



#### Sean Ring BSc Eng, FPWI

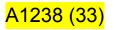
Founder Beazley Sharpe (Railwise) Ltd, Railway Engineering Consultants, 1998 to date

#### **Extensive UK and overseas experience**

- CTRL/HS1
- CrossRail
- London Underground; DLR; Track renewal programs; WCRM.
- Expert advisor to four clients on HS2

| fine adjusted tr                                                                                                             | ack section | track section with fully set concrete                                                                          |                                                            |  |
|------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|
| Malmö C<br>tunnel invert<br>tunnel invert<br>Malmö C<br>tunnel invert<br>blades<br>track panel<br>track panel<br>track panel | em          | special railbound concrete pump<br>(moving simultaneously<br>tunnel verge with the concrete distribution unit) | Hytlie                                                     |  |
|                                                                                                                              |             |                                                                                                                |                                                            |  |
| pecial railbound concrete<br>distribution unit<br>with concrete buffer                                                       |             | railbou                                                                                                        | and mixing drums railbound mixing drums (concrete shuttle) |  |
| concrete<br>distribution unit                                                                                                |             | concrete<br>transfer unit                                                                                      | concrete<br>supply unit                                    |  |




# Rail systems fit out



- Timing: Why does the Chiltern tunnel take so long (2.75yrs)?
- Method of working: Parallel versus sequential working
- Realistic Chiltern tunnel fit out schedule: Is 1.75 yrs realistic?
- REPA 4.1km extension: Can it be done in 3 months?
- Ruislip?: Should fit out be based at Ruislip?



.....efficient fit out frees up lots of time

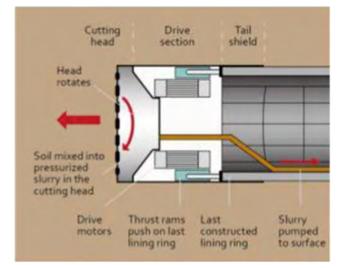


**Tunnel boring** 



#### **Rodney Craig BSc C Eng. MICE**

- > Halcrow Group (a CH2M Hill subsidiary). Director, 11yrs (to 1998).
- Head of Tunnels & Railways 1987-1994.
- British Tunneling Society James Clark Medal winner 2004
- International Tunneling Association Chair of U/ground Group
- 100+ publications


#### Extensive UK & international experience.

- Expert witness for promoter to Select Committee:
  Heathrow X (three times) and DLR to Lewisham (twice)
- Chalk projects: Cuilfail road tunnel, Malmo City Link.
- Underground storage caverns and sewers.
- Channel Tunnel Rail Link/HS1
- Victoria line; Piccadilly Line and Jubilee Line Extensions
- Stanstead Airport Rail Link

A1238 (34)

#### **Overseen 3 REPA technical reports**

On REPA and CRAG Tunnel Teams



## **Tunnel boring rates**



- HS2 Ltd assume 80m/wk (average)
- **REPA Engineering Report assumes** 
  - Pessimistic case: 90m/wk
  - Central case: 120m/wk
  - Optimistic case: 140m/wk

#### Common historical dataset

- Channel Tunnel:
- CTRL/HS1:
- Crossrail:

A1238 (35)

 Thames Water Beckton Tunnel: Chalk, long, no shafts, 25yrs ago Some chalk, short, shafts,10yrs + ago

- Some chalk, short, recent (with stations)
- Chalk, current





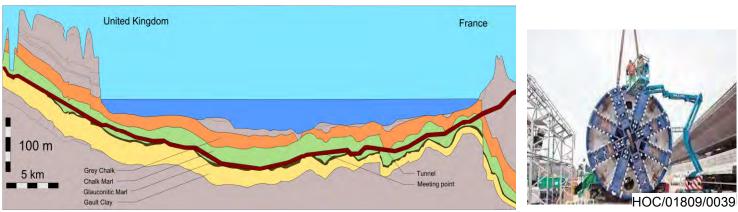
# Why adopting realistic rates matters



- Cost: tunnel costs are cheaper if go quicker
- Design criteria:
  - must design for both 'peak' and 'average' rates
- Slack: building in excessive slack increases cost
  - it should be risk related

