                                                                                                                                                                                                                               |           |                                      | Survey Gr<br>Co-ordinat        |         | em:   |       |                 | SGB<br>1.20 n      |          | ole Typ<br>hecked | be:             | 5100                      |                   | ۱+O۶                                     |
| Project No:<br>:lient:                                                                                               | 1G063-AAZ.<br>High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                     |           |                                      | Ground Le                      |         |       |       | 19898           | 33.21 n<br>31.41 m | nN A     | oprove            | -               |                           |                   | PM<br>1:2                                |
| ngineer:<br>ate Started:                                                                                             | High Speed 2 (HS2) Ltd<br>16/11/2016                                                                                                                                                                                                                                     |           |                                      | Orientation                    | ו:      |       |       |                 | d                  |          | og Sta<br>rint Da |                 |                           | 21/1 <sup>-</sup> | FIN<br>1/20                              |
| Date Completed:                                                                                                      | 22111/2016                                                                                                                                                                                                                                                               |           | anth                                 | Inclination                    |         | ing C | oring | andh Sit        | 90 d               | •        | inal De           | pth:            | If as in                  | -                 | 65.6                                     |
|                                                                                                                      | Stratum Description                                                                                                                                                                                                                                                      | Legend (T | epth<br>hick-Level<br>ess) (m)<br>m) | Depth<br>(m)                   | Type    | 1     | Rec   | Blows<br>(mins) |                    | Test Res | ult Unit          | SCR             | Ifave                     |                   | r Ba                                     |
|                                                                                                                      |                                                                                                                                                                                                                                                                          |           |                                      |                                |         |       |       |                 |                    |          |                   |                 |                           |                   | 9°0 3°0 3°0 3°0 3°0 3°0                  |
|                                                                                                                      |                                                                                                                                                                                                                                                                          |           |                                      |                                |         |       |       |                 |                    |          |                   |                 |                           |                   | 9 බහි මේ මේ මේ මේ මේ මේ                  |
| density, light greyish                                                                                               | covered non-intact. Very weak, low<br>white CHALK with frequent black                                                                                                                                                                                                    |           | <b>2.60</b> 93.81                    | 37.23 - 37.47<br>37.10 - 37.60 | C<br>RC | 102   |       |                 |                    |          |                   | 100<br>60<br>50 |                           | _                 | ං පිං පිං පිං පිං පිං පිං පිං පිං පිං පි |
| norizontal closely sp<br>clean. Fracture set 2<br>smooth to slighUy ro<br>New Pit Chalk Form                         | range staining. Fracture set 1:<br>aced, undulating slighUy rough,<br>2: 70 degrees to vertical, undulating<br>nugh, clean. (Grade: A3)<br>nation]<br>Drilling disturbed, recovered non-intact.                                                                          |           | 30)                                  | 37.60 -39.10                   | RC      | 102   |       |                 |                    |          |                   | 87<br>0<br>0    | NIDO<br>30                |                   | 0 20 20 20 20 20 20 20 20 20 20 20       |
| Assumed zone of co                                                                                                   | pre loss.                                                                                                                                                                                                                                                                |           | 92.51 92.51                          |                                |         |       |       |                 |                    |          |                   |                 | NR                        |                   | 000000                                   |
| with frequent black<br>staining. Fracture se<br>spaced (80/130/250)<br>slighUy rough, clear<br>vertical, planar smoo | density, light greyish white CHALK<br>specks and occasional orange<br>t 1: horizontal to 30 degrees closely<br>, planar smooth to undulating<br>b. Fracture set 3: 70 degrees to<br>that to undulating slighUy rough,<br>strength close to fractures. (Grade:<br>mation] |           | 92.31                                | 39.10 - 40.10                  | RC      | 102   |       |                 |                    |          |                   | 100<br>0<br>0   |                           |                   | විර වර වර වර විර විර විර විර             |

| •barn<br>ritchies  | E                                                                                  | ORE                             | HO             | LE L                    | 00      | 3      |                                                  |                  |               |                   | ML04                 | hole N<br>3-RC<br>et 9 of | 004     |
|--------------------|------------------------------------------------------------------------------------|---------------------------------|----------------|-------------------------|---------|--------|--------------------------------------------------|------------------|---------------|-------------------|----------------------|---------------------------|---------|
| roject Name:       | Amersham Tunnel to Calvert                                                         |                                 |                | Survey Gr<br>Co-ordinat | -       | em:    |                                                  | OSGB<br>221.20 1 | nF            | Hole Ty<br>Checke |                      |                           | RO      |
| roject No:         | 1G063-AAZ.                                                                         |                                 |                |                         |         |        | 198                                              | 983.21 i         | mΝ            | Approv            | -                    |                           | Ρ       |
| lient:<br>ngineer: | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd                                   |                                 |                | Ground Le               | evel:   |        |                                                  | 131.41 r         | nOD           | Scale:<br>Log St  | atus:                |                           | 1<br>FI |
| ate Started:       | 16/11/2016                                                                         |                                 |                | Orientatior             | n:      |        |                                                  | (                | leg.          | Print D           |                      |                           | 21/11/2 |
| ate Completed:     | 22111/2016                                                                         |                                 |                | Inclination:            |         |        |                                                  | 90 0             | 0             | Final D           |                      |                           | 65.     |
| :                  | Stratum Description                                                                | Depth<br>Legend (Thick<br>ness) | - Level<br>(m) | Depth                   |         | 1      | oring and hard hard hard hard hard hard hard har |                  | ing<br>Test F | Result Un         | TCR<br>SCR<br>ts RØD | lfmin<br>Ifave<br>Ifmmax  | Weter   |
|                    |                                                                                    | (m)                             | + ``           | (m)                     | Туре    | (mm)   | Rec Blows<br>% (mins                             | )                |               |                   |                      | ,                         |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   | 100                  |                           |         |
|                    |                                                                                    |                                 |                | 40.10 - 40.60           | RC      | 102    |                                                  |                  |               |                   | 0                    |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
| 41.00-             | 41.05m : Heavy dark orange staining.                                               |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                | 41.07 - 41.33           | с       |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                | 40.60 - 42.10           | RC      | 102    |                                                  |                  |               |                   | 100<br>37            |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   | 37                   |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      | 80                        |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      | 130<br>250                |         |
|                    |                                                                                    | _TT                             |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    | 42.72 - 42.B4m : Drilling disturbed.                                               |                                 |                | 42.10 - 43.60           | RC      | 102    |                                                  |                  |               |                   | 100<br>43            |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   | 43                   |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
| Recovered as: lig  | Drilling disturbed, recovered non-intact.                                          |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
| medium density     | ine to coarse GRAVEL. Gravel is weak,<br>, light greyish white with frequent black |                                 |                | 44.13 - 44.30           | с       |        |                                                  |                  |               |                   | 100                  |                           |         |
| specks. Matrix     | k is soft grey clay. Possible marl seam?                                           |                                 |                | 43.60 - 45.10           | RC      | 102    |                                                  |                  |               |                   | 100<br>32<br>21      |                           |         |
|                    |                                                                                    |                                 |                |                         | -       |        |                                                  |                  |               |                   |                      |                           |         |
| 44.53 - 44.66m : D | Prilling disturbed, recovered non-intact.                                          |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    |                                                                                    | <u> </u>                        |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
| Stratum depths mea | sured along borehole axis.                                                         |                                 |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |
|                    | may be subject to seasonal, tidal and                                              | other fluctuation               | ns and s       | hould not be            | taken a | as con | stant.                                           |                  |               |                   |                      |                           |         |
|                    |                                                                                    | Exploratory Ho                  |                |                         |         |        |                                                  |                  |               |                   |                      |                           |         |

| •barn<br>ritchies                                                                                                                                                                                                                                                                                | BORE                                    | но           | LE L                           | 00            | 3           |         |                            |                    |               | N                             | L04               | hole N<br>3-RC<br>t 10 o | 004      |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|--------------------------------|---------------|-------------|---------|----------------------------|--------------------|---------------|-------------------------------|-------------------|--------------------------|----------|-----------------------|
| Project Name: Amersham Tunnel to Calvert                                                                                                                                                                                                                                                         |                                         |              | Survey Gr<br>Co-ordinat        | -             | em:         |         | 49322                      | 9SGB<br>21.20 r    |               | Hole Typ<br>Checked           | By:               |                          |          | O+RC<br>DE            |
| Project No: 1G063-AAZ.<br>Client: High Speed 2 (HS2) Ltd<br>Engineer: High Speed 2 (HS2) Ltd                                                                                                                                                                                                     |                                         |              | Ground Le                      | evel:         |             |         |                            | 33.21 r<br>31.41 n |               | Approved<br>Scale:<br>Log Sta | -                 |                          |          | PMcG<br>1:25<br>FINAI |
| Date Started: 16/11/2016<br>Date Completed: 22111/2016                                                                                                                                                                                                                                           |                                         |              | Orientation                    |               |             |         |                            | d<br>90 d          | •             | Print Dat<br>Final De         | e:                |                          | 21/11    |                       |
| Stratum Description                                                                                                                                                                                                                                                                              | Legend Depth<br>(Thick-<br>ness)<br>(m) | Level<br>(m) | Depth<br>(m)                   | Sampl<br>Type | 1           | Rec     | andh Si<br>Blows<br>(mins) | tu Testi<br>Test   | ing<br>Test R | tesult Unit                   | TCR<br>SCR<br>RØD | lfmin<br>Ifave<br>(mna)x | Weter    | We<br>Back            |
| 45.88 - 46.36m : Drilling disturbed, recovered non-intact.<br>46.60 - 47.06m : Drilling disturbed, recovered non-intact.<br>Locally with darl< yellow staining.                                                                                                                                  |                                         | -            | 45.10 - 46.60                  | RC            | 102         |         |                            |                    |               |                               | 100<br>52<br>31   |                          |          |                       |
| 47.57 - 48.30m : Drilling disturbed, recovered non-intact.                                                                                                                                                                                                                                       |                                         |              | 47.12 - 47.26<br>46.60 - 48.10 | C<br>RC       | 102         |         |                            |                    |               |                               | 100<br>23<br>16   | 80<br>130<br>250         |          |                       |
| 48.30 - 48.78m : Drilling disturbed, recovered non-intact                                                                                                                                                                                                                                        |                                         |              |                                |               |             |         |                            |                    |               |                               |                   |                          |          |                       |
| Recovered as: light greyish white silty subangular to<br>angular fine to coarse GRAVEL. Gravel is weak, medium<br>density, light greyish white with frequent black specks.                                                                                                                       |                                         |              |                                |               |             |         |                            |                    |               |                               |                   |                          |          |                       |
| 48.78 - 50.37m : Drilling disturbed, recovered non-intact.                                                                                                                                                                                                                                       |                                         |              | 48.10 - 49.60                  | RC            | 102         |         |                            |                    |               |                               | 73<br>0<br>0      |                          |          |                       |
| Assumed zone of core loss. Very weak chalk.                                                                                                                                                                                                                                                      |                                         | 62.21        |                                |               |             |         |                            |                    |               |                               |                   | NR                       |          |                       |
| Very weak, medium density light greyish white CHALK<br>with frequent black specks and locally orange staining.<br>Fracture set 1: horizontal to 30 degrees closely spaced<br>(80/130/250mm), planar smooth to undulating slighUy<br>rough, clean. Fracture set 2: 30 to 70 degrees medium        | 49.60                                   | 61.81        |                                |               |             |         |                            |                    |               |                               |                   |                          | -        |                       |
| Stratum depths measured along borehole axis.<br>Groundwater levels may be subject to seasonal, tidal and<br>Explanation of symbols and abbreviations given in 'Key the<br>Further details given on appended 'Borehole Information'<br>Office: BAM Ritchies, Glasgow Road, Kilsyth, Glasgow G65 9 | o Exploratory Ho<br>Sheer.              |              | hould not be t                 | taken a       | l<br>as con | lstant. |                            | <u> </u>           | <u> </u>      |                               | I R Bor           | <u> </u>                 | <u> </u> | <u> </u>              |

| •barn                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                        | BOF     | RE                                | HO             | LE L                                 | 00           | G       |                                          |                                     | ML04                                                               | hole N<br>3-RC(<br>t 11 of | 004                                  |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|----------------|--------------------------------------|--------------|---------|------------------------------------------|-------------------------------------|--------------------------------------------------------------------|----------------------------|--------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:                                                                               | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                             |         |                                   |                | Survey Gr<br>Co-ordinat<br>Ground Le | es:          | tem:    | 493221<br>198983                         | GB<br>.20 mE<br>3.21 mN<br>1.41 mOD | Hole Type:<br>Checked By:<br>Approved By:<br>Scale:<br>Log Status: |                            | RO+RC<br>DD<br>PMcG<br>1:25<br>FINAL |
| Date Started:<br>Date Completed:                                                                                                   | 16/11/2016<br>22/11/2016                                                                                                                                                                                                                                                                                                                                                                                 |         |                                   |                | Orientatior<br>Inclination           |              |         |                                          | deg.<br>90 deg.                     | Print Date:<br>Final Depth:                                        | :                          | 21/11/2017<br>65.60m                 |
|                                                                                                                                    | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                      | Legen   | Depth<br>d (Thick<br>ness)<br>(m) | - Level<br>(m) | Depth<br>(m)                         | Samp<br>Type | -       | ring and h Situ<br>Rec Blows<br>% (mins) | -                                   | Result Units                                                       | If min<br>1 V:,.<br>(mm)   | water B:;'                           |
| slightly rough, clean<br>brown clay. Fracture<br>smooth to undulating                                                              | ugate, planar smooth to undulating<br>rarely infilled (<3mm) with soft<br>set 3: 70 degrees to vertical, planar<br>g slightly rough, clean. Locally with<br>r laminations (marl wisps). (Grade:                                                                                                                                                                                                          |         |                                   |                | 49.60 - 50.60                        | RC           | 102     | ,                                        |                                     | 70<br>100<br>20<br>13                                              |                            |                                      |
|                                                                                                                                    | nation]<br>Drilling disturbed, recovered non-intact.<br>xtremely closely spaced drilling induced<br>fractures.                                                                                                                                                                                                                                                                                           |         |                                   |                | 50.50 - 50.60<br>50.60 -51.10        | D<br>RC      | 102     |                                          |                                     | 100                                                                |                            |                                      |
| 51.52 - 51.62m :                                                                                                                   | Drilling disturbed, recovered non-intact.                                                                                                                                                                                                                                                                                                                                                                |         |                                   |                |                                      |              |         |                                          |                                     | 0                                                                  |                            |                                      |
| 51.86 - 52.0Bm : :                                                                                                                 | Drilling disturbed, recovered non-intact.                                                                                                                                                                                                                                                                                                                                                                |         |                                   |                | 51.10 -52.60                         | RC           | 102     |                                          |                                     | 100<br>49<br>40                                                    | 80                         |                                      |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                   |                | 52.60-52.90                          | C            |         |                                          |                                     |                                                                    | 130<br>250                 |                                      |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                   |                | 52.60 - 54.10                        | RC           | 102     |                                          |                                     | 100<br>43<br>43                                                    |                            |                                      |
| 54.41 - 54.65m :<br>Recovered a<br>angular fine 10 cc<br>density, light g<br>54.65 - 54.85m :<br>Recovered a<br>angular fine 10 cc | Drilling disturbed, recovered non-intact.<br>Drilling disturbed, recovered non-intact.<br>s: light greyish white silty subangular 10<br>parse GRAVEL. Gravel is weak, medium<br>reyish white with frequent black specks.<br>Drilling disturbed, recovered non-intact.<br>s: light greyish white silty subangular 10<br>parse GRAVEL with occasional cobbles.<br>medium density, light greyish white with |         |                                   |                | 54.10 -55.60                         | RC           | 102     |                                          |                                     | 100<br>65<br>45                                                    |                            |                                      |
| Groundwater levels<br>Explanation of sym                                                                                           | asured along borehole axis.<br>may be subject to seasonal, tidal and<br>bols and abbreviations given in 'Key to<br>n on appended 'Borehole Infonmation S                                                                                                                                                                                                                                                 | Explora |                                   |                | hould not be t                       | aken a       | as cons | tant.                                    |                                     |                                                                    |                            |                                      |
| Office: BAM Ritchie                                                                                                                | es, Glasgow Road, Kilsyth, Glasgow G659B                                                                                                                                                                                                                                                                                                                                                                 | L       |                                   |                |                                      |              |         |                                          |                                     | BAM R Bor                                                          | ehole Lo                   | og 06/041201                         |

| •barn                   | E                                                                              | BOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Eł                    | HO             | LE L                     | 00     | 3      |          |         |               |     |                 | ML04           | ehole N<br>3-RC<br>et 12 of | 004     |          |
|-------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|--------------------------|--------|--------|----------|---------|---------------|-----|-----------------|----------------|-----------------------------|---------|----------|
| Project Name:           | Amersham Tunnel to Calvert                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                | Survey Gri<br>Co-ordinat |        | em:    |          |         | SGB<br>1.20 n | ηE  | Hole T<br>Check |                |                             |         | ۹+C<br>ا |
| Project No:             | 1G063-AAZ.                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          | 19898   | 3.21 n        | ηN  |                 | ed By:         |                             | F       | РM       |
| Client:                 | High Speed 2 (HS2) Ltd                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                | Ground Le                | vel:   |        |          | 13      | 1.41 m        | OD  | Scale:          |                |                             |         | 1:2      |
| Engineer:               | High Speed 2 (HS2) Ltd                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     | Log S           | tatus:         |                             | F       | FIN      |
| Date Started:           | 16/11/2016                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                | Orientation              | :      |        |          |         | d             | eg. | Print D         | ate:           |                             | 21/11/  | /20      |
| Date Completed:         | 22111/2016                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                | Inclination:             |        |        |          |         | 90 d          | eg. | Final           | Depth:         |                             | 65      | 5.6      |
|                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth                 |                |                          | Sampl  | ing, C | oring ar | ndh Sit | u Testi       | ng  |                 | TCF            | Ifmin                       |         | Γ        |
| S                       | tratum Description                                                             | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Thick<br>hess)<br>(m) | - Level<br>(m) | Depth<br>(m)             | Туре   | Dia    | Rec E    |         |               | 0   | esult Ui        | SCF<br>nits RØ | Ifave                       | Weter I | ۱<br>Ba  |
|                         | rilling disturlled, recovered non-intact.                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | -              |                          |        |        |          |         |               |     |                 |                |                             | 1       |          |
|                         | light greyish white silty subangular to<br>rse GRAVEL with occasional cobbles. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
| Gravel is weak, m       | edium density, light greyish white with                                        | r r -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
| 54 85 - 55 50m · C      | frequent black specks.<br>rilling disturlled, recovered non-intact.            | TT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
| Recovered as.           | light greyish white silty subangular to                                        | TTT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         | rse GRAVEL. Gravel is weak, medium<br>yish white with frequent black specks.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
| density, light gre      | yish while with hequent black specks.                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                | TT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                     |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                | Fr Fr E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 | 100            |                             |         |          |
|                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                | 55.60 -57.10             | RC     | 102    |          |         |               |     |                 | 100<br>33      |                             |         |          |
|                         |                                                                                | T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                |                          |        |        |          |         |               |     |                 | 32             |                             |         |          |
|                         |                                                                                | TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                | 56.46 - 56.66            | с      |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                | TTT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                |                          |        |        |          |         |               |     |                 |                | 80                          |         |          |
|                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                | 130<br>250                  |         |          |
|                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                | 200                         |         |          |
|                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                | T_T_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                | TT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                | The party of the p |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
| 57.51 - 57.68m : Di     | illing disturlled, recovered non-intact.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 | 100            |                             |         |          |
|                         |                                                                                | T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                | 57.10 -58.60             | RC     | 102    |          |         |               |     |                 | 100<br>  45    |                             |         |          |
|                         |                                                                                | fr fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                |                          |        |        |          |         |               |     |                 | 34             |                             |         |          |
|                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                | h h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                | TTT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
| Very weak locally wea   | k, medium to high density, light                                               | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.41                  | 73.00          |                          |        |        |          |         |               |     |                 |                |                             |         |          |
| greyish white CHALK     | with frequent black specks, and                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         | and abundant shell fragments.<br>ntal to 20 degrees, closely spaced            | Fr Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
| (55/110/260mm), und     | ulating slighUy rough, clean rarely                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
| infilled (<3mm) with so | oft orangish brown and soft                                                    | r r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         | acture set 2: 30 to 70 degrees,<br>ugh, clean rarely infilled (<1mm)           | T TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
| with soft orangish bro  | wn clay. Fracture set 3: 80 degrees                                            | T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         | slighUy rough, with frequent black                                             | Fr Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                | 59.04 - 59.20            | с      |        |          |         |               |     |                 |                |                             |         |          |
|                         | ng, rarely infilled (<1mm) with soft<br>th thin interwoven grey laminations    | THE PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                |                          |        |        |          |         |               |     |                 | 100            |                             |         |          |
| (marl wisps). (Grade:   | A3/4)                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                | 58.60 - 60.10            | RC     | 102    |          |         |               |     |                 | 60<br>33       |                             |         |          |
| [Holywell Nodular Cha   | aik Fonmationj                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          | -      |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                | T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                | TT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                | TT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                | Fr Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
| Stratum denths moor     | sured along borehole axis.                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         | L        |
| •                       | •                                                                              | other fluct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ation                 | e and d        | hould not be t           | akon - | 16 00r | etant    |         |               |     |                 |                |                             |         |          |
|                         | nay be subject to seasonal, tidal and obles and abbreviations given in 'Key to |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          | aren a | as con | oldi II. |         |               |     |                 |                |                             |         |          |
|                         | on appended 'Borehole Information S                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y 110                 | 100            |                          |        |        |          |         |               |     |                 |                |                             |         |          |
|                         |                                                                                | 1001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |
| r unifier details given |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                          |        |        |          |         |               |     |                 |                |                             |         |          |

| •barn                           |                                                                                                                               | BOF      | RE               | HO    | LE L                       |         |        |         |                 |                   |         |                    | ML04<br>Shee | ehole N<br>3-RC<br>et 13 of | 004<br>f 14  |                          |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------|------------------|-------|----------------------------|---------|--------|---------|-----------------|-------------------|---------|--------------------|--------------|-----------------------------|--------------|--------------------------|
| Project Name:                   | Amersham Tunnel to Calvert                                                                                                    |          |                  |       | Survey Gr<br>Co-ordinat    |         | em:    |         |                 | SGB<br>1.20 m     | ηE      | Hole T<br>Check    |              |                             | RC           | +F<br>ב                  |
| Project No:<br>lient:           | 1G063 -AAZ.<br>High Speed 2 (HS2) Ltd                                                                                         |          |                  |       | Ground Le                  | evel:   |        |         |                 | 3.21 m<br>31.41 m |         | Approv<br>Scale:   | ed By:       |                             |              | РМс<br>1:25              |
| ngineer:                        | High Speed 2 (HS2) Ltd                                                                                                        |          |                  |       |                            |         |        |         |                 |                   |         | Log S              |              |                             | F            | =IN/                     |
| ate Started:<br>Date Completed: | 16/11/2016<br>22/11/2016                                                                                                      |          |                  |       | Orientatior<br>Inclination |         |        |         |                 | d<br>90 d         | •       | Print D<br>Final D |              |                             | 21/11/<br>65 | /20 <sup>,</sup><br>5.60 |
| Ş                               | Stratum Description                                                                                                           | Legend   | Depth<br>(Thick- | Level | 5.4                        | Sampl   | 1      | -       | indh Sit        | u Testi           | ng      | Result Ur          | TCR          | lfmin<br>Ifave              |              | _ w                      |
|                                 | ·                                                                                                                             |          | ness)<br>(m)     | (m)   | Depth<br>(m)               | Туре    | (mm)   | )       | Blows<br>(mins) | Test              | l est l | result Ur          | nits Real    | ) (rnma):                   | Weter        | вас                      |
|                                 |                                                                                                                               | , r , r  | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 | rilling disturl:Jed, recovered non-intact.<br>tured zone, evidence of two 50 degree                                           |          | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
| 1 000 <i>1019 mgmy m</i> ao     | clay filled fractures.                                                                                                        | T T      | _                |       | 60.10 -61.60               | RC      | 102    |         |                 |                   |         |                    | 100<br>27    |                             |              |                          |
|                                 |                                                                                                                               | TT       | -                |       | 00.10 -01.00               |         | 102    |         |                 |                   |         |                    | 27           |                             |              |                          |
|                                 |                                                                                                                               | TT       | _                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               | TT       | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               | T T      | _                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | -                |       | 61.75 -62.01               | с       |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | Ē                |       | 01.75-02.01                |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               | T T      | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               | T T      | -                |       | 61.60 -63.10               | RC      | 102    |         |                 |                   |         |                    | 100<br>BO    |                             |              |                          |
| 62.40                           | - 62.45m : Heavy dark yellow staining.                                                                                        | TT       |                  |       |                            |         |        |         |                 |                   |         |                    | 63           | 55<br>110                   |              |                          |
|                                 |                                                                                                                               | TT       | 5                |       |                            |         |        |         |                 |                   |         |                    |              | 260                         |              |                          |
|                                 |                                                                                                                               | T T      | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               | T T      | =                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               | T P      | _                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               | I I I    | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | _                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               | T T      | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               | ГГ       | _                |       |                            |         |        |         |                 |                   |         |                    | 100          |                             |              |                          |
|                                 |                                                                                                                               | T T      | -                |       | 63.10 -64.60               | RC      | 102    |         |                 |                   |         |                    | 40<br>33     |                             |              |                          |
|                                 |                                                                                                                               | T T      | _                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               | T T      | _                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | _                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          | -                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               | T T      | Ē                |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 |                                                                                                                               |          |                  |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |
|                                 | sured along borehole axis.                                                                                                    | other fl | tuoti-           | 0 00- | hould not be               | tokor - |        | otor*   |                 |                   |         |                    |              |                             |              |                          |
|                                 | may be subject to seasonal, tidal and only one subject to seasonal, tidal and only only to and abbreviations given in 'Key to |          |                  |       |                            | акеп а  | as cor | เรเสทโ. |                 |                   |         |                    |              |                             |              |                          |
|                                 | on appended 'Borehole Information S                                                                                           |          |                  |       |                            |         |        |         |                 |                   |         |                    |              |                             |              |                          |

| •barn<br>ritchies                                                                                                                                                                                                                                                                                                                                 | E                                                                                                          | BORE                        | НО                      | LE L                                               | .00           | G      |       |                |                                            |           |                               | ML                        | orehole<br>043-R(<br>eet 14 c       | 2004 |                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|----------------------------------------------------|---------------|--------|-------|----------------|--------------------------------------------|-----------|-------------------------------|---------------------------|-------------------------------------|------|-------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started:                                                                                                                                                                                                                                                                             | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>16/11/2016 |                             |                         | Survey Gi<br>Co-ordina<br>Ground Lo<br>Orientation | tes:<br>evel: | em:    |       | 49322<br>19898 | OSGB<br>21.20  <br>33.21  <br>31.41  <br>( | mN<br>mOD | Chec<br>Appro<br>Scale<br>Log | Type:<br>cked B<br>oved E | y:<br>3y:                           | R    | O+RC<br>DD<br>PMcG<br>1:25<br>FINAL |
| Date Completed:                                                                                                                                                                                                                                                                                                                                   | 22111/2016                                                                                                 | Duri                        |                         | Inclination                                        |               | ling ( | oring | andhS          |                                            | deg.      | Fina                          | I Depth                   |                                     |      | 5.60m                               |
|                                                                                                                                                                                                                                                                                                                                                   | Stratum Description                                                                                        | Legend (Thir<br>ness<br>(m) | k-Level                 | Depth<br>(m)                                       | Type          |        |       |                | Test                                       |           | Result l                      |                           | CR Ifmir<br>CR Ifave<br>20,D (mma)x |      | Well,<br>Backfi                     |
| greyish white CHALI<br>locally orange stainin<br>Fracture set 1: horiz<br>(55/110/260mm), un<br>infilled (<3mm) with<br>greenish grey clay. If<br>undulating slighUy m<br>with soft orangish br<br>to vertical, undulating<br>specks, orange stain<br>brown clay. Locally w<br>(marl wisps). (Grade<br>I[HolyWell Nodular C<br>Assumed zone of cc | halk Formation]                                                                                            | -Es5.60                     | <b>)</b> 66.01<br>65.81 | 64.60 - 65.60<br>65.05 - 65.33                     |               | 102    |       |                |                                            |           |                               | 4                         | 90<br>15<br>35<br>NR                | _    |                                     |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            | r.,<br>r.,<br>r.,<br>r.,    |                         |                                                    |               |        |       |                |                                            |           |                               |                           |                                     |      |                                     |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            | F<br>F<br>F                 |                         |                                                    |               |        |       |                |                                            |           |                               |                           |                                     |      |                                     |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            | F-<br>F-<br>F-              |                         |                                                    |               |        |       |                |                                            |           |                               |                           |                                     |      |                                     |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            | F-<br>F-<br>F-              |                         |                                                    |               |        |       |                |                                            |           |                               |                           |                                     |      |                                     |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            | r-<br>F-<br>F-              |                         |                                                    |               |        |       |                |                                            |           |                               |                           |                                     |      |                                     |