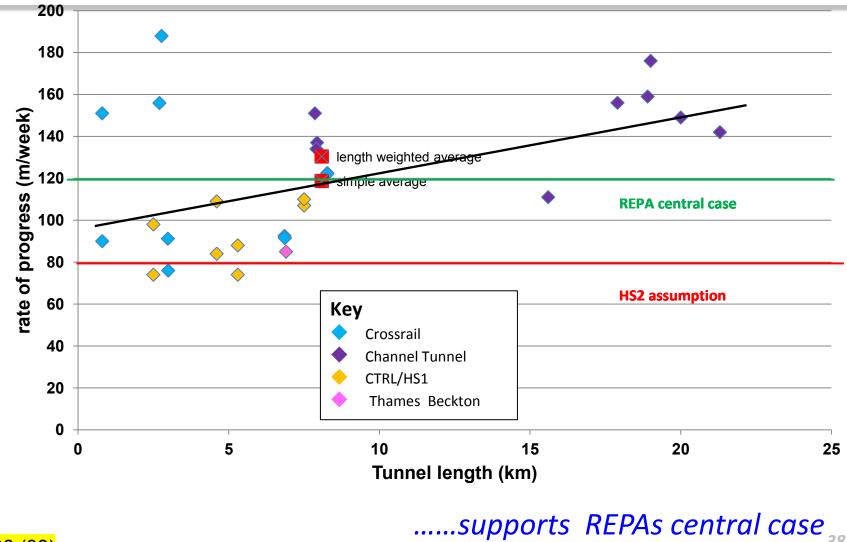


..... need "realistic" not overly "conservative" rates HOC/01809/0038







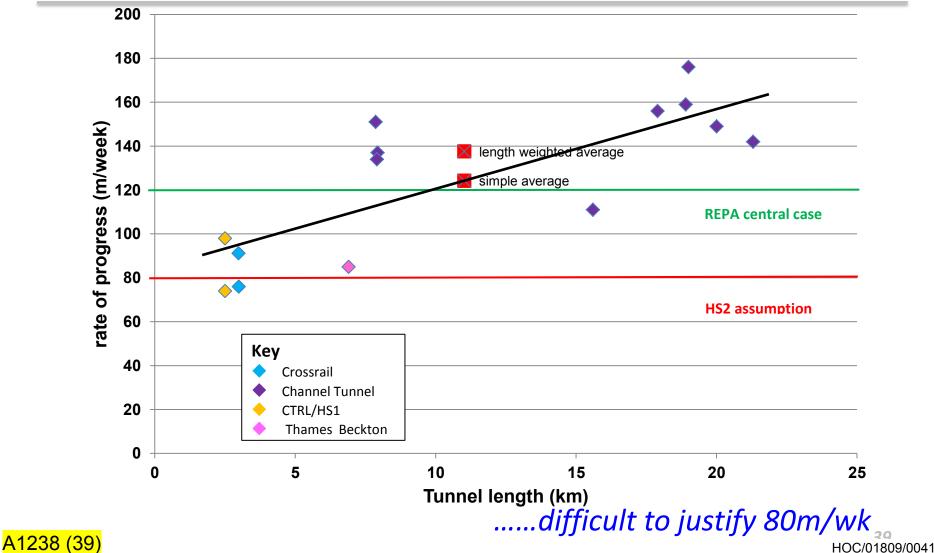


- 1. Average boring rates of progress by length
- 2. Within drivage:
  - Learning curves
  - ➢Sustained rates of progress
- 3. Shafts
- 4. Staggered starts