| Amersham Tunne           1G063 -AAZ           DD High Speed 2           High Speed 2 (H:           16/11/2016           22/11/2016           2/11/2016           IP           IP           16/11/2016           22/11/2016           Do High Speed 2 (H:           IP           IP           10/11/2017           RC           18/11/201           RC           18/11/201           10.00           15.00           15.00           15.00           15.00           36.10           36.10           36.10           36.10           36.10           36.10           36.10           36.10           36.10           54.10           54.10           54.60           65.60           65.60           65.60           65.60           65.60           2000           1000           1000           1000           1000           1000 <tr< th=""><th>2 (HS2) Ltd<br/>HS2) Ltd<br/>to 16/11/2016 Insulated digg<br/>16/11/2016 Insulated digg<br/>16/11/2016 Connacchio 3<br/>Connacchio 3<br/>Connacc</th><th>ging tools<br/>105 Geoboo<br/>(146)</th><th>Drill Bit     Drag bit     PCD     Hole Diameter     M     Dia.Imml     Dia.Imml     146     146     146     Chisellin II</th><th>s: 49 rel: nation Ria Crew B. Reeves B. Reeves B. Reeves B. Reeves Course (Itres) water</th><th>3221.20 mE (0<br/>8983.21 mN /<br/>131.41 mOD<br/> deg.<br/>90 deg. I<br/>Loaaer<br/>I.Soley<br/>B.Reeves<br/>A. Barnard<br/>25.00 168<br/>65.60 146<br/>46<br/>Added Records<br/>Ref</th><th>Sheet 1 of 1       Hole Type:     RO+R       Checked By:     Approved By:     PMc       Log Status:     FIN/       Date:     21/11/20       Final Depth:     65.60       Remarks       ina Diameter by Deoth       ml     Remarks       emarks     Colour       Drillino Flush Details     Colour       0     Polymer     No returns</th></tr<> | 2 (HS2) Ltd<br>HS2) Ltd<br>to 16/11/2016 Insulated digg<br>16/11/2016 Insulated digg<br>16/11/2016 Connacchio 3<br>Connacchio 3<br>Connacc | ging tools<br>105 Geoboo<br>(146)                                                                    | Drill Bit     Drag bit     PCD     Hole Diameter     M     Dia.Imml     Dia.Imml     146     146     146     Chisellin II                                                                                         | s: 49 rel: nation Ria Crew B. Reeves B. Reeves B. Reeves B. Reeves Course (Itres) water | 3221.20 mE (0<br>8983.21 mN /<br>131.41 mOD<br>deg.<br>90 deg. I<br>Loaaer<br>I.Soley<br>B.Reeves<br>A. Barnard<br>25.00 168<br>65.60 146<br>46<br>Added Records<br>Ref                        | Sheet 1 of 1       Hole Type:     RO+R       Checked By:     Approved By:     PMc       Log Status:     FIN/       Date:     21/11/20       Final Depth:     65.60       Remarks       ina Diameter by Deoth       ml     Remarks       emarks     Colour       Drillino Flush Details     Colour       0     Polymer     No returns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16/11/2016           22/11/2016           Troe         Start           IP         16/11201           RO         17/111201           RC         18/111201           Bolin 11-Drillina F           Deoth <ml< td="">         Casinahi           10.00         15.00           15.00         15.00           15.00         15.00           15.01         54.10           54.10         54.10           65.60         65.60           65.60         65.60           65.60         0.00</ml<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | End         Plan           016         16/112016         Insulated digg           016         17/1112016         Cornacchio 3           016         22/1112016         Cornacchio 3           aPrò         ress         Cornacchio 3           a Prò         ress         Start of shift           1         Depth Water (m)         Rema           28.91         start of shift           3.027         End of shill           3.027         End of shill           3.227         End of shill           3.28.82         start of shift           28.82         start of shift           End of shill         And shift           28.82         start of shift           End of shill         End of shill           Ant of shift         End of shill           Remarks         Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt Barre<br>ging tools<br>105<br>105<br>Geoboo<br>(146)<br>arks Deoth -<br>25.00<br>65.60<br>From (t | Inclination:<br>oratory Hole Inform<br>Drill Bit<br>Drag bit<br>PCD<br>Hole Diameter<br>M Dia.Imml<br>146<br>146<br>146                                                                                           | Ria Crew B. Reeves B. Reeves B. Reeves Water Olume (Itres) Details                      | deg.<br>90 deg.  <br><u>Loaaer</u><br>I.Soley<br><b>B.Reeves</b><br>A. Barnard<br>Casi<br>Deoth <ml dia.rmn<br="">25.00 168<br/>65.60 146<br/>Added Records<br/>Ref<br/>From (m) To (m) F</ml> | Date: 21/11/20 Final Depth: 65.60  Final Depth: 65.60  Remarks Inspection pit Ins |
| Tvoe         Start           IP         16/11/201           RO         17/11/201           RC         18/111/201           Bolin         11-Drillina F           Deoth <mi< td="">         Casinahi           10.00         10.00           15.00         15.00           15.00         15.00           36.10         36.10           36.10         36.10           54.10         54.10           65.60         65.60           65.60         0.00           Dept         Related F</mi<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 016         16/112016         Insulated digg           016         17/112016         Cornacchio 3           016         22/1112016         Cornacchio 3           016         22/1112016         Cornacchio 3           aPrò         ress         start of shill           1         DepthWater (m)         Rema           1         10.63         start of shill           1         28.91         start of shill           1         30.27         End of shill           1         28.88         start of shill           28.82         start of shill           28.83         start of shill           28.84         start of shill           28.85         start of shill           28.86         start of shill<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt Barre<br>ging tools<br>105<br>105<br>Geoboo<br>(146)<br>arks Deoth -<br>25.00<br>65.60<br>From (t | roratory Hole Inform     Drill Bit     Drag bit     PCD     Hole Diameter     Hole Diameter     146     146     146     146     Chisellin II                                                                      | Ria Crew B. Reeves B. Reeves B. Reeves Water Olume (Itres) Details                      | Loaaer<br>I. Soley<br>B. Reeves<br>A. Barnard<br>Deoth <ml dia.rmn<br="">25.00 168<br/>65.60 146<br/>Added Records<br/>Re<br/>From (m) To (m) F</ml>                                           | Remarks       Inspection pit       ina Diameter by Deoth       ml     Remarks       emarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IP         16/111201           RO         17/111201           RC         18/111201           Bolir         11-Drillina F           Deoth <ml< td="">         Casinahi           10.00         15.00           15.00         15.00           36.10         36.10           36.10         54.10           54.10         54.10           65.60         65.60           65.60         65.60           Dept         Related R</ml<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 016         16/112016         Insulated digg           016         17/112016         Cornacchio 3           016         22/1112016         Cornacchio 3           016         22/1112016         Cornacchio 3           aPrò         ress         start of shill           1         DepthWater (m)         Rema           1         10.63         start of shill           1         28.91         start of shill           1         30.27         End of shill           1         28.88         start of shill           28.82         start of shill           28.83         start of shill           28.84         start of shill           28.85         start of shill           28.86         start of shill<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | arks Deoth (146)<br>From (1<br>From (1<br>From (1<br>From (1)                                        | B         Drag bit<br>PCD           Hole Diameter         Hole Diameter           ml         Dia.Imml           168         146           n)         To (m)         V           Chisellin iE         Chisellin iE | B. Reeves<br>B. Reeves<br>B. Reeves<br>r bv Deoth<br>Remarks<br>olume (Iltres)          | I. Soley<br>B. Reeves<br>A. Barnard                                                                                                                                                            | Inspection pit ina Diameter by Deoth nl Remarks emarks Drillino Flush Details Returns (%) Flush Colou 0 Polymer- No returns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Depth <ml< th="">         Casinami           10.00         10.00           15.00         15.00           36.10         36.10           54.10         54.10           65.60         65.60           65.60         0.00</ml<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I         DepthWater (m)         Remain           0         8.57         End of shift           1         10.63         start of shift           0         28.47         End of shift           1         28.91         start of shift           1         30.27         End of shift           1         30.27         End of shift           2         28.88         start of shift           2         28.32         End of shift           2         28.32         End of shift           2         28.82         start of shift           28.82         start of shift           End of shill         Start of shift           Remarks         Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.00<br>65.60<br>From (r                                                                            | ml Dia.Imml<br>168<br>146<br>n) To (m) V<br>Chisellinit                                                                                                                                                           | Remarks Water Olume (Itres) Details                                                     | Death <ml< th="">         Dia.rmn           25.00         168           65.60         146           Added Records         Re           From (m)         To (m)</ml<>                           | nl Remarks<br>emarks<br>Drillino Flush Details<br>Returus (%) Flush Colou<br>0 Polymer- No returns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 36.10 36.10<br>36.10 36.10<br>54.10 54.10<br>54.10 54.10<br>65.60 65.60<br>65.60 65.60<br>0.00<br>Dept Related R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0)         28.47         End of shill           0)         28.91         start of shift           0)         30.27         End of shill           1)         28.88         start of shift           1)         28.82         End of shill           28.82         End of shill         End of shill           28.82         End of shill         End of shill           28.82         End of shill         End of shill           Remarks         Remarks         End of shill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                      | Chisellini                                                                                                                                                                                                        | olume (Iltres)                                                                          | R (<br>From (m) To (m) F                                                                                                                                                                       | Drillino Flush Details<br>Returns (%) Flush Colou<br>0 Polymer- No returns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Dept Related R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remarks<br>Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      | Chisellini                                                                                                                                                                                                        | Details                                                                                 | From (m) To (m) F                                                                                                                                                                              | Drillino Flush Details<br>Returns (%) Flush Colou<br>0 Polymer- No returns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | From (i                                                                                              |                                                                                                                                                                                                                   |                                                                                         | From (m) To (m) F                                                                                                                                                                              | Returns (%) Flush Colour<br>0 Polymer- No returns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                                                                                                                   |                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| water Strikes<br>rci(m) Ilme (mine) Depth (m) So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mo<br>Type Pipe ID Fron                                                                              | ilorino Installation F<br>(m) To (m) <b>Di</b> (mm)                                                                                                                                                               | Pioe Work<br>Pipe Type Remarks                                                          | From (m) To (m)                                                                                                                                                                                | Backfill Details<br>legend Desaiption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SP 1 0.0<br>SP 1 30.                                                                                 |                                                                                                                                                                                                                   | Plain<br>Slotted                                                                        | 0.00 0.10<br>0.10 0.50<br>0.50 30.00<br>30.00 40.00<br>40.00 65.60                                                                                                                             | 909     Upstanding cover       906     Concrete       903     Bentonite       902     Gravel       903     Bentonite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| slue Casino (m ater (r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (mi SWPen(mm Blows1 Pen1(mr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      | etration Test Results                                                                                                                                                                                             |                                                                                         | lows5 Fen5(mml Blow                                                                                                                                                                            | vs6 Pen6(mml <b>Hammer</b> E. Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                                                                                                                   |                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                                                                                                                   |                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reason for                                                                                           |                                                                                                                                                                                                                   |                                                                                         | Reason for Hole Termination: Reached scheduled depth                                                                                                                                           | Reason for Hole Termination: Reached scheduled depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| -barn<br>ritchies                               |                                                                                | BOF                                                                                                                                     | RE                       | HO             | LE L                   | .00   | 3       |       |                 |         |        | N                  | /L04          | hole N<br>3-RC<br>et 1 of | 007     |
|-------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|------------------------|-------|---------|-------|-----------------|---------|--------|--------------------|---------------|---------------------------|---------|
| Project Name:                                   | Amersham Tunnel to Calvert                                                     |                                                                                                                                         |                          |                | Survey Gi<br>Co-ordina |       | em:     |       |                 | 9.41 r  | nE     | Hole Ty<br>Checked | pe:           |                           | RO      |
| Project No:                                     | 1G063-AAZ.                                                                     |                                                                                                                                         |                          |                |                        |       |         |       | 19904           | 17.51 r | nN     | Approve            | d By:         |                           | Р       |
| client:                                         | High Speed 2 (HS2) Ltd                                                         |                                                                                                                                         |                          |                | Ground Le              | evel: |         |       | 13              | 30.68 r | nOD    | Scale:             |               |                           | 1       |
| ngineer:                                        | High Speed 2 (HS2) Ltd                                                         |                                                                                                                                         |                          |                |                        |       |         |       |                 |         |        | Log Sta            | itus:         |                           | FI      |
| ate Started:                                    | 14/12/2016                                                                     |                                                                                                                                         |                          |                | Orientation            | n:    |         |       |                 | d       | leg.   | Print Da           | te:           |                           | 21/11/2 |
| ate Completed:                                  | 21/12/2016                                                                     |                                                                                                                                         |                          |                | Inclination            | :     |         |       |                 | 90 d    | leg.   | Final De           | pth:          |                           | 56.     |
|                                                 |                                                                                |                                                                                                                                         | Depth                    |                |                        | Samp  | ling, C | oring | and h Si        | tu Test | ing    |                    | TCR           | Ifmin                     |         |
|                                                 | Stratum Description                                                            | Legen                                                                                                                                   | d (Thick<br>ness)<br>(m) | - Level<br>(m) | Depth<br>(m)           | Туре  | (Rifa)  | Rec   | Blows<br>(mins) | Test    | Test R | esult Unit         | SCR<br>s RØ4D |                           | water   |
| requent rootlets. Sa<br>ocsoill                 | brown slightly sandy CLAY with and is fine to medium.                          | <u> Willie</u>                                                                                                                          | - 0.20                   | 130.48         |                        |       |         |       |                 |         |        |                    |               |                           |         |
| low angular flint cob<br>ine to coarse of flint | n slightly sandy gravelly CLAY with<br>ble content. Gravel is subangular<br>t. |                                                                                                                                         | -<br>-(0.30)             |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
| Clay with flints]                               | ntly sandy gravelly SILT with low                                              | XXX                                                                                                                                     | 0.50                     | 130.18         |                        |       |         |       |                 |         |        |                    |               |                           |         |
| subangular flint cob                            | ble content. Gravel is angular to                                              | $\times \times $ | E                        |                | 0.50 -0.70             | LB    |         |       |                 |         |        |                    |               |                           |         |
| subangular fine to c                            | oarse of flint and chalk.                                                      | * * * ×                                                                                                                                 | F                        |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
| [Clay with flints]                              |                                                                                | *×·×·×                                                                                                                                  | E<br>(0.70)              |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                | × * ×<br>* × × ×                                                                                                                        | E <sup>(0.70)</sup>      |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                | × * *                                                                                                                                   | E                        |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                | ×*× ×                                                                                                                                   | F                        |                | 1.00-1.20              | LB    |         |       |                 |         |        |                    |               |                           |         |
| Drillers description:                           | Structureless CHALK with flints.                                               | × × ×                                                                                                                                   | - 1.20                   | 129.48         |                        |       |         |       |                 |         |        |                    |               |                           |         |
| Rotary open hole)                               |                                                                                |                                                                                                                                         | f-                       |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                | —                                                                                                                                       | f-<br>f-                 |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | r                        |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | r-<br>r-                 |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                | _                                                                                                                                       |                          |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | f-<br>f-                 |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                | _                                                                                                                                       | f-<br>r-                 |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | r-                       |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | r-                       |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | f-                       |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | r-<br>f-                 |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | r-                       |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                | _                                                                                                                                       | r-                       |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | f_                       |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | f-<br>f-                 |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | r-<br>r-                 |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | r-                       |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | HS.BO)                   |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | f-<br>f-                 |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | f-<br>r-                 |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | r-<br>r-                 |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | r-                       |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | f-                       |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | f-<br>f-                 |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                | _                                                                                                                                       | r-                       |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | r-<br>r-                 |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | r-                       |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | f-                       |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | f-<br>f-                 |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | r<br>r                   |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                | _                                                                                                                                       | r-                       |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | e                        |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | 1 -<br>f -<br>e          |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | r                        |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                | -                                                                                                                                       | r                        |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         |                          |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         | f-                       |                |                        |       |         |       |                 |         |        |                    |               |                           |         |
|                                                 |                                                                                |                                                                                                                                         |                          |                |                        | i     |         |       |                 |         | 1      |                    |               | 1                         | 1       |

| -barn<br>ritchies                   |                                                                | BOF    | ۶EI                                | HOI            | E L                        | .00  | 3   |            |       |                    |              |                  | ML04            | ehole N<br>43-RC<br>et 2 of      | 007                 |
|-------------------------------------|----------------------------------------------------------------|--------|------------------------------------|----------------|----------------------------|------|-----|------------|-------|--------------------|--------------|------------------|-----------------|----------------------------------|---------------------|
| Project Name:                       | Amersham Tunnel to Calvert                                     |        |                                    |                | Survey Gi<br>Co-ordina     |      | em: |            | 49312 | DSGB<br>29.41 n    |              |                  | ked By:         |                                  | RO+R<br>D           |
| Project No:<br>Client:<br>Engineer: | 1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd |        |                                    |                | Ground Le                  |      |     |            |       | 47.51 n<br>30.68 n |              | Scale<br>Log S   | Status:         |                                  | PMc<br>1:25<br>FINA |
| Date Started:<br>Date Completed:    | 14/12/2016<br>21/12/2016                                       |        | Denth                              | I              | Orientation<br>Inclination | ו:   | "   | · - ring s |       | d<br>90 d          | leg.         | Print I<br>Final | Date:<br>Depth: |                                  | 21/11/201<br>56.30  |
|                                     | Stratum Description                                            | Legend | Depth<br>d (Thick-<br>ness)<br>(m) | - Level<br>(m) | Depth<br>(m)               | Type | 1   | Rec        |       | itu Testi<br>Test  | ng<br>Test R | ≀esult U         | Jnits RQ        | R Ifmin<br>R Ifave<br>D Ifmina)x |                     |
| (Rotary open hole)                  | Structureless CHALK with flints.                               |        |                                    | 123.68         |                            |      |     |            |       |                    |              |                  |                 |                                  |                     |

| -barn<br>ritchies       |                                                                  | BOREHO                                   | LE LOG                   |                                        | Borehole No<br>ML043-RC0<br>Sheet 3 of 1 | 07            |
|-------------------------|------------------------------------------------------------------|------------------------------------------|--------------------------|----------------------------------------|------------------------------------------|---------------|
| Project Name:           | Amersham Tunnel to Calvert                                       |                                          | Survey Grid System:      |                                        | Hole Type:                               | RO+RC         |
| Project No:             | 1G063 -AAZ.                                                      |                                          | Co-ordinates:            | 493129.41 mE<br>199047.51 mN           | Checked By:<br>Approved By:              | DE<br>PMcG    |
| Client:<br>Engineer:    | High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd                 |                                          | Ground Level:            | 130.68 mOD                             | Scale:<br>Log Status:                    | 1:25<br>FINAL |
| Date Started:           | 14/12/2016                                                       |                                          | Orientation:             | deg.                                   | Print Date: 2                            | 1/11/2017     |
| Date Completed:         | 21/12/2016                                                       | Depth                                    | Inclination:             | 90 deg.<br>, Coring and h Situ Testing | Final Depth:                             | 56.30m        |
|                         | Stratum Description                                              | Legend (Thick- Level<br>ness) (m)<br>(m) |                          |                                        | t Result Units Road (mma) k              | vater ck      |
| Drillers description: ( | CHALK. (Rotary open hole)                                        | f-<br>f-<br>r-                           |                          |                                        |                                          |               |
|                         |                                                                  | r-<br>r-<br>r-                           |                          |                                        |                                          |               |
|                         |                                                                  | t-<br>t-<br>t-                           |                          |                                        |                                          |               |
|                         |                                                                  | 1-<br>1-<br>1-                           |                          |                                        |                                          |               |
|                         |                                                                  | r-<br>r-                                 |                          |                                        |                                          |               |
|                         |                                                                  | f-<br>f-<br>f-                           |                          |                                        |                                          |               |
|                         |                                                                  | f<br>r                                   |                          |                                        |                                          |               |
|                         |                                                                  | r-<br>r-<br>r-                           |                          |                                        |                                          |               |
|                         |                                                                  | f-<br>f-<br>f-                           |                          |                                        |                                          |               |
|                         |                                                                  | r<br>r<br>r                              |                          |                                        |                                          |               |
|                         |                                                                  | r-<br>r-<br>r-                           |                          |                                        |                                          |               |
|                         |                                                                  | f-<br>f-                                 |                          |                                        |                                          |               |
|                         |                                                                  | r                                        |                          |                                        |                                          |               |
|                         |                                                                  | r-<br>r-<br>f-<br>f-                     |                          |                                        |                                          |               |
|                         |                                                                  | f                                        |                          |                                        |                                          |               |
|                         |                                                                  | tf8.00)                                  |                          |                                        |                                          |               |
|                         |                                                                  | f-<br>f-<br>f-                           |                          |                                        |                                          |               |
|                         |                                                                  | r                                        |                          |                                        |                                          |               |
|                         |                                                                  | r<br>r<br>r-                             |                          |                                        |                                          |               |
|                         |                                                                  | f-<br>f-<br>f-                           |                          |                                        |                                          |               |
|                         |                                                                  | r                                        |                          |                                        |                                          |               |
|                         |                                                                  | t                                        |                          |                                        |                                          |               |
|                         |                                                                  | 6                                        |                          |                                        |                                          |               |
|                         |                                                                  | r-<br>r-<br>r-                           |                          |                                        |                                          |               |
|                         |                                                                  | f                                        |                          |                                        |                                          |               |
|                         |                                                                  | f=<br>f=<br>f=                           |                          |                                        |                                          |               |
|                         |                                                                  |                                          |                          |                                        |                                          |               |
|                         |                                                                  | £-<br>f-<br>f-                           |                          |                                        |                                          |               |
|                         |                                                                  | r-<br>r-<br>r-                           |                          |                                        |                                          |               |
|                         |                                                                  | r<br>r<br>r                              |                          |                                        |                                          |               |
|                         |                                                                  | :00 115.68                               |                          |                                        |                                          |               |
|                         | asured along borehole axis.<br>may be subject to seasonal, tidal | and other fluctuations, and              | should not be taken as a |                                        |                                          |               |
| Explanation of symb     | ools and abbreviations given in 'Ke                              | ey to Exploratory Holes'                 | Shoulu hol de laken as c | onotalit.                              |                                          |               |
| Further details giver   | n on appended 'Borehole Informat                                 | tion Sheer.                              |                          |                                        |                                          |               |

| •barn                                                                                                                                                                                                                                        | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SOF       | RE                                                       | HO           | LE L           | 00      | G      |        |          |           |         | Ν                    | 1L04            | hole N<br>3-RC   | 007            |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------|--------------|----------------|---------|--------|--------|----------|-----------|---------|----------------------|-----------------|------------------|----------------|---------|
| Project Name:                                                                                                                                                                                                                                | Amersham Tunnel to Calvert                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                                          |              | Survey Gr      | id Syst | em:    |        | о        | SGB       | L       | lole Ty              |                 | et 4 of          | 12<br>RC       | —<br>)+ |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                          |              | Co-ordinat     | es:     |        |        | 49312    | 9.41 n    |         | Checked              |                 |                  |                |         |
| Project No:                                                                                                                                                                                                                                  | 1G063-AAZ.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                                          |              |                |         |        |        |          | 7.51 n    |         | pprove               | d By:           |                  |                | ΡN      |
| Client:                                                                                                                                                                                                                                      | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                                          |              | Ground Le      | evel:   |        |        | 13       | 80.68 n   |         | icale:               |                 |                  |                | 1:      |
| Engineer:<br>Date Started:                                                                                                                                                                                                                   | High Speed 2 (HS2) Ltd<br>14/12/2016                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                          |              | Orientatior    |         |        |        |          | d         |         | .og Sta              |                 |                  |                | FIN     |
| Date Completed:                                                                                                                                                                                                                              | 21/12/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                                          |              | Inclination:   |         |        |        |          | d<br>90 d | •       | Print Da<br>Final De |                 |                  | /1/12<br>56    |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | Depth                                                    |              |                |         | ina C  | orina  | andh Sit |           | · ·     |                      | TCR             | lf min           |                |         |
|                                                                                                                                                                                                                                              | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Legend    | (Thial                                                   | Level<br>(m) | Depth<br>(m)   | Туре    |        |        | Blows    | Test      | Test Re | sult Unit            | SCR             | lfave            | Weter <b>f</b> | E       |
| density, light greyish<br>fragments (up to 30r<br>grey marl burrows. F<br>degrees medium to v<br>occasional black spe<br>clay. Fracture set 2:<br>(20/150/200mm), un<br>and smooth, with oc<br>infilled (0/1/2mm) wi<br>80 degrees, undulati | ally very weak, low locally medium<br>white CHALK with rare bivalve<br>mm), rare black specks, and rare<br>rracture set 1: horizontal to 20<br>widely spaced, planar smooth, with<br>acks, infilled (2/2/15mm) with brown<br>30 to 60 degrees closely spaced<br>dulating and planar, slightly rough<br>casional black specks, occasionally<br>th brown clay. Fracture set 3: 70 to<br>ing and planar slightly rough, with<br>ecks, no infill. (Grade: C4)<br>iation] |           |                                                          |              | 15.00 - 16.30  | RC      | 120    |        |          |           |         |                      | 100<br>22<br>12 |                  |                |         |
| 15.00 - <i>15.35m : L</i>                                                                                                                                                                                                                    | Drilling disturbed, recovered non-intact.                                                                                                                                                                                                                                                                                                                                                                                                                            |           | f<br>r-                                                  |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | r                                                        |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | r-<br>r-                                                 |              | 16.21 - 16.28  | D       | 100    |        |          |           |         |                      |                 |                  |                |         |
| 16.30                                                                                                                                                                                                                                        | 0- 16.50m : Assumed zone of core loss.                                                                                                                                                                                                                                                                                                                                                                                                                               |           | f-<br>f-                                                 |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              | 16.50- 16.65m : Drilling disturbed.                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | f-<br>r-                                                 |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
| 18.00- 18.70m : S                                                                                                                                                                                                                            | Drilling disturbed, recovered non-intact.<br>Spike visible on natural gamma log with<br>peak at 18.25m.<br>3 no. 70 degree fractures, very closely                                                                                                                                                                                                                                                                                                                   |           | r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r-<br>r- |              | 16.30 - 17.80  | RC      | 120    |        |          |           |         |                      | 87<br>19<br>14  | NI<br>100<br>210 |                |         |
|                                                                                                                                                                                                                                              | mooth, inti/led (up to 20mm) with brown                                                                                                                                                                                                                                                                                                                                                                                                                              |           | f-<br>f-                                                 |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              | clay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | r-<br>r-                                                 |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | r                                                        |              |                |         |        |        |          |           |         |                      | 100             |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | r-<br>f-                                                 |              | 17.80 - 19.30  | RC      | 120    |        |          |           |         |                      | 0               |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | f-<br>f-                                                 |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | r-<br>r-                                                 |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | r-<br>r-                                                 |              | 18.90 - 19.00  | D       |        |        |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | r<br>f-                                                  |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | f-<br>f-                                                 |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | r-                                                       |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
| 19.30                                                                                                                                                                                                                                        | 0- 19.35m : Assumed zone of core loss.                                                                                                                                                                                                                                                                                                                                                                                                                               |           | r-<br>r-                                                 |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | r-<br>f-                                                 |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | f-<br>f-<br>r-                                           |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | r-<br>r-                                                 |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | r-<br>r-                                                 |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | r-<br>f-                                                 |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | $\vdash$                                                 |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |
| Stratum denths mer                                                                                                                                                                                                                           | asured along borehole axis.                                                                                                                                                                                                                                                                                                                                                                                                                                          | I         | L                                                        |              |                |         |        |        |          |           |         |                      |                 |                  |                | 1       |
|                                                                                                                                                                                                                                              | may be subject to seasonal, tidal and o                                                                                                                                                                                                                                                                                                                                                                                                                              | other flu | ctuatior                                                 | ns and s     | hould not be t | aken a  | as con | stant. |          |           |         |                      |                 |                  |                |         |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                          |              |                |         |        |        |          |           |         |                      |                 |                  |                |         |