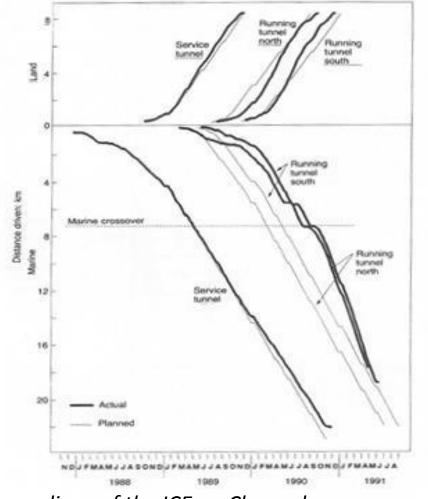


## Tunnel boring rates - 1




<mark>A1238 (38)</mark>

HOC/01809/0040


# Tunnel boring rates: tunnels in chalk - 2





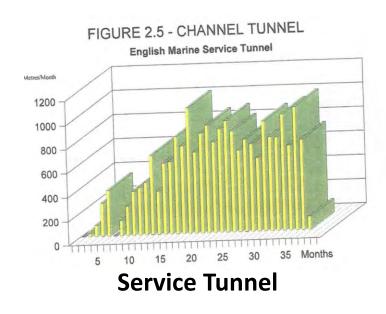
#### **Progress within drives -1**



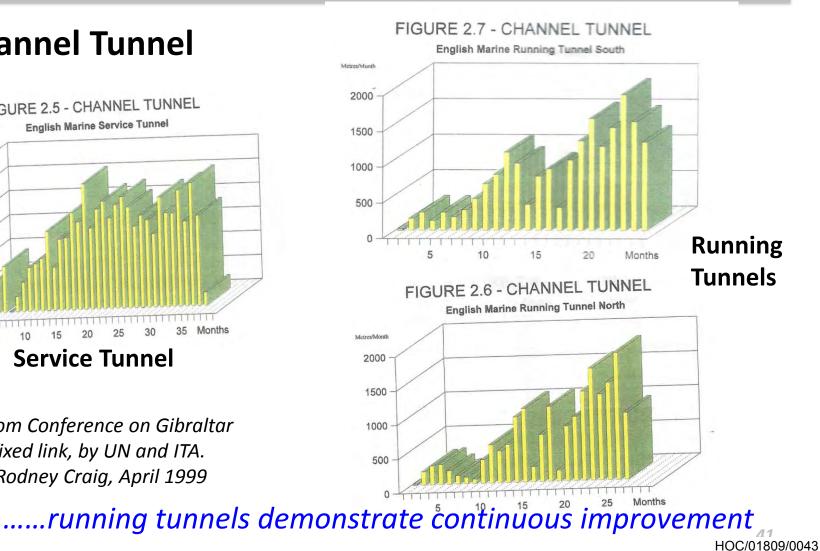


## **Channel Tunnel**

- Initial low rates learning curve
- Thereafter sustained rate of progress – no slowing down with length
- Faster than programme


Proceedings of the ICE on Channel

.....other projects confirm this same profile


### **Progress within drives - 2**



**Channel Tunnel** 



Extract from Conference on Gibraltar straight fixed link, by UN and ITA. Paper by Rodney Craig, April 1999







- Channel Tunnel evidence: contained no shafts
- Shaft allowance: HS2 Ltd say allow one month
- CTRL evidence:\*
  - Average of 18.5 days
- Shafts a maintenance opportunity: retool and do major maintenance – can speed up next stage

\* From paper published by Rodney Craig 2004 in BTS

..... evidence shows shafts cannot add much





#### **TBMs will have staggered starts in twin bored tunnels**

| Drive                | Start lag | End lag  |
|----------------------|-----------|----------|
| Channel tunnel       |           |          |
| Marine (north/south) | 13 weeks  | 4 weeks  |
| Land (north/south)   | 17 weeks  | 10 weeks |
| CTRL                 |           |          |
| 220 up/down          | 8 weeks   | 6 weeks  |
| 240 up/down          | 10 weeks  | 2 weeks  |
| 250 up/down          | 13 weeks  | 1 day    |

- Stagger diminishes over drivage.
- Makes sense as 1<sup>st</sup> bore proves the ground

, ... staggers don't impede the next stage (clear out & base concrete) A1238 (43) HOC/01809/0045

# **Tunnel boring summary**



**80m wk unrealistic:** progress rates in long tunnels have been much higher than 80m/week

Learning curve: progress rates initially low, but increase to a steady rate

Sustained rates: no tendency for rates to drop with increasing length of drivage

Shafts add little delay: Ventilation shafts have little impact on overall rates; an opportunity for re-tooling

Staggered starts: stagger in starts reduces over drive





- HS2 Ltd: programme suggests the REPA tunnel with fit out from one end, cannot be done.
- REPA contend:
  - Fit out can be done and from one end (as Chiltern Tunnel can be completed within 1.75 years)
  - > Tunnel boring can be done within the 3.2 years
- Fit-out from both ends: HS2 Ltd agrees this avoids extending the programme but REPA say bakes-in cost and has an environmental impact.