| •barn<br>ritchies                                                                                                                          | E                                                                                                                                                                                                                                                                                                | BOF     | RE                                | HO             | LE L                                                | 00           | 3          |                                      |                                                      |                                | Μ                                                                               | L04                       | hole N<br>3-RC<br>et 5 of | 007              |                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|----------------|-----------------------------------------------------|--------------|------------|--------------------------------------|------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------|---------------------------|---------------------------|------------------|----------------------------------------------------|
| Project Name:<br>Project No:<br>Client:<br>Engineer:<br>Date Started:<br>Date Completed:                                                   | Amersham Tunnel to Calvert<br>1G063-AAZ.<br>High Speed 2 (HS2) Ltd<br>High Speed 2 (HS2) Ltd<br>14/12/2016<br>21/12/2016                                                                                                                                                                         |         |                                   |                | Survey Gr<br>Co-ordinat<br>Ground Le<br>Orientation | es:<br>vel:  | em:        | 49312<br>19904                       | DSGB<br>29.41 m<br>47.51 m<br>30.68 m<br>de<br>90 de | nE (<br>nN /<br>nOD (<br>eg. ( | Hole Typ<br>Checked<br>Approved<br>Scale:<br>Log Stat<br>Print Dat<br>Final Dep | By:<br>I By:<br>us:<br>e: |                           | F<br>F<br>21/11/ | D+RC<br>DE<br>PMcG<br>1:25<br>TNAL<br>2017<br>.30m |
|                                                                                                                                            | Stratum Description                                                                                                                                                                                                                                                                              | Legen   | Depth<br>d (Thick<br>ness)<br>(m) | - Level<br>(m) | Depth<br>(m)                                        | Samp<br>Type | 1          | ing and h S<br>Rec Blows<br>% (mins) | itu Testii<br>Test                                   | ng<br>Test Re                  | sult Units                                                                      | TCR<br>SCR<br>Rଷ୍ଟ୍ରପ     | lfmin<br>lfave<br>l(mma)x | Weter            | Ve<br>ck                                           |
| 20.80                                                                                                                                      | 0-20.90m:Assumed zone of COTC loss.                                                                                                                                                                                                                                                              |         | f-<br>f-                          |                | 19.30 - 20.BC                                       | RC           | 120        |                                      |                                                      |                                |                                                                                 | 97<br>3<br>0              |                           |                  |                                                    |
| 21.00                                                                                                                                      | - 31.03m : Band of brown clay (30mm).                                                                                                                                                                                                                                                            |         | F-<br>F-<br>F-<br>F-              |                | 20.BO - 22.3(                                       | ) RC         | 120        |                                      |                                                      |                                |                                                                                 | 93<br>3<br>0              |                           |                  |                                                    |
| 22.30                                                                                                                                      | )- 22.40m : Assumed zone of COTE loss.                                                                                                                                                                                                                                                           |         | f-<br>f-<br>f-<br>f-<br>f-        |                | 22.51 - 22.59                                       | D            | 100        |                                      |                                                      |                                |                                                                                 |                           | NI<br>100<br>210          |                  |                                                    |
| 22 50, 22 70m; Er                                                                                                                          | equent orange staining (sponge beds).                                                                                                                                                                                                                                                            |         | f-<br>f-<br>f-                    |                | 22.30 - 23.BC                                       | RC           | 120        |                                      |                                                      |                                |                                                                                 | 93<br>15<br>9             |                           |                  |                                                    |
|                                                                                                                                            | . ,                                                                                                                                                                                                                                                                                              |         | f-<br>f-<br>f-                    |                |                                                     |              |            |                                      |                                                      |                                |                                                                                 | 100                       |                           |                  |                                                    |
| greyish white CHALl<br>orientated, very dos<br>slighUy rough, with f<br>(>3mm) with grey da<br>Fracture set 2: 30 to<br>(20/150/200mm), un | xtremely weak, low density, light<br>K. Fractures are randomly<br>ely spaced, undulating smooth and<br>irequent black specks, locally infilled<br>ay. Some distinct fracture sets.<br>b 60 degrees dosely spaced<br>idulating and planar, slightly rough<br>ccasional black specks, occasionally |         | -24.40<br>                        | 106.26         | 24.35 - 24.44<br>23.BO - 25.05                      | D<br>RC      | 100<br>120 |                                      |                                                      |                                |                                                                                 | 4 0                       |                           |                  |                                                    |
| Groundwater levels<br>Explanation of syml                                                                                                  | asured along borehole axis.<br>may be subject to seasonal, tidal and o<br>bols and abbreviations given in 'Key to<br>n on appended 'Borehole Information S                                                                                                                                       | Explora |                                   |                | nould not be t                                      | aken a       | is consta  | ant.                                 | · · · · · ·                                          |                                |                                                                                 |                           |                           |                  | -                                                  |
| Office: BAM Ritchie                                                                                                                        | es, Glasgow Road, Kilsyth, Glasgow G65 9Bl                                                                                                                                                                                                                                                       | L       |                                   |                |                                                     |              |            |                                      |                                                      |                                | BAM                                                                             | R Bor                     | ehole Lo                  | og 06/04         | 4120 <sup>-</sup>                                  |

| •barn<br>ritchies                                                       | E                                                                                                                                                                                    | BOF                | REI                    | HO               | LE L                       | 00      | 3          |       |                 |               |          | Μ                   | L043          | nole N<br>3-RC<br>et 6 of | 007      |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|------------------|----------------------------|---------|------------|-------|-----------------|---------------|----------|---------------------|---------------|---------------------------|----------|
| roject Name:                                                            | Amersham Tunnel to Calvert                                                                                                                                                           |                    |                        |                  | Survey Gr<br>Co-ordinat    |         | em:        |       |                 | SGB<br>9.41 n |          | Hole Typ<br>Checked | e:            |                           | RO+I     |
| roject No:                                                              | 1G063-AAZ.                                                                                                                                                                           |                    |                        |                  |                            |         |            |       | 19904           | 17.51 n       | nN /     | Approved            | d By:         |                           | PM       |
| lient:                                                                  | High Speed 2 (HS2) Ltd                                                                                                                                                               |                    |                        |                  | Ground Le                  | vel:    |            |       | 1:              | 30.68 n       | nOD S    | Scale:              |               |                           | 1:2      |
| ngineer:                                                                | High Speed 2 (HS2) Ltd                                                                                                                                                               |                    |                        |                  |                            |         |            |       |                 |               | I        | Log Sta             | tus:          |                           | FIN      |
| ate Started:                                                            | 14/12/2016                                                                                                                                                                           |                    |                        |                  | Orientation                | :       |            |       |                 | d             | eg.      | Print Dat           | e:            |                           | 21/11/20 |
| ate Completed:                                                          | 21/12/2016                                                                                                                                                                           |                    |                        |                  | Inclination:               |         |            |       |                 | 90 d          | eq.      | Final De            | oth:          |                           | 56.30    |
|                                                                         |                                                                                                                                                                                      |                    | Depth                  |                  |                            | Sampl   | ing C      | orina | and h Si        |               | <u> </u> |                     |               | If min                    |          |
|                                                                         | Stratum Description                                                                                                                                                                  | Legend             |                        | Level<br>(m)     | Depth<br>(m)               | Туре    |            | Rec   | Blows<br>(mins) | Test          | Test Re  | esult Unit          | SCR<br>sRC26  | lfave<br>Df(rnma)k        | Weter E  |
| New Pit Chalk Éorm]<br>25.05 - 25.60m : L<br>Recovered a                | th brown day. (Grade: C4)<br>nation]<br>Drilling disturbed, recovered non-intact.<br>Is: angular to subangular fine to coarse<br>Vis very weak, low density, light greyish<br>white. | 1                  | >-<br>>-               | 105.23           |                            |         |            |       |                 |               |          |                     |               |                           |          |
| New PitChalk Form<br>Drilling disturbed. Ex<br>greyish white CHAL       | tremely weak, low density, light<br>. Fractures are randomly                                                                                                                         | 1                  | j§:47<br>>-<br>>-25.70 | 105.21<br>104–98 | 25.05-26.30<br>25.69-25.79 | RC<br>D | 120<br>100 |       |                 |               |          |                     | 100<br>5<br>0 | NI<br>80<br>200           |          |
| slightly rough, with fr<br>(>3mm) with grey da<br>Fracture set 2: 30 to | ely spaced, undulating smooth and<br>equent black specks, locally infilled<br>y. Some distinct fracture sets.<br>60 degrees dosely spaced                                            |                    | 052                    | 104-90           | 20100 20110                | -       | 100        |       |                 |               |          |                     |               |                           |          |
| and smooth, with occ<br>nfilled (0/1/2mm) wi                            | dulating and planar, slightly rough<br>casional black specks, occasionally<br>th brown day. (Grade: C4)<br>bt, matigh"'-                                                             | irr=ir <b>ə</b> -2 | - ,                    | 404.00           |                            |         |            |       |                 |               |          |                     |               |                           |          |
| Soft greyish green si                                                   | ilt marl with rare orange staining.                                                                                                                                                  | =  ⊅-2             | 0.30                   | 104.38           |                            |         |            |       |                 |               |          |                     |               |                           |          |
| New Pit Marl 1?                                                         |                                                                                                                                                                                      |                    | f-<br>f-               |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
| New Pit Chalk Form                                                      | ation]<br>Drilling disturbed, recovered non-intact.                                                                                                                                  |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         | as: angulart0 subangular fine t0 coarse                                                                                                                                              |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         | /is very weak, low density, light greyish                                                                                                                                            |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         | tremely weak, low density, light                                                                                                                                                     | -                  | f-<br>f-               |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         | K. Fractures are randomly                                                                                                                                                            |                    | f-                     |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
| rientated, very dose                                                    | ely spaced, undulating smooth and                                                                                                                                                    |                    |                        |                  | 00.00.07.00                | DO.     | 100        |       |                 |               |          |                     | 93            |                           |          |
|                                                                         | equent black specks, locally infilled                                                                                                                                                |                    |                        |                  | 26.30-27.80                | RU      | 120        |       |                 |               |          |                     | 51<br>51      |                           |          |
|                                                                         | <ul> <li>y. Some distinct fracture sets.</li> <li>o 60 degrees dosely spaced</li> </ul>                                                                                              |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         | dulating and planar, slightly rough                                                                                                                                                  |                    | f-<br>f-               |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         | casional black specks, occasionally                                                                                                                                                  |                    | f-                     |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         | h brown day. (Grade: C4)                                                                                                                                                             |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
| lew Pit Chalk Form                                                      | ation]<br>Drilling disturbed, recovered non-intact.                                                                                                                                  |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
| Recovered a                                                             | /is angulart0 subangular fine t0 COarse<br>//is very weak, low density, light greyish<br>white.                                                                                      |                    | f-<br>f-               |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
| ery weak locally we                                                     | ak, medium density, light greyish                                                                                                                                                    |                    | f-                     |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         | re grey marl burrows, thin grey                                                                                                                                                      |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         | sps) and rare orange staining<br>ture set 1: horizontal to 20 degrees,                                                                                                               |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         | to medium spaced (20/120/320mm),                                                                                                                                                     |                    | He.oo)                 |                  |                            |         |            |       |                 |               |          |                     |               | NI<br>120                 |          |
|                                                                         | g, smooth and slighUy rough, with                                                                                                                                                    |                    | f-                     |                  |                            |         |            |       |                 |               |          |                     |               | 350                       |          |
|                                                                         | s, infilled (<2mm) with brown clay<br>70 degrees dosely to widely spaced                                                                                                             |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         | dulating slightly rough, with frequent                                                                                                                                               |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
| ack specks, locally                                                     | orange staining, rarely infilled                                                                                                                                                     |                    |                        |                  |                            | 50      | 100        |       |                 |               |          |                     | 100           |                           |          |
|                                                                         | ge or brown clay/silt. Fracture set 3:                                                                                                                                               |                    | f-                     |                  | 27.80-29.30                | RC      | 120        |       |                 |               |          |                     | 55<br>37      |                           |          |
|                                                                         | I, undulating slighUy rough, with<br>ecks, rarely infilled (0/1/4mm) with                                                                                                            |                    | f-<br>f-               |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
| own day. (Grade: I                                                      | B3/4)                                                                                                                                                                                |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
| lew Pit Chalk Form                                                      | ation]                                                                                                                                                                               |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         | )-26.40m:Assumed zone of core Joss.<br>Il developed thick grey mart lamination                                                                                                       |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
| 20.07 20.0Dm. We                                                        | (6mm).                                                                                                                                                                               |                    | f-                     |                  | 28.96-29.16                | с       | 100        |       |                 |               |          |                     |               |                           |          |
| 27.80-27.93m                                                            | : Locally withorange staining (sponge                                                                                                                                                |                    | f-                     |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         | bed).                                                                                                                                                                                |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         |                                                                                                                                                                                      |                    | f-                     |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         |                                                                                                                                                                                      |                    | f-                     |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         |                                                                                                                                                                                      |                    |                        |                  | 29.60-29.90                | С       | 100        |       |                 |               |          |                     |               |                           |          |
| 00.00                                                                   |                                                                                                                                                                                      |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
| 29.90 - 30.15m : E                                                      | Drilling disturbed, recovered non-intact.                                                                                                                                            |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         |                                                                                                                                                                                      |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |
|                                                                         |                                                                                                                                                                                      |                    |                        |                  |                            |         |            |       |                 |               |          |                     |               |                           |          |

| •barn<br>ritchies                                                                                                          | E                                                                                                                                                                                                                                                         | BOF    | RE                                                                                          | HO           | LE L                          | 00            | 3          |     |                            |                    |               | N                 | 1L04:                 | hole N<br>3-RC<br>t 7 of | 007                             |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------|--------------|-------------------------------|---------------|------------|-----|----------------------------|--------------------|---------------|-------------------|-----------------------|--------------------------|---------------------------------|
| Project Name:                                                                                                              | Amersham Tunnel to Calvert                                                                                                                                                                                                                                |        |                                                                                             |              | Survey Gri                    |               | em:        |     |                            | SGB                |               | Hole Typ          |                       |                          | RO+I                            |
| Project No:                                                                                                                | 16063 -447                                                                                                                                                                                                                                                |        |                                                                                             |              | Co-ordinate                   | es:           |            |     |                            | 29.41 n<br>17.51 n |               | Checked           |                       |                          | PM                              |
| Project No:<br>Client:                                                                                                     | 1G063 -AAZ.<br>High Speed 2 (HS2) Ltd                                                                                                                                                                                                                     |        |                                                                                             |              | Ground Le                     | vel.          |            |     |                            | 47.51 r<br>30.68 n |               | Approve<br>Scale: | u ВУ:                 |                          | PIM<br>1:25                     |
| Engineer:                                                                                                                  | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                    |        |                                                                                             |              | 2704.14 20                    |               |            |     |                            |                    |               | Log Sta           | tus:                  |                          | FIN                             |
| Date Started:                                                                                                              | 14/12/2016                                                                                                                                                                                                                                                |        |                                                                                             |              | Orientation                   | :             |            |     |                            | d                  | leg.          | Print Da          | te:                   |                          | 21/11/20                        |
| Date Completed:                                                                                                            | 21/12/2016                                                                                                                                                                                                                                                |        |                                                                                             |              | Inclination:                  |               |            |     |                            | 90 d               | leg.          | Final De          | pth:                  |                          | 56.30                           |
| s                                                                                                                          | stratum Description                                                                                                                                                                                                                                       | Legend | Depth<br>(Thick-<br>ness)<br>(m)                                                            | Level<br>(m) | Depth<br>(m)                  | Sampl<br>Type | 1          | Rec | andh Si<br>Blows<br>(mins) | tu Testi<br>Test   | ing<br>Test R | esult Unit        | TCR<br>SCR<br>s Rଷ୍ଟପ | lfmin<br>Ifave<br>(mna)x | Weter I                         |
| closely to very<br>slightly rough, with f                                                                                  | : Non-systematic fractures, extremely<br>v closely spaced (15/30/50mm), planar<br>requent black specks, orange staining,<br><2mm) with brown clay. (Grade: 8415)                                                                                          |        | -                                                                                           | -            | 29.30 - 30.80                 | RC            | 120        |     |                            |                    |               |                   | 100                   |                          |                                 |
| 30.80-                                                                                                                     | 30.90m : Assumed zone of COTE loss.                                                                                                                                                                                                                       |        | -                                                                                           |              |                               |               |            |     |                            |                    |               |                   | 61<br>61              | NI                       |                                 |
| 31.95 - 33.00m : Di                                                                                                        | rilling disturbed, recovered non-intact.                                                                                                                                                                                                                  |        |                                                                                             |              | 31.40 -31.70<br>30.80 - 32.30 | C<br>RC       | 100<br>120 | )   |                            |                    |               |                   | 93<br>75<br>53        | 150<br>180               |                                 |
| rare orange and pink<br>Fracture set 1: horizo<br>widely spaced, planar<br>smooth, with frequent                           | lensity, greyish white CHALK with<br>sh red staining (sponge beds).<br>ntal to 20 degrees medium to<br>r and undulating, slightly rough and<br>black specks, orange staining,                                                                             |        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 98.38        |                               |               |            |     |                            |                    |               |                   |                       |                          |                                 |
| 30 to 60 degrees med<br>(60/400/1300mm), un<br>locally infilled (0/2/5m<br>70 degrees to vertical<br>frequent black specks | m) with brown day. Fracture set 2:<br>dium to widely spaced<br>dulating and planar slightly rough,<br>m) with brown day. Fracture set 3:<br>, planar slightly rough, with<br>b, orangish brown staining, rarely<br>rown and orange day. (Grade:<br>ation] |        | -                                                                                           |              | 32.30 - 33.80                 | RC            | 120        |     |                            |                    |               |                   | 100<br>9<br>9         |                          | දී රිජි රිජි රිජි රිජි රිජි ර   |
|                                                                                                                            |                                                                                                                                                                                                                                                           |        | -                                                                                           |              | 33.80 -34.14                  | с             | 100        |     |                            |                    |               |                   |                       |                          | හිදු හිදු හිදු හිදි හිදි        |
|                                                                                                                            |                                                                                                                                                                                                                                                           |        |                                                                                             |              | 33.80 - 35.30                 | RC            | 120        |     |                            |                    |               |                   | 100<br>54<br>54       |                          | හිද සිදු සිදු සිදු සිදු සිදු දි |
|                                                                                                                            | illing disturbed, recovered non-intact.                                                                                                                                                                                                                   |        | -                                                                                           |              |                               |               |            |     |                            |                    |               |                   |                       |                          | 200                             |

| •barn<br>ritchies   | E                                                                              | BORE                   | HÜ              | LE L          | 00      | Ĵ   |                 |                         |                | ſ        | ML04<br>Shee         | 3-RC                        |       |        |
|---------------------|--------------------------------------------------------------------------------|------------------------|-----------------|---------------|---------|-----|-----------------|-------------------------|----------------|----------|----------------------|-----------------------------|-------|--------|
| Project Name:       | Amersham Tunnel to Calvert                                                     |                        |                 | Survey Gri    | id Syst | em: |                 | OSGB                    |                | Hole Ty  |                      |                             |       | 20+    |
|                     |                                                                                |                        |                 | Co-ordinate   | es:     |     | 4               | 93129.41                | mE             | Checke   | d By:                |                             |       |        |
| roject No:          | 1G063-AAZ.                                                                     |                        |                 |               |         |     | 1               | 99047.51                |                | Approve  | ed By:               |                             |       | P№     |
| lient:              | High Speed 2 (HS2) Ltd                                                         |                        |                 | Ground Le     | evel:   |     |                 | 130.68 (                |                | Scale:   |                      |                             |       | 1:     |
| ngineer:            | High Speed 2 (HS2) Ltd                                                         |                        |                 |               |         |     |                 |                         |                | Log St   |                      |                             |       | FIN    |
| ate Started:        | 14/12/2016                                                                     |                        |                 | Orientation   |         |     |                 |                         | •              | Print Da |                      |                             | 21/1  |        |
| Date Completed:     | 21/12/2016                                                                     |                        | 1               | Inclination:  |         |     |                 |                         | -              | Final D  | -                    |                             |       | 56.3   |
| \$                  | Stratum Description                                                            | Legend (Thick<br>ness) | k- Level<br>(m) | Depth         |         | -   | Rec Blo<br>% (m | Ih Situ Tes<br>ows Test | ting<br>Test R | esult Ur | ICR<br>SCF<br>its RØ | Ifmin<br>Ifave<br>Df(mnna)k | Weter | Ва     |
|                     |                                                                                | (m)                    | +               | (m)           |         |     |                 |                         |                |          |                      |                             |       | 0      |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 00     |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 0      |
| 35.30-              | 35.42m : Assumed zone of core loss.                                            | TT-                    |                 |               |         |     |                 |                         |                |          |                      |                             |       | O.     |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 0      |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 0      |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 00     |
|                     |                                                                                |                        |                 | 35.70 -35.86  | с       | 100 |                 |                         |                |          |                      |                             |       | 00     |
|                     |                                                                                |                        |                 | 30.10 00.00   | C       |     |                 |                         | 1              |          |                      |                             |       | 5 0    |
|                     |                                                                                |                        |                 |               |         |     |                 |                         | 1              |          | 91                   |                             |       | 0      |
|                     |                                                                                |                        |                 | 35.30 - 36.80 | RC      | 120 |                 |                         |                |          | 89                   |                             |       | 0      |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          | 89                   |                             |       | O.     |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | o.     |
| 36.35m : We         | Il developed thin grey mart lamination.                                        |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 0      |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 0      |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 00     |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 01     |
| 26.00               | 26 OFm Assumed Table of some loss                                              |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 0      |
| 36.80-              | 36.95m : Assumed zone of core loss.                                            |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | C O    |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | O.     |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | d      |
|                     |                                                                                | - P- P-E               |                 |               |         |     |                 |                         |                |          |                      |                             |       | 0      |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | o<br>d |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      | NI                          |       | 04     |
|                     |                                                                                | (12.80                 | )               | 36.80 - 38.30 | RC      | 120 |                 |                         |                |          | 90<br>12             | 170<br>300                  |       | 00     |
| 37.55 - 37.60m : Di | rilling disturtJed, recovered non-intact.                                      |                        |                 |               |         |     |                 |                         |                |          | 12                   |                             |       | 000    |
|                     |                                                                                |                        |                 | 32.50-43.00   |         |     |                 | Falling                 |                | mi       | 5                    |                             |       | 0      |
|                     |                                                                                |                        |                 |               |         |     |                 | Head                    |                |          |                      |                             |       | 0      |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 0      |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | O.     |
|                     |                                                                                |                        |                 |               |         |     |                 |                         | 1              |          |                      |                             |       | 0      |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 0      |
| 38.30-              | 38.42m: Assumed zone of core loss.                                             |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 0      |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 00     |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 00     |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 0      |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 0      |
|                     |                                                                                |                        |                 |               |         |     |                 |                         | 1              |          |                      |                             |       | O.     |
|                     |                                                                                |                        |                 | 38.30 - 39.80 | RC      | 120 |                 |                         | 1              |          | 92<br>39             |                             |       | d'     |
|                     |                                                                                |                        |                 | 39.07 - 39.14 | D       | 100 |                 |                         | 1              |          | 39                   |                             |       | 0      |
|                     |                                                                                |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | o<br>c |
|                     | rilling disturtJed, recovered non-intact.                                      |                        |                 |               |         |     |                 |                         | 1              |          |                      |                             |       | 06     |
| 39.35 - 39.80m : I  | Non-systematic fractures, very closely htly rough, with frequent black specks, |                        |                 |               |         |     |                 |                         | 1              |          |                      |                             |       | 204    |
|                     | locally infilled {<2mm) with brown clay.                                       |                        |                 |               |         |     |                 |                         |                |          |                      |                             |       | 0      |
|                     |                                                                                |                        |                 |               |         |     |                 |                         | 1              |          |                      |                             |       | 00     |
|                     |                                                                                |                        |                 |               |         |     |                 |                         | 1              |          |                      |                             |       | 0      |
| 39.80-              | 40.00m : Assumed zone of core loss.                                            | F                      |                 |               |         |     |                 |                         | 1              |          |                      |                             |       | O.     |
|                     |                                                                                | Fr F                   |                 |               |         |     |                 |                         | 1              |          |                      |                             |       | 00     |
|                     |                                                                                |                        |                 |               |         |     | 1               | 1                       | 1              | 1        | 1                    | 1                           | 1     | 1      |

Further details given on appended 'Borehole Infonmation Sheer.

Explanation of symbols and abbreviations given in 'Key to Exploratory Holes'

| •barn<br>ritchies                             | E                                                                                                                                                                              | BOF     | RE                       | HO             | LE L                    | 00     | 3      |        |         |                    |          | N                            | /L04            | hole N<br>3-RC<br>et 9 of | 007      |                                         |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------|----------------|-------------------------|--------|--------|--------|---------|--------------------|----------|------------------------------|-----------------|---------------------------|----------|-----------------------------------------|
| Project Name:                                 | Amersham Tunnel to Calvert                                                                                                                                                     |         |                          |                | Survey Gr<br>Co-ordinat | -      | em:    |        | 49312   | )SGB<br>29.41 r    |          | Hole Ty                      | d By:           |                           |          | D+R<br>D                                |
| Project No:<br>Client:                        | 1G063-AAZ.<br>High Speed 2 (HS2) Ltd                                                                                                                                           |         |                          |                | Ground Le               | evel:  |        |        |         | 47.51 r<br>30.68 r |          | Approve<br>Scale:<br>Log Sta | -               |                           |          | PMc<br>1:25<br>FINA                     |
| Engineer:<br>Date Started:<br>Date Completed: | High Speed 2 (HS2) Ltd<br>14/12/2016<br>21/12/2016                                                                                                                             |         |                          |                | Orientation             |        |        |        |         | c<br>90 c          | •        | Print Da<br>Final De         | ite:            |                           | 21/11    |                                         |
| Date Completed.                               |                                                                                                                                                                                |         | Depth                    |                |                         |        | ing, C | oring  | andh Si |                    | <u> </u> |                              | TCF             | lfmin<br>Ifave            |          | w                                       |
|                                               | Stratum Description                                                                                                                                                            | Legend  | d (Thick<br>ness)<br>(m) | - Level<br>(m) | Depth<br>(m)            | Туре   | (Ria)  | Rec    | Blows)  | Test               | Test R   | esult Unit                   |                 | l(mma)x                   | Weter    |                                         |
| Recovered                                     | : Drilling disturlled, recovered non-intact.<br>as: slightly sandy slightly silty angular f0<br>fine f0 coarse GRAVEL. Gravel is weak,<br>medium density, light greyish white. |         |                          |                |                         | 50     | 100    |        |         |                    |          |                              |                 |                           |          | 50 260 260 260 260                      |
|                                               |                                                                                                                                                                                |         |                          |                | 39.80 - 41.30           | RC     | 120    |        |         |                    |          |                              | 87<br>0<br>0    |                           |          | 9 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 |
| 41.3                                          | 30-41.40m : Assumed zone of core loss.                                                                                                                                         |         |                          |                |                         |        |        |        |         |                    |          |                              |                 |                           |          | 0000                                    |
| Recovered                                     | : Drilling disturlled, recovered non-intact.<br>as: angular10 subangular fine 10 coarse<br>Gravel is vety weak, medium density, light<br>greyish white.                        |         |                          |                | 41.82 - 42.10           | с      | 100    |        |         |                    |          |                              | 93              |                           |          | 90 96 96 96 96 96 96                    |
| 42.07 - 42.17m : F                            | Frequent subrounded and rounded chalk<br>intraclasts (up to 30mm).                                                                                                             |         |                          |                | 41.30 - 42.80           | RC     | 120    |        |         |                    |          |                              | 93<br>25<br>21  |                           |          | දී රජි රජි රජි රජි රජි රජි රජි රජි      |
| 43.66-43.74m:F                                | Frequent subrounded and rounded chalk<br>intraclasts (up 10 40mm).                                                                                                             |         |                          |                | 42.80 - 44.30           | RC     | 120    |        |         |                    |          |                              | 100<br>69<br>59 |                           |          |                                         |
| <i>44.10-44.</i> 15n                          | n : Frequent thin dark greyish green marl<br>laminations.                                                                                                                      |         |                          |                |                         |        |        |        |         |                    |          |                              |                 |                           |          |                                         |
|                                               | 30-44.35m: Assumed zone of core loss.<br>: Drilling disturlled, recovered non-intact.                                                                                          |         |                          |                |                         |        |        |        |         |                    |          |                              |                 |                           |          |                                         |
| 44.77- 44.BOm                                 | : Drilling disturlled, recovered non-intact.                                                                                                                                   |         |                          |                |                         |        |        |        |         |                    |          |                              |                 |                           |          |                                         |
|                                               | easured along borehole axis.                                                                                                                                                   |         |                          |                |                         |        |        | L      |         |                    |          |                              |                 |                           | <u> </u> | <u> </u>                                |
| Explanation of syr                            | Is may be subject to seasonal, tidal and on<br>mbols and abbreviations given in 'Key to<br>ren on appended 'Borehole Information S                                             | Explora |                          |                | hould not be            | aken a | is cor | nstant |         |                    |          |                              |                 |                           |          |                                         |
| Office: BAM Ritch                             | nies, Glasgow Road, Kilsy1h, Glasgow G65 9Bl                                                                                                                                   | L       |                          |                |                         |        |        |        |         |                    |          | BAN                          | VI R Bo         | rehole L                  | og 06/0  | )412(                                   |