### Cost – the dispute



| ltem                                                                   | Net Costs in £m          | HS2 Ltd<br>July 15 | HS2 Ltd*<br>published rates | REPA 11 June<br>2015 Report |       | Difference |
|------------------------------------------------------------------------|--------------------------|--------------------|-----------------------------|-----------------------------|-------|------------|
| Land & Property (£m)                                                   |                          | -32.7              |                             | -11.4                       | -11.4 | 21.3       |
| Tunnels (£m)                                                           |                          | 134.5              |                             | 71.5                        | 55.5  | -79.0      |
|                                                                        | Bored Tunnels            | 181.8              | 170.2                       | 139.4                       | 102.7 | -79.1      |
|                                                                        | Green Tunnel             | -57.1              |                             | -67.9                       | -57.1 | 0.0        |
|                                                                        | Portals                  | -10.4              |                             |                             | -10.4 | 0.0        |
|                                                                        | Shafts                   | 14.2               |                             | 0.0                         | 14.2  | 0.0        |
|                                                                        | Disposal costs           | 6.1                |                             | 0.0                         | 6.1   | 0.0        |
| Civil Engineering (£m)                                                 |                          | -57.0              |                             | -68.6                       | -83.4 | -26.4      |
|                                                                        | Cuttings                 | -33.3              | -79.4                       | -53.8                       | -53.8 | -20.5      |
|                                                                        | Landscape/Planting/Noise | -7.3               |                             | 0.0                         | -7.3  | 0.0        |
|                                                                        | Bridges                  | -10.5              |                             | -7.8                        | -7.9  | 2.6        |
|                                                                        | Highways                 | -7.2               |                             | -2.0                        | -7.2  | 0.0        |
|                                                                        | Utilities Culverts       | -7.3               |                             | -5.0                        | -7.3  | 0.0        |
|                                                                        | Extended preliminaries   | 8.5                |                             | 0.0                         | 0.0   | -8.5       |
| Railway systems (£m)                                                   |                          | 21.7               |                             | 0.0                         | 21.7  | 0.0        |
| Indirect costs (£m)                                                    |                          | 18.0               |                             | 0.0                         | -1.1  | -19.1      |
| ECP/VE (£m)                                                            |                          | -8.1               |                             | 0.0                         | 0.5   | 8.6        |
| Net TOTAL £m                                                           |                          | 76.4               |                             | -8.5                        | -18.1 | -94.6      |
| from Tunnel Guide (for tunnelling), and 2012 Appendix A (for cuttings) |                          |                    |                             |                             |       |            |

<mark>A1238 (46)</mark>

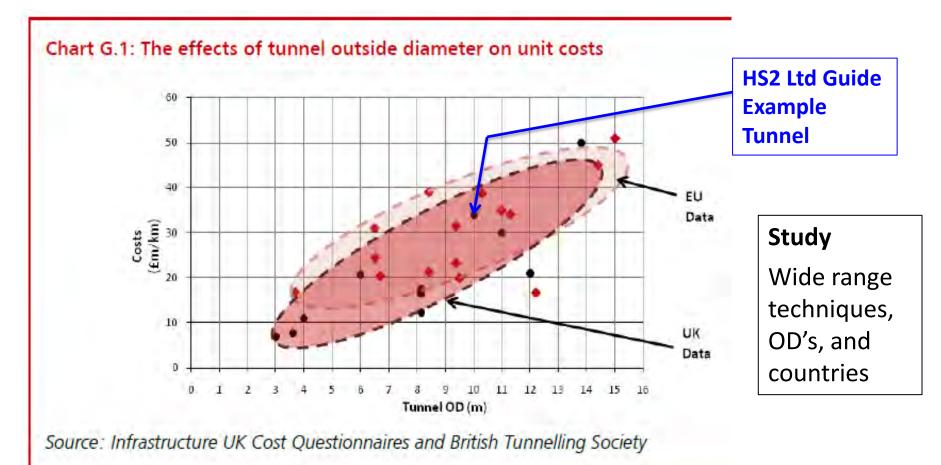
...almost a £100m gap between us







The issue: HS2 Ltd estimate tunnel boring costs for REPA that appear greater than in their Tunnel Guide, and are <u>much greater</u> than from 2012 Appendix A rates, that REPA used


#### Evidence areas

- > Tunnel Guide costs and tunnel comparator evidence
- Appendix A cost similar to comparator tunnels
- How costs change with length
- Marginal costs
- Faster means cheaper