| •barn                                        | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BORI          | EHO               | LE L                           | 00      | G          |           |                 |               |        |        | ML                 | 043      | nole N<br>3-RC<br>10 of | 007     |          |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|--------------------------------|---------|------------|-----------|-----------------|---------------|--------|--------|--------------------|----------|-------------------------|---------|----------|
| Project Name:                                | Amersham Tunnel to Calvert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                   | Survey Gr<br>Co-ordinat        |         | em:        |           |                 | SGB<br>9.41 r | nE     |        | e Type:<br>ecked B | y:       |                         | RC      | O+R<br>D |
| Project No:                                  | 1G063-AAZ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                   |                                |         |            |           | 19904           | 17.51 r       | nN     | Арр    | roved E            | By:      |                         | F       | PMc      |
| Client:                                      | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                   | Ground Le                      | evel:   |            |           | 13              | 30.68 r       | nOD    | Sca    | le:                |          |                         |         | 1:25     |
| Engineer:                                    | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                   |                                |         |            |           |                 |               |        | Log    | Status             | :        |                         | F       | FINA     |
| Date Started:                                | 14/12/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                   | Orientation                    | า:      |            |           |                 | c             | •      | Prir   | nt Date:           |          |                         | 21/11/  | /201     |
| Date Completed:                              | 21/12/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                   | Inclination                    | :       |            |           |                 | 90 c          | leg.   | Fina   | al Depth           | n:       |                         | 56      | 6.30r    |
|                                              | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Legend (Th    | pth<br>ick- Level |                                | Samp    | ling, C    | oring a   | ndh Si          | tu Testi      | ing    |        |                    | CR       | lfmin<br>Ifave          |         | We       |
|                                              | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) `ne         | n)                | Depth<br>(m)                   | Туре    | 11011      |           | Blows<br>(mins) | Test          | Test F | Result | t Units F          | 202D     |                         | Weter I |          |
|                                              | density, greyish white CHALK with is in the interval is the in | 45            | 10 85.58          | 45.01 - 45.09<br>44.30 - 45.80 | D<br>RC | 100<br>120 |           |                 |               |        |        |                    |          |                         |         |          |
| Fracture set 1: horizo                       | ontal to 20 degrees medium to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45            |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
|                                              | r and undulating, slightly rough and black specks, orange staining,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45            | <b>24</b> 85.44   |                                |         |            |           |                 |               |        |        |                    | 97       |                         |         |          |
|                                              | nm) with brown day. Fracture set 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                   |                                |         |            |           |                 |               |        |        | 4                  | 41       |                         |         |          |
|                                              | dium to widely spaced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                   |                                |         |            |           |                 |               |        |        | ;                  | 35       |                         |         |          |
|                                              | ndulating and planar slightly rough,<br>nm) with brown day. Fracture set 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
| 70 degrees to vertical                       | l, planar slighUy rough, with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
|                                              | s, orangish brown staining, rarely<br>prown and orange day. (Grade:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
| B3/4)                                        | Sowin and Grange day. (Grade.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | l p p         |                   | 45.80 - 46.08                  | с       | 100        |           |                 |               |        |        |                    |          |                         |         |          |
| New Pit Chalk Forma                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   | +5.00 - +0.00                  |         | 100        |           |                 |               |        |        |                    |          |                         |         |          |
|                                              | sity, light greyish white locally gritty<br>nin greenish grey laminations (marl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
| wisps, burrows and z                         | coophycos streaks), and rare orange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
|                                              | s). Fracture set 1: horizontal to 20 spaced to widely spaced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
| (10/320/920mm), und                          | ulating and planar, slightly rough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                   |                                |         |            |           |                 |               |        |        |                    | _        |                         |         |          |
|                                              | quent black specks, rare grey and onally infilled (0/2/10mm) with soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                   | 45.80 - 47.30                  | RC      | 120        |           |                 |               |        |        |                    | 00<br>78 |                         |         |          |
|                                              | set 2: 30 to 60 degrees, very dosely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T T           |                   |                                |         |            |           |                 |               |        |        | 6                  | 55       |                         |         |          |
|                                              | ced (10/350/1210mm), undulating<br>bugh and smooth, with frequent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | fr r-         |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
|                                              | onally infilled (0/2/5mm) with brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
|                                              | 70 degrees to vertical, undulating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
|                                              | ough and smooth, with frequent with orange staining, locally infilled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
| (0/2/4mm) with brown                         | n day. (Grade: C3/4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
| [Holywell Nodular Ch<br>45.10 - 45.16m : D   | alk Formation]<br>Irillin disturbed recovered non-intact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
| Very thinly bedded gr                        | reenish grey marl seam. Gun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
| Gardens Main Marl?<br>Hol ell Nodular Ch     | alk Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
| Very weak, high dens                         | sity, light greyish white locally gritty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ()<br>(9.     | 14)               |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
|                                              | nin greenish grey laminations (marl coophycos streaks), and rare orange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | ,                 |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
| staining (sponge bed                         | s). Fracture set 1: horizontal to 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ' l'          |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
|                                              | spaced to widely spaced<br>dulating and planar, slightly rough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
| and smooth, with free                        | quent black specks, rare grey and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                   | 47.30 - 48.80                  | RC      | 120        |           |                 |               |        |        |                    | 90<br>52 |                         |         |          |
|                                              | onally infilled (0/2/10mm) with soft<br>set 2: 30 to 60 degrees, very dosely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                   |                                |         |            |           |                 |               |        |        |                    | 52       |                         |         |          |
| spaced to widely spa                         | ced (10/350/1210mm), undulating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   | 48.11 -48.46                   | c       | 100        |           |                 |               |        |        |                    |          |                         |         |          |
|                                              | ough and smooth, with frequent onally infilled (0/2/5mm) with brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                   | 40.11 -40.40                   | C       | 100        |           |                 |               |        |        |                    |          |                         |         |          |
|                                              | 70 degrees to vertical, undulating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
|                                              | ough and smooth, with frequent with orange staining, locally infilled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
| (0/2/4mm) with brown                         | n day. (Grade: C3/4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T T           |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
| [Holywell Nodular Ch<br>45 65 - 45 72m · Fre | alk Formation]<br>quent interwoven thin darlr green marl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
|                                              | equent subrounded and rounded chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
| 47.30 - 47.55m · D                           | intraclasts (up to 40mm).<br>rilling disturbed, recovered non-intact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
| 48.50 - 48.65m : D                           | rilling disturbed, recovered non-intact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
|                                              | - 48.80m : Assumed zone of core loss.<br>rilling disturbed, recovered non-intact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                |         |            |           |                 |               |        |        |                    | 92       |                         |         |          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                |         |            |           |                 |               |        |        | 6                  | 58       |                         |         |          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   | 48.80 - 50.30                  | RC      | 120        |           |                 |               |        |        |                    | '        |                         |         |          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r r           |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1                 |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |
| Stratum depths mea                           | sured along borehole axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I             |                   | -!                             |         |            | · · · · · |                 |               |        |        | II                 |          |                         |         |          |
|                                              | may be subject to seasonal, tidal and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | other fluctua | tions and s       | should not be                  | taken a | as cor     | nstant.   |                 |               |        |        |                    |          |                         |         |          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Exploratory   |                   |                                |         |            |           |                 |               |        |        |                    |          |                         |         |          |

| Client:     High Speed 2 (HS2) Ltd     Ground Level:     130.68 mOD     Scale:     1       Engineer:     High Speed 2 (HS2) Ltd     Log Status:     FII       Date Started:     14/12/2016     Orientation:     deg.     Print Date:     21/11/2       Date Completed:     21/12/2016     Inclination:     90 deg.     Final Depth:     56.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •barn<br>ritchies                                                                                                                                                                 | E                                                                                                                                                                                          | BOF       | REI                                              | HO           | LE L           | 00     | G       |        |                |                  |              |                        | ML                 | 043               | nole N<br>3-RC<br>11 of | 007   |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------|--------------|----------------|--------|---------|--------|----------------|------------------|--------------|------------------------|--------------------|-------------------|-------------------------|-------|-----------------|
| Status         14/12/2016         Orientation:        og,<br>Unitable Complete:         21/12/2016         Total Complete:         21/12/2016         Total Complete:         21/12/2016         Total Complete:         21/12/2016         Total Complete:         0.000,<br>Unitable Complete:         Total Complete:         Unitable Complete:         0.000,<br>Unitable Complete:         Total Complete:         Unitable Complete:         0.000,<br>Unitable Complete:         Unitable Complete: | Project No: 1G0<br>Client: Higt                                                                                                                                                   | 63 -AAZ.<br>n Speed 2 (HS2) Ltd                                                                                                                                                            |           |                                                  |              | Co-ordina      | ites:  | em:     |        | 49312<br>19904 | 9.41 m<br>7.51 m | ۱N           | Chec<br>Appro<br>Scale | ked I<br>oved<br>: | By:<br>By:        |                         | I     | D<br>PMc<br>1:2 |
| Sintem Description         Law         Type         Web         Rec:         Bows         Tail         Text Recur Units         Rec:         Bows         Bows         Bows                                                                                                                                                                                                                                                    | Date Started: 14/1                                                                                                                                                                | 2/2016                                                                                                                                                                                     |           |                                                  |              |                |        |         |        |                |                  | •            | Print                  | Date               | :                 |                         | 21/11 | /20             |
| Statund de verkoed trick grey met lamination (Bmm).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stratun                                                                                                                                                                           | n Description                                                                                                                                                                              | Legend    | (Thick-<br>ness)                                 | Level<br>(m) |                |        | Dia     | Rec    | Blows          | u Testir<br>Test | ng<br>Test R | esult L                | Jnits              | TCR<br>SCR<br>RØD | lfave                   | Weter | W<br>Bac        |
| 53.80 - 54.39m : (3 no.) Conjugate 60 degree fractures.         planar slightly rough, milled (-2mm) with brown clay.         Thicktylas-mtm atted ""g-reg Sht groes - n=-Slitymca: 11,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Recovered as: suba<br>Gravel is weak, me                                                                                                                                          | ngular fine t0 medium GRAVEL.<br>dium density, light greyish white.                                                                                                                        |           |                                                  |              |                |        |         |        |                |                  |              |                        |                    | 65                |                         |       |                 |
| 53.80 - 54.39m : (3 no.) Conjugate 60 degree fractures, plenar slightly rough, intilded (-2nm) with brown clay.       53.31 - 53.36       D       100       100         File       53.30 - 54.39m : (3 no.) Conjugate 60 degree fractures, plenar slightly rough, intilded (-2nm) with brown clay.       53.31 - 53.36       D       100       100         File       53.30 - 54.60       RC       120       100       100       100         Statum classes, were dated in green signed and rare or ange stating (sponge beds). Fracture set 1: horizontal to 20       Example       Example       Example       Example         Stratum depths measured along borehole axis.       Groundwater levels may be subject to seasonal, itidal and other fluctuations and should not be taken as constant.       Stratum classes and should not be taken as constant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                                                                                                                            |           |                                                  |              |                |        |         |        |                |                  |              |                        |                    |                   |                         |       |                 |
| 53.80 - 54.39m : (3 no.) Conjugate 60 degree fractures,<br>planar slightly rough, inti/led (<2mm) with brown clay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                                                            |           |                                                  |              | 51.60 - 53.30  | RC     | 120     |        |                |                  |              |                        |                    | 74                | 200                     |       |                 |
| planar slightly rough, inti/led (<2mm) with brown clay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                            |           |                                                  |              | 53.31-53.36    | D      | 100     |        |                |                  |              |                        |                    |                   |                         |       |                 |
| [Holywell Nodular Chalk Formation]<br>54.38 - 54.39m : Thick/ Laminated re "sh reen si mark.<br>Very weak, high density, light greyish white locally gritty<br>CHALK locally with thin greenish grey laminations (marl<br>wisps, burrows and zoophycos streaks), and rare orange<br>staining (sponge beds). Fracture set 1: horizontal to 20<br>degrees, very dosely spaced to widely spaced<br>Stratum depths measured along borehole axis.<br>Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                                                                                                                            |           |                                                  |              | 53.30 - 54.60  | RC     | 120     |        |                |                  |              |                        |                    | 52                |                         |       |                 |
| Groundwater levels may be subject to seasonal, tidal and other fluctuations and should not be taken as constant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [Holywell Nodular Chalk F<br>54.38 - 54.39m : Thick/ lar<br>Very weak, high density, lig<br>CHALK locally with thin gre<br>wisps, burrows and zooph<br>staining (sponge beds). Fr | ormation]<br><u>minated</u> re "sh reen si marl.]<br>pht greyish white locally gritty<br>eenish grey laminations (marl<br>ycos streaks), and rare orange<br>acture set 1: horizontal to 20 |           | JII<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | =            |                |        |         |        |                |                  |              |                        |                    |                   |                         |       |                 |
| Further details given on appended 'Borehole Information Sheer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Groundwater levels may l<br>Explanation of symbols and                                                                                                                            | be subject to seasonal, tidal and<br>abbreviations given in 'Key to l                                                                                                                      | Explorate |                                                  |              | hould not be t | aken a | is con: | stant. |                |                  |              |                        |                    |                   |                         |       |                 |

| •barn<br>ritchies                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BORE                      | HO       | LE L                       | 00      | 3      |        |                 |                 |        |        | Μ                | L043            | hole N<br>3-RC<br>t 12 of | 007     |                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|----------------------------|---------|--------|--------|-----------------|-----------------|--------|--------|------------------|-----------------|---------------------------|---------|-----------------|
| Project Name:                                                                                                                                                                                                                                                                                                                                                                                                                    | Amersham Tunnel to Calvert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |          | Survey Gr<br>Co-ordinat    |         | em:    |        |                 | )SGB<br>29.41 r | nF     |        | e Typ<br>cked    |                 |                           | R       | O+RC<br>DD      |
| Project No:                                                                                                                                                                                                                                                                                                                                                                                                                      | 1G063-AAZ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |          |                            | .03.    |        |        |                 | 47.51 r         |        |        | roved            | •               |                           | I       | PMcG            |
| Client:                                                                                                                                                                                                                                                                                                                                                                                                                          | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |          | Ground Le                  | evel:   |        |        | 1               | 30.68 r         | nOD    | Scal   |                  |                 |                           |         | 1:25            |
| Engineer:                                                                                                                                                                                                                                                                                                                                                                                                                        | High Speed 2 (HS2) Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |          |                            |         |        |        |                 |                 |        | -      | Stat             |                 |                           |         | FINAL           |
| Date Started:<br>Date Completed:                                                                                                                                                                                                                                                                                                                                                                                                 | 14/12/2016<br>21/12/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |          | Orientation<br>Inclination |         |        |        |                 | c<br>90 c       | •      |        | t Date<br>al Dep |                 |                           |         | 1/2017<br>6.30m |
| Date Completed.                                                                                                                                                                                                                                                                                                                                                                                                                  | 21/12/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dep                       | th       |                            |         | lina ( | Corina | andhS           |                 | •      |        |                  |                 | If min                    | -       |                 |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Legend (Thio<br>nes<br>(m | s) Level | Depth<br>(m)               | Туре    |        | Rec    | Blows<br>(mins) | Test            | Test I | Result | t Unit           | SCR<br>s RQU    | lfmin<br>Ifave<br>D(mna)k | Weter I | Wel<br>Backfi   |
| and smooth, with free<br>black staining, occass<br>brown clay. Fracture<br>spaced to widely spa<br>and planar, slightly rn<br>black specks, occasis<br>clay. Fracture set 3:<br>and planar, slightly rn<br>black specks, locally<br>(0/2/4mm) with brown<br>[Holywell Nodular Ch<br>55.20-55<br>55.40 - 56.10m<br>Mytild<br>55.80 - 55.93m : F<br>greyish white c<br>56.20 - 56.30m : I<br>Recovered as: sube<br>is weak, medium | dulating and planar, slightly rough<br>equent black specks, rare grey and<br>ionally infilled (0/2/10mm) with soft<br>set 2: 30 to 60 degrees, very closely<br>iced (10/350/1210mm), undulating<br>ough and smooth, with frequent<br>onally infilled (0/2/5mm) with brown<br>70 degrees to vertical, undulating<br>ough and smooth, with frequent<br>with orange staining, locally infilled<br>n clay. (Grade: C3/4)<br>talk Formation]<br>.70m: With frequent subrounded chalk<br>intraclasts (up 10 30mm).<br>n: Frequent locally abundant Mytiloides<br>irrequent subrounded and rounded light<br>thalk intraclasts (up 10 40mm) within an<br>orangish white chalk matrix.<br>Drilling disturbed, recovered non-intact.<br>angular fine to coarse GRAVEL. Gravel<br>density, light greyish white with orange<br>stainin. |                           |          | 55.17-55.42                | c<br>RC | 100    |        |                 |                 |        |        |                  | 100<br>76<br>73 | NI<br>200<br>920          |         |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |          |                            |         |        |        |                 |                 |        |        |                  |                 |                           |         |                 |
| Stratum denthe moo                                                                                                                                                                                                                                                                                                                                                                                                               | sured along borehole axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |          |                            |         |        |        |                 |                 |        |        |                  |                 |                           |         |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  | may be subject to seasonal, tidal and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |          |                            |         |        |        |                 |                 |        |        |                  |                 |                           |         |                 |

| <b>,,.b</b>                                                                                                                                                                                                                                                                                                    | <b>a ri</b><br>ritchies                                                                                                                                                                                                                                                             |                            |                                                                                                                                                                                                                                                                                                                                     | BO                                                                  | REH                                                                | OLE                                                                                                                                  | IN       | FOF                                                                                                                                                                                         | RM        | AT                      |       | ON                             | SH             | EET                                                                                         |                                                           |                                                      | Boreh<br>ML043<br>Shee                                           |                  | 007                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------|-------|--------------------------------|----------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|------------------|--------------------------------------|
| Project N<br>Project N<br>Client:<br>Engineer:                                                                                                                                                                                                                                                                 | 0:                                                                                                                                                                                                                                                                                  |                            | 1G063 -<br>DD High                                                                                                                                                                                                                                                                                                                  | m Tunnel<br>AAZ<br>Speed 2 (<br>eed 2 (HS2                          | HS2) Ltd                                                           |                                                                                                                                      |          |                                                                                                                                                                                             | Co-c      | ey G<br>ordina<br>und L | ates  |                                |                | OSGB<br>493129.41<br>199047.51<br>130.68                                                    | mN                                                        |                                                      | ed By:<br>/ed By:<br>Status:                                     |                  | RO+RC<br>PMcG<br>FINAL<br>21/11/2017 |
| Date Sta<br>Date Cor                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                     |                            | 14/12/20<br>21/12/20                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                    |                                                                                                                                      |          |                                                                                                                                                                                             |           | ntatio<br>natior        |       |                                |                |                                                                                             | deg.<br>deg.                                              | Final I                                              | Depth:                                                           |                  | 56.30m                               |
| From <ml< td=""><td></td><td></td><td>Tvoe<br/>IP</td><td>Start</td><td>End<br/>14/1212016</td><td>Plant</td><td></td><td>elated Explo<br/>Barrel</td><td></td><td>ole Inf<br/>Il Bit</td><td>form</td><td>Ria</td><td>Crew</td><td></td><td>oaaer</td><td>- La c</td><td></td><td>Remark</td><td>S</td></ml<> |                                                                                                                                                                                                                                                                                     |                            | Tvoe<br>IP                                                                                                                                                                                                                                                                                                                          | Start                                                               | End<br>14/1212016                                                  | Plant                                                                                                                                |          | elated Explo<br>Barrel                                                                                                                                                                      |           | ole Inf<br>Il Bit       | form  | Ria                            | Crew           |                                                                                             | oaaer                                                     | - La c                                               |                                                                  | Remark           | S                                    |
| 0.00<br>1.20<br>15.00                                                                                                                                                                                                                                                                                          | 1.20<br>15.00<br>56.30                                                                                                                                                                                                                                                              | )                          | RO<br>RC                                                                                                                                                                                                                                                                                                                            | 14/1212016<br>14/1212016<br>14/1212016                              | 14/12/2016<br>21/1212016                                           | hsulated diggin;<br>Cornacchio 305<br>Cornacchio 305                                                                                 | y 10015  | T6-146                                                                                                                                                                                      | Dra<br>Pi | ig bit<br>CD            |       | H.G                            | lover<br>lover | н                                                                                           | Moulsley<br>Glover<br>).Allen                             | Ro                                                   | pection pit<br>taiy open h<br>taiy cored                         | ole              |                                      |
| Date                                                                                                                                                                                                                                                                                                           | Time                                                                                                                                                                                                                                                                                |                            | Bolir<br>Deoth <ml< td=""><td>11-Drillina Prio<br/>Casinami</td><td>ress<br/>Depth Water (m)</td><td>Remark</td><td></td><td>Deoth <m< td=""><td></td><td>Diam</td><td>eter</td><td>by Deoth</td><td>narks</td><td>Deoth <m< td=""><td></td><td></td><td>neter bv D</td><td>eoth<br/>Remark</td><td></td></m<></td></m<></td></ml<> | 11-Drillina Prio<br>Casinami                                        | ress<br>Depth Water (m)                                            | Remark                                                                                                                               |          | Deoth <m< td=""><td></td><td>Diam</td><td>eter</td><td>by Deoth</td><td>narks</td><td>Deoth <m< td=""><td></td><td></td><td>neter bv D</td><td>eoth<br/>Remark</td><td></td></m<></td></m<> |           | Diam                    | eter  | by Deoth                       | narks          | Deoth <m< td=""><td></td><td></td><td>neter bv D</td><td>eoth<br/>Remark</td><td></td></m<> |                                                           |                                                      | neter bv D                                                       | eoth<br>Remark   |                                      |
| 14/1212016<br>14/1212016<br>15/1212016<br>15/1212016<br>16/1212016<br>16/1212016<br>19/1212016<br>19/1212016                                                                                                                                                                                                   | 6         07:30           6         18:00           6         07:30           6         18:00           6         07:30           6         07:30           6         07:30           6         07:30           6         07:30           6         08:00           6         18:00 | )<br>)<br>)<br>)<br>)<br>) | 0.00<br>22.30<br>22.30<br>30.80<br>30.80<br>44.30<br>44.30<br>56.30                                                                                                                                                                                                                                                                 | 0.00<br>15.00<br>15.00<br>15.00<br>15.00<br>15.00<br>15.00<br>15.00 | Diy<br>21.50<br>22.20<br>23.37<br>27.75<br>27.69<br>27.76<br>27.60 | start of shift<br>End of shill<br>start of shift<br>End of shill<br>start of shift<br>End of shill<br>start of shift<br>End of shill | 5        | 15.00<br>56.30                                                                                                                                                                              | 1         | 68<br>46                |       | Ken                            |                | 15.00                                                                                       | 16                                                        |                                                      |                                                                  | Kellark          | 5                                    |
| 20/1212016<br>20/1212016<br>2111212016                                                                                                                                                                                                                                                                         | 18:00                                                                                                                                                                                                                                                                               | )                          | 56.30<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                               | 15.00<br>0.00<br>0.00                                               | 27.70<br>Diy<br>Diy                                                | start of shift<br>End of shill<br>start of shift                                                                                     |          | From (m)                                                                                                                                                                                    | ) To      | (m)                     | Vo    | lume (Iltres)                  | wat            | er Added Re                                                                                 |                                                           | Remarks                                              |                                                                  |                  |                                      |
| 21/1212016                                                                                                                                                                                                                                                                                                     | 5 18:00                                                                                                                                                                                                                                                                             |                            | 0.00                                                                                                                                                                                                                                                                                                                                | 0.00<br>Related Rer                                                 | Diy                                                                | End of shill                                                                                                                         |          |                                                                                                                                                                                             |           | Chiselli                |       |                                |                |                                                                                             |                                                           |                                                      | Flush Detail                                                     |                  |                                      |
| From (m)<br>1.20<br>32.50                                                                                                                                                                                                                                                                                      | To (m)<br>15.00<br>43.00                                                                                                                                                                                                                                                            | Advan                      | ced SW cas                                                                                                                                                                                                                                                                                                                          |                                                                     | Remarks<br>due to weak cha                                         | alk                                                                                                                                  |          | From (m)                                                                                                                                                                                    | ) To      | (m)                     | Dui   | ration (hh:mm)                 | Tool           | From (m)<br>7.00<br>15.00                                                                   | To (m)<br>15.00<br>56.30                                  | Returns (<br>70- 70<br>0                             |                                                                  | aler             | Colour<br>1v11ite<br>o returns       |
| Dale                                                                                                                                                                                                                                                                                                           | Strike(m)                                                                                                                                                                                                                                                                           | caalrci(n                  | wate                                                                                                                                                                                                                                                                                                                                | er Strikes<br>Depth (m) Seale                                       | sd(m) R                                                            | emarks                                                                                                                               | Type     | Moni<br>Pipe ID From(i<br>1 0.00                                                                                                                                                            |           | n) <b>DB</b> (          |       | ioe Work<br>Pipe Type<br>Plain | Remarks        | From (m)<br>0.00                                                                            | <u>To (m)</u><br>0.20                                     | Back<br>legen<br>909                                 |                                                                  | Desa<br>ding cov | ption                                |
|                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                     |                            |                                                                                                                                                                                                                                                                                                                                     |                                                                     |                                                                    |                                                                                                                                      | SP<br>S1 | 1 33.00                                                                                                                                                                                     | 0 43.0    | 0 5                     | sults | Slotted                        |                | 0.20<br>0.50<br>0.80<br>30.50<br>32.50<br>43.00<br>45.00                                    | 0.50<br>0.80<br>30.50<br>32.50<br>43.00<br>45.00<br>56.30 | 906<br>902<br>904<br>903<br>902<br>903<br>903<br>904 | Concre<br>Gravel<br>Grout<br>Bentor<br>Gravel<br>Benton<br>Grout | ete<br>nite      | <b></b>                              |
| Depth (ml                                                                                                                                                                                                                                                                                                      | Туре І                                                                                                                                                                                                                                                                              | N value                    | Casino Ci                                                                                                                                                                                                                                                                                                                           | m ater (m)                                                          | SWPen(mm Blo                                                       | ws1 PenHmm)                                                                                                                          | Blows    | 2 Pen2(mm)                                                                                                                                                                                  | Blows3    | Pen3                    | (mn   | n) Blows4                      | Pen4(mm)       | Blows5 Fen                                                                                  | 5(mm) Blo                                                 | ows6 Per                                             | 16(mm)                                                           | lammei           | E. Ratio%                            |
|                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                     |                            |                                                                                                                                                                                                                                                                                                                                     |                                                                     |                                                                    | Reason for H                                                                                                                         |          | rmination                                                                                                                                                                                   | Reach     | ed so                   | che   | duled de                       | poth           |                                                                                             |                                                           |                                                      |                                                                  |                  |                                      |
|                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                     |                            |                                                                                                                                                                                                                                                                                                                                     |                                                                     |                                                                    | Reason for Ho                                                                                                                        | oleTe    | rmination:                                                                                                                                                                                  | Reach     | ied so                  | che   | duled de                       | pth            |                                                                                             |                                                           |                                                      |                                                                  |                  |                                      |
|                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                     |                            |                                                                                                                                                                                                                                                                                                                                     |                                                                     | sonal, tidal a                                                     | and other fluct                                                                                                                      | tuatio   | ns and sho                                                                                                                                                                                  | ould no   | t be t                  | ake   | en as cor                      | nstant.        |                                                                                             |                                                           |                                                      | DAM                                                              | P Info           | 06/04/2017                           |