## **Benchmarking Study**





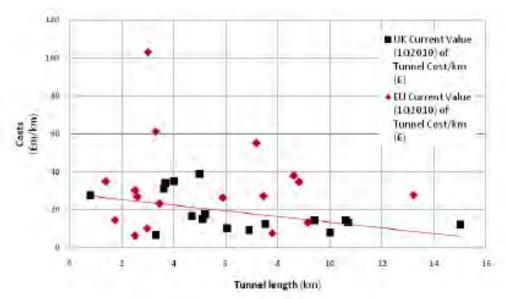
.....so does benchmarking support the Tunnel Guide? HOC/01809/0050







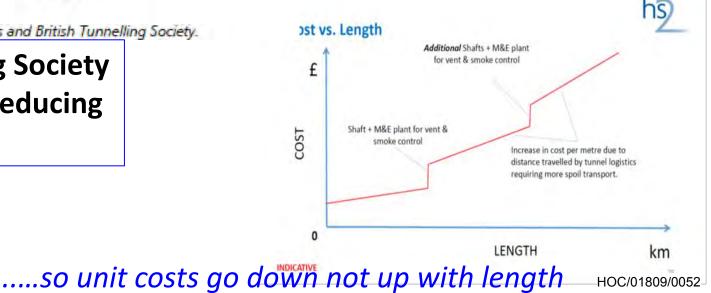
|                           |            | Outside<br>Diameter | Cost<br>£k/m | Adjusted*<br>Cost £k/m | Cost £k *<br><u>route</u> m |
|---------------------------|------------|---------------------|--------------|------------------------|-----------------------------|
| UK 1                      | CTRL       | 8.1m                | £12.0        | £15.0                  | 1                           |
| UK 3                      | CTRL       | 8.1m                | £16.5        | £20.7                  | <b>£</b> 36.1               |
| UK 4                      | CTRL       | 8.1m                | £14.6        | £18.4                  |                             |
| UK 8                      |            | 6.5m                | £15.2        | £26.2                  | £52.4                       |
| average                   |            |                     |              | £20.1                  | £40.2                       |
| HS2 Ltd Gui<br>Example Tu |            | 9.6m                | £33.1        | £33.1                  | £66.2                       |
|                           | % increase |                     |              | +64%                   |                             |
| HS2 Ltd App               | endix A*   | 7.25m ID            |              |                        | £42.5                       |


\*Adjusted to 9.60D of HS2 Ltd example tunnel

.....so £42.5k/route metre looks reasonable






### Cost versus length



nfrastructure UK Cost Questionnaires and British Tunnelling Society.

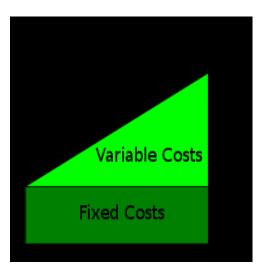
British Tunnelling Society show unit costs reducing with length







Marginal costs




# Marginal cost rate is the appropriate rate for the 4.1km REPA extension

➢ REPA assumed 80% variable costs, 20% fixed.

#### REPA Evidence

- Longer tunnels have lower unit costs BTS evidence
- ≻FOI 13-621R : gave 80%:20% split



A1238 (51) REPA assumed a marginal rate of 80% of £42.5k per metre 51 HOC/01809/0053

## Time-based costs



#### **Time costs money**

- How much?: A 20% reduction in tunnelling time delivers 5% less cost (*REPA Report, para 4.24*)
- Tunnel Guide confirmation: 20% less time boring a 13.3km tunnel saves 5.3% in direct costs.
- REPA central case (120m/week):
- ➢ Reduces time by 33%
- Boring speed benefits not counted



..... realistic timescales will make tunnelling cheaper



<mark>A1238 (53)</mark>



HOC/01809/0055

✓ Guide costs are not representative: they are well above relevant comparators (Guide 64% higher than the benchmark)

# Comparator tunnels, eg HS1, confirm original values: the tunnel evidence aligns with the original 2012 Appendix A values, which is what REPA used

✓ Marginal costs are appropriate for REPA: evidence to support the 80% REPA used.

**Cost by length:** Costs go down not up with length

Time is money: realistic time scales are also important for costs

...HS2 Ltd's tunnel costs appear too high